diff options
Diffstat (limited to 'Parser/spark.py')
-rw-r--r-- | Parser/spark.py | 849 |
1 files changed, 0 insertions, 849 deletions
diff --git a/Parser/spark.py b/Parser/spark.py deleted file mode 100644 index 88c1a89a27..0000000000 --- a/Parser/spark.py +++ /dev/null @@ -1,849 +0,0 @@ -# Copyright (c) 1998-2002 John Aycock -# -# Permission is hereby granted, free of charge, to any person obtaining -# a copy of this software and associated documentation files (the -# "Software"), to deal in the Software without restriction, including -# without limitation the rights to use, copy, modify, merge, publish, -# distribute, sublicense, and/or sell copies of the Software, and to -# permit persons to whom the Software is furnished to do so, subject to -# the following conditions: -# -# The above copyright notice and this permission notice shall be -# included in all copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY -# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, -# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE -# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - -__version__ = 'SPARK-0.7 (pre-alpha-5)' - -import re - -# Compatibility with older pythons. -def output(string='', end='\n'): - sys.stdout.write(string + end) - -try: - sorted -except NameError: - def sorted(seq): - seq2 = seq[:] - seq2.sort() - return seq2 - -def _namelist(instance): - namelist, namedict, classlist = [], {}, [instance.__class__] - for c in classlist: - for b in c.__bases__: - classlist.append(b) - for name in c.__dict__.keys(): - if name not in namedict: - namelist.append(name) - namedict[name] = 1 - return namelist - -class GenericScanner: - def __init__(self, flags=0): - pattern = self.reflect() - self.re = re.compile(pattern, re.VERBOSE|flags) - - self.index2func = {} - for name, number in self.re.groupindex.items(): - self.index2func[number-1] = getattr(self, 't_' + name) - - def makeRE(self, name): - doc = getattr(self, name).__doc__ - rv = '(?P<%s>%s)' % (name[2:], doc) - return rv - - def reflect(self): - rv = [] - for name in _namelist(self): - if name[:2] == 't_' and name != 't_default': - rv.append(self.makeRE(name)) - - rv.append(self.makeRE('t_default')) - return '|'.join(rv) - - def error(self, s, pos): - output("Lexical error at position %s" % pos) - raise SystemExit - - def tokenize(self, s): - pos = 0 - n = len(s) - while pos < n: - m = self.re.match(s, pos) - if m is None: - self.error(s, pos) - - groups = m.groups() - for i in range(len(groups)): - if groups[i] and i in self.index2func: - self.index2func[i](groups[i]) - pos = m.end() - - def t_default(self, s): - r'( . | \n )+' - output("Specification error: unmatched input") - raise SystemExit - -# -# Extracted from GenericParser and made global so that [un]picking works. -# -class _State: - def __init__(self, stateno, items): - self.T, self.complete, self.items = [], [], items - self.stateno = stateno - -class GenericParser: - # - # An Earley parser, as per J. Earley, "An Efficient Context-Free - # Parsing Algorithm", CACM 13(2), pp. 94-102. Also J. C. Earley, - # "An Efficient Context-Free Parsing Algorithm", Ph.D. thesis, - # Carnegie-Mellon University, August 1968. New formulation of - # the parser according to J. Aycock, "Practical Earley Parsing - # and the SPARK Toolkit", Ph.D. thesis, University of Victoria, - # 2001, and J. Aycock and R. N. Horspool, "Practical Earley - # Parsing", unpublished paper, 2001. - # - - def __init__(self, start): - self.rules = {} - self.rule2func = {} - self.rule2name = {} - self.collectRules() - self.augment(start) - self.ruleschanged = 1 - - _NULLABLE = '\e_' - _START = 'START' - _BOF = '|-' - - # - # When pickling, take the time to generate the full state machine; - # some information is then extraneous, too. Unfortunately we - # can't save the rule2func map. - # - def __getstate__(self): - if self.ruleschanged: - # - # XXX - duplicated from parse() - # - self.computeNull() - self.newrules = {} - self.new2old = {} - self.makeNewRules() - self.ruleschanged = 0 - self.edges, self.cores = {}, {} - self.states = { 0: self.makeState0() } - self.makeState(0, self._BOF) - # - # XXX - should find a better way to do this.. - # - changes = 1 - while changes: - changes = 0 - for k, v in self.edges.items(): - if v is None: - state, sym = k - if state in self.states: - self.goto(state, sym) - changes = 1 - rv = self.__dict__.copy() - for s in self.states.values(): - del s.items - del rv['rule2func'] - del rv['nullable'] - del rv['cores'] - return rv - - def __setstate__(self, D): - self.rules = {} - self.rule2func = {} - self.rule2name = {} - self.collectRules() - start = D['rules'][self._START][0][1][1] # Blech. - self.augment(start) - D['rule2func'] = self.rule2func - D['makeSet'] = self.makeSet_fast - self.__dict__ = D - - # - # A hook for GenericASTBuilder and GenericASTMatcher. Mess - # thee not with this; nor shall thee toucheth the _preprocess - # argument to addRule. - # - def preprocess(self, rule, func): return rule, func - - def addRule(self, doc, func, _preprocess=1): - fn = func - rules = doc.split() - - index = [] - for i in range(len(rules)): - if rules[i] == '::=': - index.append(i-1) - index.append(len(rules)) - - for i in range(len(index)-1): - lhs = rules[index[i]] - rhs = rules[index[i]+2:index[i+1]] - rule = (lhs, tuple(rhs)) - - if _preprocess: - rule, fn = self.preprocess(rule, func) - - if lhs in self.rules: - self.rules[lhs].append(rule) - else: - self.rules[lhs] = [ rule ] - self.rule2func[rule] = fn - self.rule2name[rule] = func.__name__[2:] - self.ruleschanged = 1 - - def collectRules(self): - for name in _namelist(self): - if name[:2] == 'p_': - func = getattr(self, name) - doc = func.__doc__ - self.addRule(doc, func) - - def augment(self, start): - rule = '%s ::= %s %s' % (self._START, self._BOF, start) - self.addRule(rule, lambda args: args[1], 0) - - def computeNull(self): - self.nullable = {} - tbd = [] - - for rulelist in self.rules.values(): - lhs = rulelist[0][0] - self.nullable[lhs] = 0 - for rule in rulelist: - rhs = rule[1] - if len(rhs) == 0: - self.nullable[lhs] = 1 - continue - # - # We only need to consider rules which - # consist entirely of nonterminal symbols. - # This should be a savings on typical - # grammars. - # - for sym in rhs: - if sym not in self.rules: - break - else: - tbd.append(rule) - changes = 1 - while changes: - changes = 0 - for lhs, rhs in tbd: - if self.nullable[lhs]: - continue - for sym in rhs: - if not self.nullable[sym]: - break - else: - self.nullable[lhs] = 1 - changes = 1 - - def makeState0(self): - s0 = _State(0, []) - for rule in self.newrules[self._START]: - s0.items.append((rule, 0)) - return s0 - - def finalState(self, tokens): - # - # Yuck. - # - if len(self.newrules[self._START]) == 2 and len(tokens) == 0: - return 1 - start = self.rules[self._START][0][1][1] - return self.goto(1, start) - - def makeNewRules(self): - worklist = [] - for rulelist in self.rules.values(): - for rule in rulelist: - worklist.append((rule, 0, 1, rule)) - - for rule, i, candidate, oldrule in worklist: - lhs, rhs = rule - n = len(rhs) - while i < n: - sym = rhs[i] - if sym not in self.rules or \ - not self.nullable[sym]: - candidate = 0 - i = i + 1 - continue - - newrhs = list(rhs) - newrhs[i] = self._NULLABLE+sym - newrule = (lhs, tuple(newrhs)) - worklist.append((newrule, i+1, - candidate, oldrule)) - candidate = 0 - i = i + 1 - else: - if candidate: - lhs = self._NULLABLE+lhs - rule = (lhs, rhs) - if lhs in self.newrules: - self.newrules[lhs].append(rule) - else: - self.newrules[lhs] = [ rule ] - self.new2old[rule] = oldrule - - def typestring(self, token): - return None - - def error(self, token): - output("Syntax error at or near `%s' token" % token) - raise SystemExit - - def parse(self, tokens): - sets = [ [(1,0), (2,0)] ] - self.links = {} - - if self.ruleschanged: - self.computeNull() - self.newrules = {} - self.new2old = {} - self.makeNewRules() - self.ruleschanged = 0 - self.edges, self.cores = {}, {} - self.states = { 0: self.makeState0() } - self.makeState(0, self._BOF) - - for i in range(len(tokens)): - sets.append([]) - - if sets[i] == []: - break - self.makeSet(tokens[i], sets, i) - else: - sets.append([]) - self.makeSet(None, sets, len(tokens)) - - #_dump(tokens, sets, self.states) - - finalitem = (self.finalState(tokens), 0) - if finalitem not in sets[-2]: - if len(tokens) > 0: - self.error(tokens[i-1]) - else: - self.error(None) - - return self.buildTree(self._START, finalitem, - tokens, len(sets)-2) - - def isnullable(self, sym): - # - # For symbols in G_e only. If we weren't supporting 1.5, - # could just use sym.startswith(). - # - return self._NULLABLE == sym[0:len(self._NULLABLE)] - - def skip(self, hs, pos=0): - n = len(hs[1]) - while pos < n: - if not self.isnullable(hs[1][pos]): - break - pos = pos + 1 - return pos - - def makeState(self, state, sym): - assert sym is not None - # - # Compute \epsilon-kernel state's core and see if - # it exists already. - # - kitems = [] - for rule, pos in self.states[state].items: - lhs, rhs = rule - if rhs[pos:pos+1] == (sym,): - kitems.append((rule, self.skip(rule, pos+1))) - core = kitems - - core.sort() - tcore = tuple(core) - if tcore in self.cores: - return self.cores[tcore] - # - # Nope, doesn't exist. Compute it and the associated - # \epsilon-nonkernel state together; we'll need it right away. - # - k = self.cores[tcore] = len(self.states) - K, NK = _State(k, kitems), _State(k+1, []) - self.states[k] = K - predicted = {} - - edges = self.edges - rules = self.newrules - for X in K, NK: - worklist = X.items - for item in worklist: - rule, pos = item - lhs, rhs = rule - if pos == len(rhs): - X.complete.append(rule) - continue - - nextSym = rhs[pos] - key = (X.stateno, nextSym) - if nextSym not in rules: - if key not in edges: - edges[key] = None - X.T.append(nextSym) - else: - edges[key] = None - if nextSym not in predicted: - predicted[nextSym] = 1 - for prule in rules[nextSym]: - ppos = self.skip(prule) - new = (prule, ppos) - NK.items.append(new) - # - # Problem: we know K needs generating, but we - # don't yet know about NK. Can't commit anything - # regarding NK to self.edges until we're sure. Should - # we delay committing on both K and NK to avoid this - # hacky code? This creates other problems.. - # - if X is K: - edges = {} - - if NK.items == []: - return k - - # - # Check for \epsilon-nonkernel's core. Unfortunately we - # need to know the entire set of predicted nonterminals - # to do this without accidentally duplicating states. - # - core = sorted(predicted.keys()) - tcore = tuple(core) - if tcore in self.cores: - self.edges[(k, None)] = self.cores[tcore] - return k - - nk = self.cores[tcore] = self.edges[(k, None)] = NK.stateno - self.edges.update(edges) - self.states[nk] = NK - return k - - def goto(self, state, sym): - key = (state, sym) - if key not in self.edges: - # - # No transitions from state on sym. - # - return None - - rv = self.edges[key] - if rv is None: - # - # Target state isn't generated yet. Remedy this. - # - rv = self.makeState(state, sym) - self.edges[key] = rv - return rv - - def gotoT(self, state, t): - return [self.goto(state, t)] - - def gotoST(self, state, st): - rv = [] - for t in self.states[state].T: - if st == t: - rv.append(self.goto(state, t)) - return rv - - def add(self, set, item, i=None, predecessor=None, causal=None): - if predecessor is None: - if item not in set: - set.append(item) - else: - key = (item, i) - if item not in set: - self.links[key] = [] - set.append(item) - self.links[key].append((predecessor, causal)) - - def makeSet(self, token, sets, i): - cur, next = sets[i], sets[i+1] - - ttype = token is not None and self.typestring(token) or None - if ttype is not None: - fn, arg = self.gotoT, ttype - else: - fn, arg = self.gotoST, token - - for item in cur: - ptr = (item, i) - state, parent = item - add = fn(state, arg) - for k in add: - if k is not None: - self.add(next, (k, parent), i+1, ptr) - nk = self.goto(k, None) - if nk is not None: - self.add(next, (nk, i+1)) - - if parent == i: - continue - - for rule in self.states[state].complete: - lhs, rhs = rule - for pitem in sets[parent]: - pstate, pparent = pitem - k = self.goto(pstate, lhs) - if k is not None: - why = (item, i, rule) - pptr = (pitem, parent) - self.add(cur, (k, pparent), - i, pptr, why) - nk = self.goto(k, None) - if nk is not None: - self.add(cur, (nk, i)) - - def makeSet_fast(self, token, sets, i): - # - # Call *only* when the entire state machine has been built! - # It relies on self.edges being filled in completely, and - # then duplicates and inlines code to boost speed at the - # cost of extreme ugliness. - # - cur, next = sets[i], sets[i+1] - ttype = token is not None and self.typestring(token) or None - - for item in cur: - ptr = (item, i) - state, parent = item - if ttype is not None: - k = self.edges.get((state, ttype), None) - if k is not None: - #self.add(next, (k, parent), i+1, ptr) - #INLINED --v - new = (k, parent) - key = (new, i+1) - if new not in next: - self.links[key] = [] - next.append(new) - self.links[key].append((ptr, None)) - #INLINED --^ - #nk = self.goto(k, None) - nk = self.edges.get((k, None), None) - if nk is not None: - #self.add(next, (nk, i+1)) - #INLINED --v - new = (nk, i+1) - if new not in next: - next.append(new) - #INLINED --^ - else: - add = self.gotoST(state, token) - for k in add: - if k is not None: - self.add(next, (k, parent), i+1, ptr) - #nk = self.goto(k, None) - nk = self.edges.get((k, None), None) - if nk is not None: - self.add(next, (nk, i+1)) - - if parent == i: - continue - - for rule in self.states[state].complete: - lhs, rhs = rule - for pitem in sets[parent]: - pstate, pparent = pitem - #k = self.goto(pstate, lhs) - k = self.edges.get((pstate, lhs), None) - if k is not None: - why = (item, i, rule) - pptr = (pitem, parent) - #self.add(cur, (k, pparent), - # i, pptr, why) - #INLINED --v - new = (k, pparent) - key = (new, i) - if new not in cur: - self.links[key] = [] - cur.append(new) - self.links[key].append((pptr, why)) - #INLINED --^ - #nk = self.goto(k, None) - nk = self.edges.get((k, None), None) - if nk is not None: - #self.add(cur, (nk, i)) - #INLINED --v - new = (nk, i) - if new not in cur: - cur.append(new) - #INLINED --^ - - def predecessor(self, key, causal): - for p, c in self.links[key]: - if c == causal: - return p - assert 0 - - def causal(self, key): - links = self.links[key] - if len(links) == 1: - return links[0][1] - choices = [] - rule2cause = {} - for p, c in links: - rule = c[2] - choices.append(rule) - rule2cause[rule] = c - return rule2cause[self.ambiguity(choices)] - - def deriveEpsilon(self, nt): - if len(self.newrules[nt]) > 1: - rule = self.ambiguity(self.newrules[nt]) - else: - rule = self.newrules[nt][0] - #output(rule) - - rhs = rule[1] - attr = [None] * len(rhs) - - for i in range(len(rhs)-1, -1, -1): - attr[i] = self.deriveEpsilon(rhs[i]) - return self.rule2func[self.new2old[rule]](attr) - - def buildTree(self, nt, item, tokens, k): - state, parent = item - - choices = [] - for rule in self.states[state].complete: - if rule[0] == nt: - choices.append(rule) - rule = choices[0] - if len(choices) > 1: - rule = self.ambiguity(choices) - #output(rule) - - rhs = rule[1] - attr = [None] * len(rhs) - - for i in range(len(rhs)-1, -1, -1): - sym = rhs[i] - if sym not in self.newrules: - if sym != self._BOF: - attr[i] = tokens[k-1] - key = (item, k) - item, k = self.predecessor(key, None) - #elif self.isnullable(sym): - elif self._NULLABLE == sym[0:len(self._NULLABLE)]: - attr[i] = self.deriveEpsilon(sym) - else: - key = (item, k) - why = self.causal(key) - attr[i] = self.buildTree(sym, why[0], - tokens, why[1]) - item, k = self.predecessor(key, why) - return self.rule2func[self.new2old[rule]](attr) - - def ambiguity(self, rules): - # - # XXX - problem here and in collectRules() if the same rule - # appears in >1 method. Also undefined results if rules - # causing the ambiguity appear in the same method. - # - sortlist = [] - name2index = {} - for i in range(len(rules)): - lhs, rhs = rule = rules[i] - name = self.rule2name[self.new2old[rule]] - sortlist.append((len(rhs), name)) - name2index[name] = i - sortlist.sort() - list = [b for a, b in sortlist] - return rules[name2index[self.resolve(list)]] - - def resolve(self, list): - # - # Resolve ambiguity in favor of the shortest RHS. - # Since we walk the tree from the top down, this - # should effectively resolve in favor of a "shift". - # - return list[0] - -# -# GenericASTBuilder automagically constructs a concrete/abstract syntax tree -# for a given input. The extra argument is a class (not an instance!) -# which supports the "__setslice__" and "__len__" methods. -# -# XXX - silently overrides any user code in methods. -# - -class GenericASTBuilder(GenericParser): - def __init__(self, AST, start): - GenericParser.__init__(self, start) - self.AST = AST - - def preprocess(self, rule, func): - rebind = lambda lhs, self=self: \ - lambda args, lhs=lhs, self=self: \ - self.buildASTNode(args, lhs) - lhs, rhs = rule - return rule, rebind(lhs) - - def buildASTNode(self, args, lhs): - children = [] - for arg in args: - if isinstance(arg, self.AST): - children.append(arg) - else: - children.append(self.terminal(arg)) - return self.nonterminal(lhs, children) - - def terminal(self, token): return token - - def nonterminal(self, type, args): - rv = self.AST(type) - rv[:len(args)] = args - return rv - -# -# GenericASTTraversal is a Visitor pattern according to Design Patterns. For -# each node it attempts to invoke the method n_<node type>, falling -# back onto the default() method if the n_* can't be found. The preorder -# traversal also looks for an exit hook named n_<node type>_exit (no default -# routine is called if it's not found). To prematurely halt traversal -# of a subtree, call the prune() method -- this only makes sense for a -# preorder traversal. Node type is determined via the typestring() method. -# - -class GenericASTTraversalPruningException: - pass - -class GenericASTTraversal: - def __init__(self, ast): - self.ast = ast - - def typestring(self, node): - return node.type - - def prune(self): - raise GenericASTTraversalPruningException - - def preorder(self, node=None): - if node is None: - node = self.ast - - try: - name = 'n_' + self.typestring(node) - if hasattr(self, name): - func = getattr(self, name) - func(node) - else: - self.default(node) - except GenericASTTraversalPruningException: - return - - for kid in node: - self.preorder(kid) - - name = name + '_exit' - if hasattr(self, name): - func = getattr(self, name) - func(node) - - def postorder(self, node=None): - if node is None: - node = self.ast - - for kid in node: - self.postorder(kid) - - name = 'n_' + self.typestring(node) - if hasattr(self, name): - func = getattr(self, name) - func(node) - else: - self.default(node) - - - def default(self, node): - pass - -# -# GenericASTMatcher. AST nodes must have "__getitem__" and "__cmp__" -# implemented. -# -# XXX - makes assumptions about how GenericParser walks the parse tree. -# - -class GenericASTMatcher(GenericParser): - def __init__(self, start, ast): - GenericParser.__init__(self, start) - self.ast = ast - - def preprocess(self, rule, func): - rebind = lambda func, self=self: \ - lambda args, func=func, self=self: \ - self.foundMatch(args, func) - lhs, rhs = rule - rhslist = list(rhs) - rhslist.reverse() - - return (lhs, tuple(rhslist)), rebind(func) - - def foundMatch(self, args, func): - func(args[-1]) - return args[-1] - - def match_r(self, node): - self.input.insert(0, node) - children = 0 - - for child in node: - if children == 0: - self.input.insert(0, '(') - children = children + 1 - self.match_r(child) - - if children > 0: - self.input.insert(0, ')') - - def match(self, ast=None): - if ast is None: - ast = self.ast - self.input = [] - - self.match_r(ast) - self.parse(self.input) - - def resolve(self, list): - # - # Resolve ambiguity in favor of the longest RHS. - # - return list[-1] - -def _dump(tokens, sets, states): - for i in range(len(sets)): - output('set %d' % i) - for item in sets[i]: - output('\t', item) - for (lhs, rhs), pos in states[item[0]].items: - output('\t\t', lhs, '::=', end='') - output(' '.join(rhs[:pos]), end='') - output('.', end='') - output(' '.join(rhs[pos:])) - if i < len(tokens): - output() - output('token %s' % str(tokens[i])) - output() |