summaryrefslogtreecommitdiff
path: root/Modules/_ctypes/libffi/src/aarch64/ffi.c
diff options
context:
space:
mode:
Diffstat (limited to 'Modules/_ctypes/libffi/src/aarch64/ffi.c')
-rw-r--r--Modules/_ctypes/libffi/src/aarch64/ffi.c1168
1 files changed, 0 insertions, 1168 deletions
diff --git a/Modules/_ctypes/libffi/src/aarch64/ffi.c b/Modules/_ctypes/libffi/src/aarch64/ffi.c
deleted file mode 100644
index b807a2d381..0000000000
--- a/Modules/_ctypes/libffi/src/aarch64/ffi.c
+++ /dev/null
@@ -1,1168 +0,0 @@
-/* Copyright (c) 2009, 2010, 2011, 2012 ARM Ltd.
-
-Permission is hereby granted, free of charge, to any person obtaining
-a copy of this software and associated documentation files (the
-``Software''), to deal in the Software without restriction, including
-without limitation the rights to use, copy, modify, merge, publish,
-distribute, sublicense, and/or sell copies of the Software, and to
-permit persons to whom the Software is furnished to do so, subject to
-the following conditions:
-
-The above copyright notice and this permission notice shall be
-included in all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
-EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
-IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
-CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
-TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
-SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
-
-#include <stdio.h>
-
-#include <ffi.h>
-#include <ffi_common.h>
-
-#include <stdlib.h>
-
-/* Stack alignment requirement in bytes */
-#if defined (__APPLE__)
-#define AARCH64_STACK_ALIGN 1
-#else
-#define AARCH64_STACK_ALIGN 16
-#endif
-
-#define N_X_ARG_REG 8
-#define N_V_ARG_REG 8
-
-#define AARCH64_FFI_WITH_V (1 << AARCH64_FFI_WITH_V_BIT)
-
-union _d
-{
- UINT64 d;
- UINT32 s[2];
-};
-
-struct call_context
-{
- UINT64 x [AARCH64_N_XREG];
- struct
- {
- union _d d[2];
- } v [AARCH64_N_VREG];
-};
-
-#if defined (__clang__) && defined (__APPLE__)
-extern void
-sys_icache_invalidate (void *start, size_t len);
-#endif
-
-static inline void
-ffi_clear_cache (void *start, void *end)
-{
-#if defined (__clang__) && defined (__APPLE__)
- sys_icache_invalidate (start, (char *)end - (char *)start);
-#elif defined (__GNUC__)
- __builtin___clear_cache (start, end);
-#else
-#error "Missing builtin to flush instruction cache"
-#endif
-}
-
-static void *
-get_x_addr (struct call_context *context, unsigned n)
-{
- return &context->x[n];
-}
-
-static void *
-get_s_addr (struct call_context *context, unsigned n)
-{
-#if defined __AARCH64EB__
- return &context->v[n].d[1].s[1];
-#else
- return &context->v[n].d[0].s[0];
-#endif
-}
-
-static void *
-get_d_addr (struct call_context *context, unsigned n)
-{
-#if defined __AARCH64EB__
- return &context->v[n].d[1];
-#else
- return &context->v[n].d[0];
-#endif
-}
-
-static void *
-get_v_addr (struct call_context *context, unsigned n)
-{
- return &context->v[n];
-}
-
-/* Return the memory location at which a basic type would reside
- were it to have been stored in register n. */
-
-static void *
-get_basic_type_addr (unsigned short type, struct call_context *context,
- unsigned n)
-{
- switch (type)
- {
- case FFI_TYPE_FLOAT:
- return get_s_addr (context, n);
- case FFI_TYPE_DOUBLE:
- return get_d_addr (context, n);
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
- return get_v_addr (context, n);
-#endif
- case FFI_TYPE_UINT8:
- case FFI_TYPE_SINT8:
- case FFI_TYPE_UINT16:
- case FFI_TYPE_SINT16:
- case FFI_TYPE_UINT32:
- case FFI_TYPE_SINT32:
- case FFI_TYPE_INT:
- case FFI_TYPE_POINTER:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_SINT64:
- return get_x_addr (context, n);
- case FFI_TYPE_VOID:
- return NULL;
- default:
- FFI_ASSERT (0);
- return NULL;
- }
-}
-
-/* Return the alignment width for each of the basic types. */
-
-static size_t
-get_basic_type_alignment (unsigned short type)
-{
- switch (type)
- {
- case FFI_TYPE_FLOAT:
- case FFI_TYPE_DOUBLE:
- return sizeof (UINT64);
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
- return sizeof (long double);
-#endif
- case FFI_TYPE_UINT8:
- case FFI_TYPE_SINT8:
-#if defined (__APPLE__)
- return sizeof (UINT8);
-#endif
- case FFI_TYPE_UINT16:
- case FFI_TYPE_SINT16:
-#if defined (__APPLE__)
- return sizeof (UINT16);
-#endif
- case FFI_TYPE_UINT32:
- case FFI_TYPE_INT:
- case FFI_TYPE_SINT32:
-#if defined (__APPLE__)
- return sizeof (UINT32);
-#endif
- case FFI_TYPE_POINTER:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_SINT64:
- return sizeof (UINT64);
-
- default:
- FFI_ASSERT (0);
- return 0;
- }
-}
-
-/* Return the size in bytes for each of the basic types. */
-
-static size_t
-get_basic_type_size (unsigned short type)
-{
- switch (type)
- {
- case FFI_TYPE_FLOAT:
- return sizeof (UINT32);
- case FFI_TYPE_DOUBLE:
- return sizeof (UINT64);
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
- return sizeof (long double);
-#endif
- case FFI_TYPE_UINT8:
- return sizeof (UINT8);
- case FFI_TYPE_SINT8:
- return sizeof (SINT8);
- case FFI_TYPE_UINT16:
- return sizeof (UINT16);
- case FFI_TYPE_SINT16:
- return sizeof (SINT16);
- case FFI_TYPE_UINT32:
- return sizeof (UINT32);
- case FFI_TYPE_INT:
- case FFI_TYPE_SINT32:
- return sizeof (SINT32);
- case FFI_TYPE_POINTER:
- case FFI_TYPE_UINT64:
- return sizeof (UINT64);
- case FFI_TYPE_SINT64:
- return sizeof (SINT64);
-
- default:
- FFI_ASSERT (0);
- return 0;
- }
-}
-
-extern void
-ffi_call_SYSV (unsigned (*)(struct call_context *context, unsigned char *,
- extended_cif *),
- struct call_context *context,
- extended_cif *,
- size_t,
- void (*fn)(void));
-
-extern void
-ffi_closure_SYSV (ffi_closure *);
-
-/* Test for an FFI floating point representation. */
-
-static unsigned
-is_floating_type (unsigned short type)
-{
- return (type == FFI_TYPE_FLOAT || type == FFI_TYPE_DOUBLE
- || type == FFI_TYPE_LONGDOUBLE);
-}
-
-/* Test for a homogeneous structure. */
-
-static unsigned short
-get_homogeneous_type (ffi_type *ty)
-{
- if (ty->type == FFI_TYPE_STRUCT && ty->elements)
- {
- unsigned i;
- unsigned short candidate_type
- = get_homogeneous_type (ty->elements[0]);
- for (i =1; ty->elements[i]; i++)
- {
- unsigned short iteration_type = 0;
- /* If we have a nested struct, we must find its homogeneous type.
- If that fits with our candidate type, we are still
- homogeneous. */
- if (ty->elements[i]->type == FFI_TYPE_STRUCT
- && ty->elements[i]->elements)
- {
- iteration_type = get_homogeneous_type (ty->elements[i]);
- }
- else
- {
- iteration_type = ty->elements[i]->type;
- }
-
- /* If we are not homogeneous, return FFI_TYPE_STRUCT. */
- if (candidate_type != iteration_type)
- return FFI_TYPE_STRUCT;
- }
- return candidate_type;
- }
-
- /* Base case, we have no more levels of nesting, so we
- are a basic type, and so, trivially homogeneous in that type. */
- return ty->type;
-}
-
-/* Determine the number of elements within a STRUCT.
-
- Note, we must handle nested structs.
-
- If ty is not a STRUCT this function will return 0. */
-
-static unsigned
-element_count (ffi_type *ty)
-{
- if (ty->type == FFI_TYPE_STRUCT && ty->elements)
- {
- unsigned n;
- unsigned elems = 0;
- for (n = 0; ty->elements[n]; n++)
- {
- if (ty->elements[n]->type == FFI_TYPE_STRUCT
- && ty->elements[n]->elements)
- elems += element_count (ty->elements[n]);
- else
- elems++;
- }
- return elems;
- }
- return 0;
-}
-
-/* Test for a homogeneous floating point aggregate.
-
- A homogeneous floating point aggregate is a homogeneous aggregate of
- a half- single- or double- precision floating point type with one
- to four elements. Note that this includes nested structs of the
- basic type. */
-
-static int
-is_hfa (ffi_type *ty)
-{
- if (ty->type == FFI_TYPE_STRUCT
- && ty->elements[0]
- && is_floating_type (get_homogeneous_type (ty)))
- {
- unsigned n = element_count (ty);
- return n >= 1 && n <= 4;
- }
- return 0;
-}
-
-/* Test if an ffi_type is a candidate for passing in a register.
-
- This test does not check that sufficient registers of the
- appropriate class are actually available, merely that IFF
- sufficient registers are available then the argument will be passed
- in register(s).
-
- Note that an ffi_type that is deemed to be a register candidate
- will always be returned in registers.
-
- Returns 1 if a register candidate else 0. */
-
-static int
-is_register_candidate (ffi_type *ty)
-{
- switch (ty->type)
- {
- case FFI_TYPE_VOID:
- case FFI_TYPE_FLOAT:
- case FFI_TYPE_DOUBLE:
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
-#endif
- case FFI_TYPE_UINT8:
- case FFI_TYPE_UINT16:
- case FFI_TYPE_UINT32:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_POINTER:
- case FFI_TYPE_SINT8:
- case FFI_TYPE_SINT16:
- case FFI_TYPE_SINT32:
- case FFI_TYPE_INT:
- case FFI_TYPE_SINT64:
- return 1;
-
- case FFI_TYPE_STRUCT:
- if (is_hfa (ty))
- {
- return 1;
- }
- else if (ty->size > 16)
- {
- /* Too large. Will be replaced with a pointer to memory. The
- pointer MAY be passed in a register, but the value will
- not. This test specifically fails since the argument will
- never be passed by value in registers. */
- return 0;
- }
- else
- {
- /* Might be passed in registers depending on the number of
- registers required. */
- return (ty->size + 7) / 8 < N_X_ARG_REG;
- }
- break;
-
- default:
- FFI_ASSERT (0);
- break;
- }
-
- return 0;
-}
-
-/* Test if an ffi_type argument or result is a candidate for a vector
- register. */
-
-static int
-is_v_register_candidate (ffi_type *ty)
-{
- return is_floating_type (ty->type)
- || (ty->type == FFI_TYPE_STRUCT && is_hfa (ty));
-}
-
-/* Representation of the procedure call argument marshalling
- state.
-
- The terse state variable names match the names used in the AARCH64
- PCS. */
-
-struct arg_state
-{
- unsigned ngrn; /* Next general-purpose register number. */
- unsigned nsrn; /* Next vector register number. */
- size_t nsaa; /* Next stack offset. */
-
-#if defined (__APPLE__)
- unsigned allocating_variadic;
-#endif
-};
-
-/* Initialize a procedure call argument marshalling state. */
-static void
-arg_init (struct arg_state *state, size_t call_frame_size)
-{
- state->ngrn = 0;
- state->nsrn = 0;
- state->nsaa = 0;
-
-#if defined (__APPLE__)
- state->allocating_variadic = 0;
-#endif
-}
-
-/* Return the number of available consecutive core argument
- registers. */
-
-static unsigned
-available_x (struct arg_state *state)
-{
- return N_X_ARG_REG - state->ngrn;
-}
-
-/* Return the number of available consecutive vector argument
- registers. */
-
-static unsigned
-available_v (struct arg_state *state)
-{
- return N_V_ARG_REG - state->nsrn;
-}
-
-static void *
-allocate_to_x (struct call_context *context, struct arg_state *state)
-{
- FFI_ASSERT (state->ngrn < N_X_ARG_REG);
- return get_x_addr (context, (state->ngrn)++);
-}
-
-static void *
-allocate_to_s (struct call_context *context, struct arg_state *state)
-{
- FFI_ASSERT (state->nsrn < N_V_ARG_REG);
- return get_s_addr (context, (state->nsrn)++);
-}
-
-static void *
-allocate_to_d (struct call_context *context, struct arg_state *state)
-{
- FFI_ASSERT (state->nsrn < N_V_ARG_REG);
- return get_d_addr (context, (state->nsrn)++);
-}
-
-static void *
-allocate_to_v (struct call_context *context, struct arg_state *state)
-{
- FFI_ASSERT (state->nsrn < N_V_ARG_REG);
- return get_v_addr (context, (state->nsrn)++);
-}
-
-/* Allocate an aligned slot on the stack and return a pointer to it. */
-static void *
-allocate_to_stack (struct arg_state *state, void *stack, size_t alignment,
- size_t size)
-{
- void *allocation;
-
- /* Round up the NSAA to the larger of 8 or the natural
- alignment of the argument's type. */
- state->nsaa = ALIGN (state->nsaa, alignment);
- state->nsaa = ALIGN (state->nsaa, alignment);
-#if defined (__APPLE__)
- if (state->allocating_variadic)
- state->nsaa = ALIGN (state->nsaa, 8);
-#else
- state->nsaa = ALIGN (state->nsaa, 8);
-#endif
-
- allocation = stack + state->nsaa;
-
- state->nsaa += size;
- return allocation;
-}
-
-static void
-copy_basic_type (void *dest, void *source, unsigned short type)
-{
- /* This is necessary to ensure that basic types are copied
- sign extended to 64-bits as libffi expects. */
- switch (type)
- {
- case FFI_TYPE_FLOAT:
- *(float *) dest = *(float *) source;
- break;
- case FFI_TYPE_DOUBLE:
- *(double *) dest = *(double *) source;
- break;
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
- *(long double *) dest = *(long double *) source;
- break;
-#endif
- case FFI_TYPE_UINT8:
- *(ffi_arg *) dest = *(UINT8 *) source;
- break;
- case FFI_TYPE_SINT8:
- *(ffi_sarg *) dest = *(SINT8 *) source;
- break;
- case FFI_TYPE_UINT16:
- *(ffi_arg *) dest = *(UINT16 *) source;
- break;
- case FFI_TYPE_SINT16:
- *(ffi_sarg *) dest = *(SINT16 *) source;
- break;
- case FFI_TYPE_UINT32:
- *(ffi_arg *) dest = *(UINT32 *) source;
- break;
- case FFI_TYPE_INT:
- case FFI_TYPE_SINT32:
- *(ffi_sarg *) dest = *(SINT32 *) source;
- break;
- case FFI_TYPE_POINTER:
- case FFI_TYPE_UINT64:
- *(ffi_arg *) dest = *(UINT64 *) source;
- break;
- case FFI_TYPE_SINT64:
- *(ffi_sarg *) dest = *(SINT64 *) source;
- break;
- case FFI_TYPE_VOID:
- break;
-
- default:
- FFI_ASSERT (0);
- }
-}
-
-static void
-copy_hfa_to_reg_or_stack (void *memory,
- ffi_type *ty,
- struct call_context *context,
- unsigned char *stack,
- struct arg_state *state)
-{
- unsigned elems = element_count (ty);
- if (available_v (state) < elems)
- {
- /* There are insufficient V registers. Further V register allocations
- are prevented, the NSAA is adjusted (by allocate_to_stack ())
- and the argument is copied to memory at the adjusted NSAA. */
- state->nsrn = N_V_ARG_REG;
- memcpy (allocate_to_stack (state, stack, ty->alignment, ty->size),
- memory,
- ty->size);
- }
- else
- {
- int i;
- unsigned short type = get_homogeneous_type (ty);
- for (i = 0; i < elems; i++)
- {
- void *reg = allocate_to_v (context, state);
- copy_basic_type (reg, memory, type);
- memory += get_basic_type_size (type);
- }
- }
-}
-
-/* Either allocate an appropriate register for the argument type, or if
- none are available, allocate a stack slot and return a pointer
- to the allocated space. */
-
-static void *
-allocate_to_register_or_stack (struct call_context *context,
- unsigned char *stack,
- struct arg_state *state,
- unsigned short type)
-{
- size_t alignment = get_basic_type_alignment (type);
- size_t size = alignment;
- switch (type)
- {
- case FFI_TYPE_FLOAT:
- /* This is the only case for which the allocated stack size
- should not match the alignment of the type. */
- size = sizeof (UINT32);
- /* Fall through. */
- case FFI_TYPE_DOUBLE:
- if (state->nsrn < N_V_ARG_REG)
- return allocate_to_d (context, state);
- state->nsrn = N_V_ARG_REG;
- break;
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
- if (state->nsrn < N_V_ARG_REG)
- return allocate_to_v (context, state);
- state->nsrn = N_V_ARG_REG;
- break;
-#endif
- case FFI_TYPE_UINT8:
- case FFI_TYPE_SINT8:
- case FFI_TYPE_UINT16:
- case FFI_TYPE_SINT16:
- case FFI_TYPE_UINT32:
- case FFI_TYPE_SINT32:
- case FFI_TYPE_INT:
- case FFI_TYPE_POINTER:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_SINT64:
- if (state->ngrn < N_X_ARG_REG)
- return allocate_to_x (context, state);
- state->ngrn = N_X_ARG_REG;
- break;
- default:
- FFI_ASSERT (0);
- }
-
- return allocate_to_stack (state, stack, alignment, size);
-}
-
-/* Copy a value to an appropriate register, or if none are
- available, to the stack. */
-
-static void
-copy_to_register_or_stack (struct call_context *context,
- unsigned char *stack,
- struct arg_state *state,
- void *value,
- unsigned short type)
-{
- copy_basic_type (
- allocate_to_register_or_stack (context, stack, state, type),
- value,
- type);
-}
-
-/* Marshall the arguments from FFI representation to procedure call
- context and stack. */
-
-static unsigned
-aarch64_prep_args (struct call_context *context, unsigned char *stack,
- extended_cif *ecif)
-{
- int i;
- struct arg_state state;
-
- arg_init (&state, ALIGN(ecif->cif->bytes, 16));
-
- for (i = 0; i < ecif->cif->nargs; i++)
- {
- ffi_type *ty = ecif->cif->arg_types[i];
- switch (ty->type)
- {
- case FFI_TYPE_VOID:
- FFI_ASSERT (0);
- break;
-
- /* If the argument is a basic type the argument is allocated to an
- appropriate register, or if none are available, to the stack. */
- case FFI_TYPE_FLOAT:
- case FFI_TYPE_DOUBLE:
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
-#endif
- case FFI_TYPE_UINT8:
- case FFI_TYPE_SINT8:
- case FFI_TYPE_UINT16:
- case FFI_TYPE_SINT16:
- case FFI_TYPE_UINT32:
- case FFI_TYPE_INT:
- case FFI_TYPE_SINT32:
- case FFI_TYPE_POINTER:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_SINT64:
- copy_to_register_or_stack (context, stack, &state,
- ecif->avalue[i], ty->type);
- break;
-
- case FFI_TYPE_STRUCT:
- if (is_hfa (ty))
- {
- copy_hfa_to_reg_or_stack (ecif->avalue[i], ty, context,
- stack, &state);
- }
- else if (ty->size > 16)
- {
- /* If the argument is a composite type that is larger than 16
- bytes, then the argument has been copied to memory, and
- the argument is replaced by a pointer to the copy. */
-
- copy_to_register_or_stack (context, stack, &state,
- &(ecif->avalue[i]), FFI_TYPE_POINTER);
- }
- else if (available_x (&state) >= (ty->size + 7) / 8)
- {
- /* If the argument is a composite type and the size in
- double-words is not more than the number of available
- X registers, then the argument is copied into consecutive
- X registers. */
- int j;
- for (j = 0; j < (ty->size + 7) / 8; j++)
- {
- memcpy (allocate_to_x (context, &state),
- &(((UINT64 *) ecif->avalue[i])[j]),
- sizeof (UINT64));
- }
- }
- else
- {
- /* Otherwise, there are insufficient X registers. Further X
- register allocations are prevented, the NSAA is adjusted
- (by allocate_to_stack ()) and the argument is copied to
- memory at the adjusted NSAA. */
- state.ngrn = N_X_ARG_REG;
-
- memcpy (allocate_to_stack (&state, stack, ty->alignment,
- ty->size), ecif->avalue + i, ty->size);
- }
- break;
-
- default:
- FFI_ASSERT (0);
- break;
- }
-
-#if defined (__APPLE__)
- if (i + 1 == ecif->cif->aarch64_nfixedargs)
- {
- state.ngrn = N_X_ARG_REG;
- state.nsrn = N_V_ARG_REG;
-
- state.allocating_variadic = 1;
- }
-#endif
- }
-
- return ecif->cif->aarch64_flags;
-}
-
-ffi_status
-ffi_prep_cif_machdep (ffi_cif *cif)
-{
- /* Round the stack up to a multiple of the stack alignment requirement. */
- cif->bytes =
- (cif->bytes + (AARCH64_STACK_ALIGN - 1)) & ~ (AARCH64_STACK_ALIGN - 1);
-
- /* Initialize our flags. We are interested if this CIF will touch a
- vector register, if so we will enable context save and load to
- those registers, otherwise not. This is intended to be friendly
- to lazy float context switching in the kernel. */
- cif->aarch64_flags = 0;
-
- if (is_v_register_candidate (cif->rtype))
- {
- cif->aarch64_flags |= AARCH64_FFI_WITH_V;
- }
- else
- {
- int i;
- for (i = 0; i < cif->nargs; i++)
- if (is_v_register_candidate (cif->arg_types[i]))
- {
- cif->aarch64_flags |= AARCH64_FFI_WITH_V;
- break;
- }
- }
-
- return FFI_OK;
-}
-
-#if defined (__APPLE__)
-
-/* Perform Apple-specific cif processing for variadic calls */
-ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif,
- unsigned int nfixedargs,
- unsigned int ntotalargs)
-{
- cif->aarch64_nfixedargs = nfixedargs;
-
- return ffi_prep_cif_machdep(cif);
-}
-
-#endif
-
-/* Call a function with the provided arguments and capture the return
- value. */
-void
-ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
-{
- extended_cif ecif;
-
- ecif.cif = cif;
- ecif.avalue = avalue;
- ecif.rvalue = rvalue;
-
- switch (cif->abi)
- {
- case FFI_SYSV:
- {
- struct call_context context;
- size_t stack_bytes;
-
- /* Figure out the total amount of stack space we need, the
- above call frame space needs to be 16 bytes aligned to
- ensure correct alignment of the first object inserted in
- that space hence the ALIGN applied to cif->bytes.*/
- stack_bytes = ALIGN(cif->bytes, 16);
-
- memset (&context, 0, sizeof (context));
- if (is_register_candidate (cif->rtype))
- {
- ffi_call_SYSV (aarch64_prep_args, &context, &ecif, stack_bytes, fn);
- switch (cif->rtype->type)
- {
- case FFI_TYPE_VOID:
- case FFI_TYPE_FLOAT:
- case FFI_TYPE_DOUBLE:
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
-#endif
- case FFI_TYPE_UINT8:
- case FFI_TYPE_SINT8:
- case FFI_TYPE_UINT16:
- case FFI_TYPE_SINT16:
- case FFI_TYPE_UINT32:
- case FFI_TYPE_SINT32:
- case FFI_TYPE_POINTER:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_INT:
- case FFI_TYPE_SINT64:
- {
- void *addr = get_basic_type_addr (cif->rtype->type,
- &context, 0);
- copy_basic_type (rvalue, addr, cif->rtype->type);
- break;
- }
-
- case FFI_TYPE_STRUCT:
- if (is_hfa (cif->rtype))
- {
- int j;
- unsigned short type = get_homogeneous_type (cif->rtype);
- unsigned elems = element_count (cif->rtype);
- for (j = 0; j < elems; j++)
- {
- void *reg = get_basic_type_addr (type, &context, j);
- copy_basic_type (rvalue, reg, type);
- rvalue += get_basic_type_size (type);
- }
- }
- else if ((cif->rtype->size + 7) / 8 < N_X_ARG_REG)
- {
- size_t size = ALIGN (cif->rtype->size, sizeof (UINT64));
- memcpy (rvalue, get_x_addr (&context, 0), size);
- }
- else
- {
- FFI_ASSERT (0);
- }
- break;
-
- default:
- FFI_ASSERT (0);
- break;
- }
- }
- else
- {
- memcpy (get_x_addr (&context, 8), &rvalue, sizeof (UINT64));
- ffi_call_SYSV (aarch64_prep_args, &context, &ecif,
- stack_bytes, fn);
- }
- break;
- }
-
- default:
- FFI_ASSERT (0);
- break;
- }
-}
-
-static unsigned char trampoline [] =
-{ 0x70, 0x00, 0x00, 0x58, /* ldr x16, 1f */
- 0x91, 0x00, 0x00, 0x10, /* adr x17, 2f */
- 0x00, 0x02, 0x1f, 0xd6 /* br x16 */
-};
-
-/* Build a trampoline. */
-
-#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX,FLAGS) \
- ({unsigned char *__tramp = (unsigned char*)(TRAMP); \
- UINT64 __fun = (UINT64)(FUN); \
- UINT64 __ctx = (UINT64)(CTX); \
- UINT64 __flags = (UINT64)(FLAGS); \
- memcpy (__tramp, trampoline, sizeof (trampoline)); \
- memcpy (__tramp + 12, &__fun, sizeof (__fun)); \
- memcpy (__tramp + 20, &__ctx, sizeof (__ctx)); \
- memcpy (__tramp + 28, &__flags, sizeof (__flags)); \
- ffi_clear_cache(__tramp, __tramp + FFI_TRAMPOLINE_SIZE); \
- })
-
-ffi_status
-ffi_prep_closure_loc (ffi_closure* closure,
- ffi_cif* cif,
- void (*fun)(ffi_cif*,void*,void**,void*),
- void *user_data,
- void *codeloc)
-{
- if (cif->abi != FFI_SYSV)
- return FFI_BAD_ABI;
-
- FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_SYSV, codeloc,
- cif->aarch64_flags);
-
- closure->cif = cif;
- closure->user_data = user_data;
- closure->fun = fun;
-
- return FFI_OK;
-}
-
-/* Primary handler to setup and invoke a function within a closure.
-
- A closure when invoked enters via the assembler wrapper
- ffi_closure_SYSV(). The wrapper allocates a call context on the
- stack, saves the interesting registers (from the perspective of
- the calling convention) into the context then passes control to
- ffi_closure_SYSV_inner() passing the saved context and a pointer to
- the stack at the point ffi_closure_SYSV() was invoked.
-
- On the return path the assembler wrapper will reload call context
- registers.
-
- ffi_closure_SYSV_inner() marshalls the call context into ffi value
- descriptors, invokes the wrapped function, then marshalls the return
- value back into the call context. */
-
-void FFI_HIDDEN
-ffi_closure_SYSV_inner (ffi_closure *closure, struct call_context *context,
- void *stack)
-{
- ffi_cif *cif = closure->cif;
- void **avalue = (void**) alloca (cif->nargs * sizeof (void*));
- void *rvalue = NULL;
- int i;
- struct arg_state state;
-
- arg_init (&state, ALIGN(cif->bytes, 16));
-
- for (i = 0; i < cif->nargs; i++)
- {
- ffi_type *ty = cif->arg_types[i];
-
- switch (ty->type)
- {
- case FFI_TYPE_VOID:
- FFI_ASSERT (0);
- break;
-
- case FFI_TYPE_UINT8:
- case FFI_TYPE_SINT8:
- case FFI_TYPE_UINT16:
- case FFI_TYPE_SINT16:
- case FFI_TYPE_UINT32:
- case FFI_TYPE_SINT32:
- case FFI_TYPE_INT:
- case FFI_TYPE_POINTER:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_SINT64:
- case FFI_TYPE_FLOAT:
- case FFI_TYPE_DOUBLE:
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
- avalue[i] = allocate_to_register_or_stack (context, stack,
- &state, ty->type);
- break;
-#endif
-
- case FFI_TYPE_STRUCT:
- if (is_hfa (ty))
- {
- unsigned n = element_count (ty);
- if (available_v (&state) < n)
- {
- state.nsrn = N_V_ARG_REG;
- avalue[i] = allocate_to_stack (&state, stack, ty->alignment,
- ty->size);
- }
- else
- {
- switch (get_homogeneous_type (ty))
- {
- case FFI_TYPE_FLOAT:
- {
- /* Eeek! We need a pointer to the structure,
- however the homogeneous float elements are
- being passed in individual S registers,
- therefore the structure is not represented as
- a contiguous sequence of bytes in our saved
- register context. We need to fake up a copy
- of the structure laid out in memory
- correctly. The fake can be tossed once the
- closure function has returned hence alloca()
- is sufficient. */
- int j;
- UINT32 *p = avalue[i] = alloca (ty->size);
- for (j = 0; j < element_count (ty); j++)
- memcpy (&p[j],
- allocate_to_s (context, &state),
- sizeof (*p));
- break;
- }
-
- case FFI_TYPE_DOUBLE:
- {
- /* Eeek! We need a pointer to the structure,
- however the homogeneous float elements are
- being passed in individual S registers,
- therefore the structure is not represented as
- a contiguous sequence of bytes in our saved
- register context. We need to fake up a copy
- of the structure laid out in memory
- correctly. The fake can be tossed once the
- closure function has returned hence alloca()
- is sufficient. */
- int j;
- UINT64 *p = avalue[i] = alloca (ty->size);
- for (j = 0; j < element_count (ty); j++)
- memcpy (&p[j],
- allocate_to_d (context, &state),
- sizeof (*p));
- break;
- }
-
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
- memcpy (&avalue[i],
- allocate_to_v (context, &state),
- sizeof (*avalue));
- break;
-#endif
-
- default:
- FFI_ASSERT (0);
- break;
- }
- }
- }
- else if (ty->size > 16)
- {
- /* Replace Composite type of size greater than 16 with a
- pointer. */
- memcpy (&avalue[i],
- allocate_to_register_or_stack (context, stack,
- &state, FFI_TYPE_POINTER),
- sizeof (avalue[i]));
- }
- else if (available_x (&state) >= (ty->size + 7) / 8)
- {
- avalue[i] = get_x_addr (context, state.ngrn);
- state.ngrn += (ty->size + 7) / 8;
- }
- else
- {
- state.ngrn = N_X_ARG_REG;
-
- avalue[i] = allocate_to_stack (&state, stack, ty->alignment,
- ty->size);
- }
- break;
-
- default:
- FFI_ASSERT (0);
- break;
- }
- }
-
- /* Figure out where the return value will be passed, either in
- registers or in a memory block allocated by the caller and passed
- in x8. */
-
- if (is_register_candidate (cif->rtype))
- {
- /* Register candidates are *always* returned in registers. */
-
- /* Allocate a scratchpad for the return value, we will let the
- callee scrible the result into the scratch pad then move the
- contents into the appropriate return value location for the
- call convention. */
- rvalue = alloca (cif->rtype->size);
- (closure->fun) (cif, rvalue, avalue, closure->user_data);
-
- /* Copy the return value into the call context so that it is returned
- as expected to our caller. */
- switch (cif->rtype->type)
- {
- case FFI_TYPE_VOID:
- break;
-
- case FFI_TYPE_UINT8:
- case FFI_TYPE_UINT16:
- case FFI_TYPE_UINT32:
- case FFI_TYPE_POINTER:
- case FFI_TYPE_UINT64:
- case FFI_TYPE_SINT8:
- case FFI_TYPE_SINT16:
- case FFI_TYPE_INT:
- case FFI_TYPE_SINT32:
- case FFI_TYPE_SINT64:
- case FFI_TYPE_FLOAT:
- case FFI_TYPE_DOUBLE:
-#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
- case FFI_TYPE_LONGDOUBLE:
-#endif
- {
- void *addr = get_basic_type_addr (cif->rtype->type, context, 0);
- copy_basic_type (addr, rvalue, cif->rtype->type);
- break;
- }
- case FFI_TYPE_STRUCT:
- if (is_hfa (cif->rtype))
- {
- int j;
- unsigned short type = get_homogeneous_type (cif->rtype);
- unsigned elems = element_count (cif->rtype);
- for (j = 0; j < elems; j++)
- {
- void *reg = get_basic_type_addr (type, context, j);
- copy_basic_type (reg, rvalue, type);
- rvalue += get_basic_type_size (type);
- }
- }
- else if ((cif->rtype->size + 7) / 8 < N_X_ARG_REG)
- {
- size_t size = ALIGN (cif->rtype->size, sizeof (UINT64)) ;
- memcpy (get_x_addr (context, 0), rvalue, size);
- }
- else
- {
- FFI_ASSERT (0);
- }
- break;
- default:
- FFI_ASSERT (0);
- break;
- }
- }
- else
- {
- memcpy (&rvalue, get_x_addr (context, 8), sizeof (UINT64));
- (closure->fun) (cif, rvalue, avalue, closure->user_data);
- }
-}
-