summaryrefslogtreecommitdiff
path: root/Doc/c-api/memory.rst
blob: 290ef09dcecc6431e5e63ee369f406554ab04935 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
.. highlightlang:: c


.. _memory:

*****************
Memory Management
*****************

.. sectionauthor:: Vladimir Marangozov <Vladimir.Marangozov@inrialpes.fr>



.. _memoryoverview:

Overview
========

Memory management in Python involves a private heap containing all Python
objects and data structures. The management of this private heap is ensured
internally by the *Python memory manager*.  The Python memory manager has
different components which deal with various dynamic storage management aspects,
like sharing, segmentation, preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in
the private heap for storing all Python-related data by interacting with the
memory manager of the operating system. On top of the raw memory allocator,
several object-specific allocators operate on the same heap and implement
distinct memory management policies adapted to the peculiarities of every object
type. For example, integer objects are managed differently within the heap than
strings, tuples or dictionaries because integers imply different storage
requirements and speed/space tradeoffs. The Python memory manager thus delegates
some of the work to the object-specific allocators, but ensures that the latter
operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is
performed by the interpreter itself and that the user has no control over it,
even if she regularly manipulates object pointers to memory blocks inside that
heap.  The allocation of heap space for Python objects and other internal
buffers is performed on demand by the Python memory manager through the Python/C
API functions listed in this document.

.. index::
   single: malloc()
   single: calloc()
   single: realloc()
   single: free()

To avoid memory corruption, extension writers should never try to operate on
Python objects with the functions exported by the C library: :c:func:`malloc`,
:c:func:`calloc`, :c:func:`realloc` and :c:func:`free`.  This will result in  mixed
calls between the C allocator and the Python memory manager with fatal
consequences, because they implement different algorithms and operate on
different heaps.  However, one may safely allocate and release memory blocks
with the C library allocator for individual purposes, as shown in the following
example::

   PyObject *res;
   char *buf = (char *) malloc(BUFSIZ); /* for I/O */

   if (buf == NULL)
       return PyErr_NoMemory();
   ...Do some I/O operation involving buf...
   res = PyBytes_FromString(buf);
   free(buf); /* malloc'ed */
   return res;

In this example, the memory request for the I/O buffer is handled by the C
library allocator. The Python memory manager is involved only in the allocation
of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the
Python heap specifically because the latter is under control of the Python
memory manager. For example, this is required when the interpreter is extended
with new object types written in C. Another reason for using the Python heap is
the desire to *inform* the Python memory manager about the memory needs of the
extension module. Even when the requested memory is used exclusively for
internal, highly-specific purposes, delegating all memory requests to the Python
memory manager causes the interpreter to have a more accurate image of its
memory footprint as a whole. Consequently, under certain circumstances, the
Python memory manager may or may not trigger appropriate actions, like garbage
collection, memory compaction or other preventive procedures. Note that by using
the C library allocator as shown in the previous example, the allocated memory
for the I/O buffer escapes completely the Python memory manager.

.. seealso::

   The :envvar:`PYTHONMALLOCSTATS` environment variable can be used to print
   memory allocation statistics every time a new object arena is created, and
   on shutdown.


Raw Memory Interface
====================

The following function sets are wrappers to the system allocator. These
functions are thread-safe, the :term:`GIL <global interpreter lock>` does not
need to be held.

The default raw memory block allocator uses the following functions:
:c:func:`malloc`, :c:func:`calloc`, :c:func:`realloc` and :c:func:`free`; call
``malloc(1)`` (or ``calloc(1, 1)``) when requesting zero bytes.

.. versionadded:: 3.4

.. c:function:: void* PyMem_RawMalloc(size_t n)

   Allocates *n* bytes and returns a pointer of type :c:type:`void\*` to the
   allocated memory, or *NULL* if the request fails.

   Requesting zero bytes returns a distinct non-*NULL* pointer if possible, as
   if ``PyMem_RawMalloc(1)`` had been called instead. The memory will not have
   been initialized in any way.


.. c:function:: void* PyMem_RawCalloc(size_t nelem, size_t elsize)

   Allocates *nelem* elements each whose size in bytes is *elsize* and returns
   a pointer of type :c:type:`void\*` to the allocated memory, or *NULL* if the
   request fails. The memory is initialized to zeros.

   Requesting zero elements or elements of size zero bytes returns a distinct
   non-*NULL* pointer if possible, as if ``PyMem_RawCalloc(1, 1)`` had been
   called instead.

   .. versionadded:: 3.5


.. c:function:: void* PyMem_RawRealloc(void *p, size_t n)

   Resizes the memory block pointed to by *p* to *n* bytes. The contents will
   be unchanged to the minimum of the old and the new sizes.

   If *p* is *NULL*, the call is equivalent to ``PyMem_RawMalloc(n)``; else if
   *n* is equal to zero, the memory block is resized but is not freed, and the
   returned pointer is non-*NULL*.

   Unless *p* is *NULL*, it must have been returned by a previous call to
   :c:func:`PyMem_RawMalloc`, :c:func:`PyMem_RawRealloc` or
   :c:func:`PyMem_RawCalloc`.

   If the request fails, :c:func:`PyMem_RawRealloc` returns *NULL* and *p*
   remains a valid pointer to the previous memory area.


.. c:function:: void PyMem_RawFree(void *p)

   Frees the memory block pointed to by *p*, which must have been returned by a
   previous call to :c:func:`PyMem_RawMalloc`, :c:func:`PyMem_RawRealloc` or
   :c:func:`PyMem_RawCalloc`.  Otherwise, or if ``PyMem_Free(p)`` has been
   called before, undefined behavior occurs.

   If *p* is *NULL*, no operation is performed.


.. _memoryinterface:

Memory Interface
================

The following function sets, modeled after the ANSI C standard, but specifying
behavior when requesting zero bytes, are available for allocating and releasing
memory from the Python heap.

The default memory block allocator uses the following functions:
:c:func:`malloc`, :c:func:`calloc`, :c:func:`realloc` and :c:func:`free`; call
``malloc(1)`` (or ``calloc(1, 1)``) when requesting zero bytes.

.. warning::

   The :term:`GIL <global interpreter lock>` must be held when using these
   functions.

.. c:function:: void* PyMem_Malloc(size_t n)

   Allocates *n* bytes and returns a pointer of type :c:type:`void\*` to the
   allocated memory, or *NULL* if the request fails.

   Requesting zero bytes returns a distinct non-*NULL* pointer if possible, as
   if ``PyMem_Malloc(1)`` had been called instead. The memory will not have
   been initialized in any way.


.. c:function:: void* PyMem_Calloc(size_t nelem, size_t elsize)

   Allocates *nelem* elements each whose size in bytes is *elsize* and returns
   a pointer of type :c:type:`void\*` to the allocated memory, or *NULL* if the
   request fails. The memory is initialized to zeros.

   Requesting zero elements or elements of size zero bytes returns a distinct
   non-*NULL* pointer if possible, as if ``PyMem_Calloc(1, 1)`` had been called
   instead.

   .. versionadded:: 3.5


.. c:function:: void* PyMem_Realloc(void *p, size_t n)

   Resizes the memory block pointed to by *p* to *n* bytes. The contents will be
   unchanged to the minimum of the old and the new sizes.

   If *p* is *NULL*, the call is equivalent to ``PyMem_Malloc(n)``; else if *n*
   is equal to zero, the memory block is resized but is not freed, and the
   returned pointer is non-*NULL*.

   Unless *p* is *NULL*, it must have been returned by a previous call to
   :c:func:`PyMem_Malloc`, :c:func:`PyMem_Realloc` or :c:func:`PyMem_Calloc`.

   If the request fails, :c:func:`PyMem_Realloc` returns *NULL* and *p* remains
   a valid pointer to the previous memory area.


.. c:function:: void PyMem_Free(void *p)

   Frees the memory block pointed to by *p*, which must have been returned by a
   previous call to :c:func:`PyMem_Malloc`, :c:func:`PyMem_Realloc` or
   :c:func:`PyMem_Calloc`.  Otherwise, or if ``PyMem_Free(p)`` has been called
   before, undefined behavior occurs.

   If *p* is *NULL*, no operation is performed.

The following type-oriented macros are provided for convenience.  Note  that
*TYPE* refers to any C type.


.. c:function:: TYPE* PyMem_New(TYPE, size_t n)

   Same as :c:func:`PyMem_Malloc`, but allocates ``(n * sizeof(TYPE))`` bytes of
   memory.  Returns a pointer cast to :c:type:`TYPE\*`.  The memory will not have
   been initialized in any way.


.. c:function:: TYPE* PyMem_Resize(void *p, TYPE, size_t n)

   Same as :c:func:`PyMem_Realloc`, but the memory block is resized to ``(n *
   sizeof(TYPE))`` bytes.  Returns a pointer cast to :c:type:`TYPE\*`. On return,
   *p* will be a pointer to the new memory area, or *NULL* in the event of
   failure.

   This is a C preprocessor macro; *p* is always reassigned.  Save the original
   value of *p* to avoid losing memory when handling errors.


.. c:function:: void PyMem_Del(void *p)

   Same as :c:func:`PyMem_Free`.

In addition, the following macro sets are provided for calling the Python memory
allocator directly, without involving the C API functions listed above. However,
note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

* ``PyMem_MALLOC(size)``
* ``PyMem_NEW(type, size)``
* ``PyMem_REALLOC(ptr, size)``
* ``PyMem_RESIZE(ptr, type, size)``
* ``PyMem_FREE(ptr)``
* ``PyMem_DEL(ptr)``


Customize Memory Allocators
===========================

.. versionadded:: 3.4

.. c:type:: PyMemAllocatorEx

   Structure used to describe a memory block allocator. The structure has
   four fields:

   +----------------------------------------------------------+---------------------------------------+
   | Field                                                    | Meaning                               |
   +==========================================================+=======================================+
   | ``void *ctx``                                            | user context passed as first argument |
   +----------------------------------------------------------+---------------------------------------+
   | ``void* malloc(void *ctx, size_t size)``                 | allocate a memory block               |
   +----------------------------------------------------------+---------------------------------------+
   | ``void* calloc(void *ctx, size_t nelem, size_t elsize)`` | allocate a memory block initialized   |
   |                                                          | with zeros                            |
   +----------------------------------------------------------+---------------------------------------+
   | ``void* realloc(void *ctx, void *ptr, size_t new_size)`` | allocate or resize a memory block     |
   +----------------------------------------------------------+---------------------------------------+
   | ``void free(void *ctx, void *ptr)``                      | free a memory block                   |
   +----------------------------------------------------------+---------------------------------------+

   .. versionchanged:: 3.5
      The :c:type:`PyMemAllocator` structure was renamed to
      :c:type:`PyMemAllocatorEx` and a new ``calloc`` field was added.


.. c:type:: PyMemAllocatorDomain

   Enum used to identify an allocator domain. Domains:

   * :c:data:`PYMEM_DOMAIN_RAW`: functions :c:func:`PyMem_RawMalloc`,
     :c:func:`PyMem_RawRealloc`, :c:func:`PyMem_RawCalloc` and
     :c:func:`PyMem_RawFree`
   * :c:data:`PYMEM_DOMAIN_MEM`: functions :c:func:`PyMem_Malloc`,
     :c:func:`PyMem_Realloc`, :c:func:`PyMem_Calloc` and :c:func:`PyMem_Free`
   * :c:data:`PYMEM_DOMAIN_OBJ`: functions :c:func:`PyObject_Malloc`,
     :c:func:`PyObject_Realloc`, :c:func:`PyObject_Calloc` and
     :c:func:`PyObject_Free`


.. c:function:: void PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

   Get the memory block allocator of the specified domain.


.. c:function:: void PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

   Set the memory block allocator of the specified domain.

   The new allocator must return a distinct non-NULL pointer when requesting
   zero bytes.

   For the :c:data:`PYMEM_DOMAIN_RAW` domain, the allocator must be
   thread-safe: the :term:`GIL <global interpreter lock>` is not held when the
   allocator is called.

   If the new allocator is not a hook (does not call the previous allocator),
   the :c:func:`PyMem_SetupDebugHooks` function must be called to reinstall the
   debug hooks on top on the new allocator.


.. c:function:: void PyMem_SetupDebugHooks(void)

   Setup hooks to detect bugs in the following Python memory allocator
   functions:

   - :c:func:`PyMem_RawMalloc`, :c:func:`PyMem_RawRealloc`,
     :c:func:`PyMem_RawCalloc`, :c:func:`PyMem_RawFree`
   - :c:func:`PyMem_Malloc`, :c:func:`PyMem_Realloc`, :c:func:`PyMem_Calloc`,
     :c:func:`PyMem_Free`
   - :c:func:`PyObject_Malloc`, :c:func:`PyObject_Realloc`,
     :c:func:`PyObject_Calloc`, :c:func:`PyObject_Free`

   Newly allocated memory is filled with the byte ``0xCB``, freed memory is
   filled with the byte ``0xDB``. Additional checks:

   - detect API violations, ex: :c:func:`PyObject_Free` called on a buffer
     allocated by :c:func:`PyMem_Malloc`
   - detect write before the start of the buffer (buffer underflow)
   - detect write after the end of the buffer (buffer overflow)

   The function does nothing if Python is not compiled is debug mode.


Customize PyObject Arena Allocator
==================================

Python has a *pymalloc* allocator for allocations smaller than 512 bytes. This
allocator is optimized for small objects with a short lifetime. It uses memory
mappings called "arenas" with a fixed size of 256 KB. It falls back to
:c:func:`PyMem_RawMalloc` and :c:func:`PyMem_RawRealloc` for allocations larger
than 512 bytes.  *pymalloc* is the default allocator used by
:c:func:`PyObject_Malloc`.

The default arena allocator uses the following functions:

* :c:func:`VirtualAlloc` and :c:func:`VirtualFree` on Windows,
* :c:func:`mmap` and :c:func:`munmap` if available,
* :c:func:`malloc` and :c:func:`free` otherwise.

.. versionadded:: 3.4

.. c:type:: PyObjectArenaAllocator

   Structure used to describe an arena allocator. The structure has
   three fields:

   +--------------------------------------------------+---------------------------------------+
   | Field                                            | Meaning                               |
   +==================================================+=======================================+
   | ``void *ctx``                                    | user context passed as first argument |
   +--------------------------------------------------+---------------------------------------+
   | ``void* alloc(void *ctx, size_t size)``          | allocate an arena of size bytes       |
   +--------------------------------------------------+---------------------------------------+
   | ``void free(void *ctx, size_t size, void *ptr)`` | free an arena                         |
   +--------------------------------------------------+---------------------------------------+

.. c:function:: PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)

   Get the arena allocator.

.. c:function:: PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)

   Set the arena allocator.


.. _memoryexamples:

Examples
========

Here is the example from section :ref:`memoryoverview`, rewritten so that the
I/O buffer is allocated from the Python heap by using the first function set::

   PyObject *res;
   char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

   if (buf == NULL)
       return PyErr_NoMemory();
   /* ...Do some I/O operation involving buf... */
   res = PyBytes_FromString(buf);
   PyMem_Free(buf); /* allocated with PyMem_Malloc */
   return res;

The same code using the type-oriented function set::

   PyObject *res;
   char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

   if (buf == NULL)
       return PyErr_NoMemory();
   /* ...Do some I/O operation involving buf... */
   res = PyBytes_FromString(buf);
   PyMem_Del(buf); /* allocated with PyMem_New */
   return res;

Note that in the two examples above, the buffer is always manipulated via
functions belonging to the same set. Indeed, it is required to use the same
memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two
errors, one of which is labeled as *fatal* because it mixes two different
allocators operating on different heaps. ::

   char *buf1 = PyMem_New(char, BUFSIZ);
   char *buf2 = (char *) malloc(BUFSIZ);
   char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
   ...
   PyMem_Del(buf3);  /* Wrong -- should be PyMem_Free() */
   free(buf2);       /* Right -- allocated via malloc() */
   free(buf1);       /* Fatal -- should be PyMem_Del()  */

In addition to the functions aimed at handling raw memory blocks from the Python
heap, objects in Python are allocated and released with :c:func:`PyObject_New`,
:c:func:`PyObject_NewVar` and :c:func:`PyObject_Del`.

These will be explained in the next chapter on defining and implementing new
object types in C.