summaryrefslogtreecommitdiff
path: root/Lib/test/test_random.py
blob: 5b6a4f06baaf41b0b9841162b31c052ac8da1979 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
import unittest
import unittest.mock
import random
import time
import pickle
import warnings
from functools import partial
from math import log, exp, pi, fsum, sin
from test import support
from fractions import Fraction

class TestBasicOps:
    # Superclass with tests common to all generators.
    # Subclasses must arrange for self.gen to retrieve the Random instance
    # to be tested.

    def randomlist(self, n):
        """Helper function to make a list of random numbers"""
        return [self.gen.random() for i in range(n)]

    def test_autoseed(self):
        self.gen.seed()
        state1 = self.gen.getstate()
        time.sleep(0.1)
        self.gen.seed()      # diffent seeds at different times
        state2 = self.gen.getstate()
        self.assertNotEqual(state1, state2)

    def test_saverestore(self):
        N = 1000
        self.gen.seed()
        state = self.gen.getstate()
        randseq = self.randomlist(N)
        self.gen.setstate(state)    # should regenerate the same sequence
        self.assertEqual(randseq, self.randomlist(N))

    def test_seedargs(self):
        # Seed value with a negative hash.
        class MySeed(object):
            def __hash__(self):
                return -1729
        for arg in [None, 0, 0, 1, 1, -1, -1, 10**20, -(10**20),
                    3.14, 1+2j, 'a', tuple('abc'), MySeed()]:
            self.gen.seed(arg)
        for arg in [list(range(3)), dict(one=1)]:
            self.assertRaises(TypeError, self.gen.seed, arg)
        self.assertRaises(TypeError, self.gen.seed, 1, 2, 3, 4)
        self.assertRaises(TypeError, type(self.gen), [])

    @unittest.mock.patch('random._urandom') # os.urandom
    def test_seed_when_randomness_source_not_found(self, urandom_mock):
        # Random.seed() uses time.time() when an operating system specific
        # randomness source is not found. To test this on machines were it
        # exists, run the above test, test_seedargs(), again after mocking
        # os.urandom() so that it raises the exception expected when the
        # randomness source is not available.
        urandom_mock.side_effect = NotImplementedError
        self.test_seedargs()

    def test_shuffle(self):
        shuffle = self.gen.shuffle
        lst = []
        shuffle(lst)
        self.assertEqual(lst, [])
        lst = [37]
        shuffle(lst)
        self.assertEqual(lst, [37])
        seqs = [list(range(n)) for n in range(10)]
        shuffled_seqs = [list(range(n)) for n in range(10)]
        for shuffled_seq in shuffled_seqs:
            shuffle(shuffled_seq)
        for (seq, shuffled_seq) in zip(seqs, shuffled_seqs):
            self.assertEqual(len(seq), len(shuffled_seq))
            self.assertEqual(set(seq), set(shuffled_seq))
        # The above tests all would pass if the shuffle was a
        # no-op. The following non-deterministic test covers that.  It
        # asserts that the shuffled sequence of 1000 distinct elements
        # must be different from the original one. Although there is
        # mathematically a non-zero probability that this could
        # actually happen in a genuinely random shuffle, it is
        # completely negligible, given that the number of possible
        # permutations of 1000 objects is 1000! (factorial of 1000),
        # which is considerably larger than the number of atoms in the
        # universe...
        lst = list(range(1000))
        shuffled_lst = list(range(1000))
        shuffle(shuffled_lst)
        self.assertTrue(lst != shuffled_lst)
        shuffle(lst)
        self.assertTrue(lst != shuffled_lst)

    def test_choice(self):
        choice = self.gen.choice
        with self.assertRaises(IndexError):
            choice([])
        self.assertEqual(choice([50]), 50)
        self.assertIn(choice([25, 75]), [25, 75])

    def test_sample(self):
        # For the entire allowable range of 0 <= k <= N, validate that
        # the sample is of the correct length and contains only unique items
        N = 100
        population = range(N)
        for k in range(N+1):
            s = self.gen.sample(population, k)
            self.assertEqual(len(s), k)
            uniq = set(s)
            self.assertEqual(len(uniq), k)
            self.assertTrue(uniq <= set(population))
        self.assertEqual(self.gen.sample([], 0), [])  # test edge case N==k==0
        # Exception raised if size of sample exceeds that of population
        self.assertRaises(ValueError, self.gen.sample, population, N+1)
        self.assertRaises(ValueError, self.gen.sample, [], -1)

    def test_sample_distribution(self):
        # For the entire allowable range of 0 <= k <= N, validate that
        # sample generates all possible permutations
        n = 5
        pop = range(n)
        trials = 10000  # large num prevents false negatives without slowing normal case
        def factorial(n):
            if n == 0:
                return 1
            return n * factorial(n - 1)
        for k in range(n):
            expected = factorial(n) // factorial(n-k)
            perms = {}
            for i in range(trials):
                perms[tuple(self.gen.sample(pop, k))] = None
                if len(perms) == expected:
                    break
            else:
                self.fail()

    def test_sample_inputs(self):
        # SF bug #801342 -- population can be any iterable defining __len__()
        self.gen.sample(set(range(20)), 2)
        self.gen.sample(range(20), 2)
        self.gen.sample(range(20), 2)
        self.gen.sample(str('abcdefghijklmnopqrst'), 2)
        self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)

    def test_sample_on_dicts(self):
        self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2)

    def test_choices(self):
        choices = self.gen.choices
        data = ['red', 'green', 'blue', 'yellow']
        str_data = 'abcd'
        range_data = range(4)
        set_data = set(range(4))

        # basic functionality
        for sample in [
            choices(data, k=5),
            choices(data, range(4), k=5),
            choices(k=5, population=data, weights=range(4)),
            choices(k=5, population=data, cum_weights=range(4)),
        ]:
            self.assertEqual(len(sample), 5)
            self.assertEqual(type(sample), list)
            self.assertTrue(set(sample) <= set(data))

        # test argument handling
        with self.assertRaises(TypeError):                               # missing arguments
            choices(2)

        self.assertEqual(choices(data, k=0), [])                         # k == 0
        self.assertEqual(choices(data, k=-1), [])                        # negative k behaves like ``[0] * -1``
        with self.assertRaises(TypeError):
            choices(data, k=2.5)                                         # k is a float

        self.assertTrue(set(choices(str_data, k=5)) <= set(str_data))    # population is a string sequence
        self.assertTrue(set(choices(range_data, k=5)) <= set(range_data))  # population is a range
        with self.assertRaises(TypeError):
            choices(set_data, k=2)                                       # population is not a sequence

        self.assertTrue(set(choices(data, None, k=5)) <= set(data))      # weights is None
        self.assertTrue(set(choices(data, weights=None, k=5)) <= set(data))
        with self.assertRaises(ValueError):
            choices(data, [1,2], k=5)                                    # len(weights) != len(population)
        with self.assertRaises(TypeError):
            choices(data, 10, k=5)                                       # non-iterable weights
        with self.assertRaises(TypeError):
            choices(data, [None]*4, k=5)                                 # non-numeric weights
        for weights in [
                [15, 10, 25, 30],                                                 # integer weights
                [15.1, 10.2, 25.2, 30.3],                                         # float weights
                [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional weights
                [True, False, True, False]                                        # booleans (include / exclude)
        ]:
            self.assertTrue(set(choices(data, weights, k=5)) <= set(data))

        with self.assertRaises(ValueError):
            choices(data, cum_weights=[1,2], k=5)                        # len(weights) != len(population)
        with self.assertRaises(TypeError):
            choices(data, cum_weights=10, k=5)                           # non-iterable cum_weights
        with self.assertRaises(TypeError):
            choices(data, cum_weights=[None]*4, k=5)                     # non-numeric cum_weights
        with self.assertRaises(TypeError):
            choices(data, range(4), cum_weights=range(4), k=5)           # both weights and cum_weights
        for weights in [
                [15, 10, 25, 30],                                                 # integer cum_weights
                [15.1, 10.2, 25.2, 30.3],                                         # float cum_weights
                [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional cum_weights
        ]:
            self.assertTrue(set(choices(data, cum_weights=weights, k=5)) <= set(data))

        # Test weight focused on a single element of the population
        self.assertEqual(choices('abcd', [1, 0, 0, 0]), ['a'])
        self.assertEqual(choices('abcd', [0, 1, 0, 0]), ['b'])
        self.assertEqual(choices('abcd', [0, 0, 1, 0]), ['c'])
        self.assertEqual(choices('abcd', [0, 0, 0, 1]), ['d'])

        # Test consistency with random.choice() for empty population
        with self.assertRaises(IndexError):
            choices([], k=1)
        with self.assertRaises(IndexError):
            choices([], weights=[], k=1)
        with self.assertRaises(IndexError):
            choices([], cum_weights=[], k=5)

    def test_gauss(self):
        # Ensure that the seed() method initializes all the hidden state.  In
        # particular, through 2.2.1 it failed to reset a piece of state used
        # by (and only by) the .gauss() method.

        for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
            self.gen.seed(seed)
            x1 = self.gen.random()
            y1 = self.gen.gauss(0, 1)

            self.gen.seed(seed)
            x2 = self.gen.random()
            y2 = self.gen.gauss(0, 1)

            self.assertEqual(x1, x2)
            self.assertEqual(y1, y2)

    def test_pickling(self):
        for proto in range(pickle.HIGHEST_PROTOCOL + 1):
            state = pickle.dumps(self.gen, proto)
            origseq = [self.gen.random() for i in range(10)]
            newgen = pickle.loads(state)
            restoredseq = [newgen.random() for i in range(10)]
            self.assertEqual(origseq, restoredseq)

    def test_bug_1727780(self):
        # verify that version-2-pickles can be loaded
        # fine, whether they are created on 32-bit or 64-bit
        # platforms, and that version-3-pickles load fine.
        files = [("randv2_32.pck", 780),
                 ("randv2_64.pck", 866),
                 ("randv3.pck", 343)]
        for file, value in files:
            f = open(support.findfile(file),"rb")
            r = pickle.load(f)
            f.close()
            self.assertEqual(int(r.random()*1000), value)

    def test_bug_9025(self):
        # Had problem with an uneven distribution in int(n*random())
        # Verify the fix by checking that distributions fall within expectations.
        n = 100000
        randrange = self.gen.randrange
        k = sum(randrange(6755399441055744) % 3 == 2 for i in range(n))
        self.assertTrue(0.30 < k/n < .37, (k/n))

try:
    random.SystemRandom().random()
except NotImplementedError:
    SystemRandom_available = False
else:
    SystemRandom_available = True

@unittest.skipUnless(SystemRandom_available, "random.SystemRandom not available")
class SystemRandom_TestBasicOps(TestBasicOps, unittest.TestCase):
    gen = random.SystemRandom()

    def test_autoseed(self):
        # Doesn't need to do anything except not fail
        self.gen.seed()

    def test_saverestore(self):
        self.assertRaises(NotImplementedError, self.gen.getstate)
        self.assertRaises(NotImplementedError, self.gen.setstate, None)

    def test_seedargs(self):
        # Doesn't need to do anything except not fail
        self.gen.seed(100)

    def test_gauss(self):
        self.gen.gauss_next = None
        self.gen.seed(100)
        self.assertEqual(self.gen.gauss_next, None)

    def test_pickling(self):
        for proto in range(pickle.HIGHEST_PROTOCOL + 1):
            self.assertRaises(NotImplementedError, pickle.dumps, self.gen, proto)

    def test_53_bits_per_float(self):
        # This should pass whenever a C double has 53 bit precision.
        span = 2 ** 53
        cum = 0
        for i in range(100):
            cum |= int(self.gen.random() * span)
        self.assertEqual(cum, span-1)

    def test_bigrand(self):
        # The randrange routine should build-up the required number of bits
        # in stages so that all bit positions are active.
        span = 2 ** 500
        cum = 0
        for i in range(100):
            r = self.gen.randrange(span)
            self.assertTrue(0 <= r < span)
            cum |= r
        self.assertEqual(cum, span-1)

    def test_bigrand_ranges(self):
        for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
            start = self.gen.randrange(2 ** (i-2))
            stop = self.gen.randrange(2 ** i)
            if stop <= start:
                continue
            self.assertTrue(start <= self.gen.randrange(start, stop) < stop)

    def test_rangelimits(self):
        for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
            self.assertEqual(set(range(start,stop)),
                set([self.gen.randrange(start,stop) for i in range(100)]))

    def test_randrange_nonunit_step(self):
        rint = self.gen.randrange(0, 10, 2)
        self.assertIn(rint, (0, 2, 4, 6, 8))
        rint = self.gen.randrange(0, 2, 2)
        self.assertEqual(rint, 0)

    def test_randrange_errors(self):
        raises = partial(self.assertRaises, ValueError, self.gen.randrange)
        # Empty range
        raises(3, 3)
        raises(-721)
        raises(0, 100, -12)
        # Non-integer start/stop
        raises(3.14159)
        raises(0, 2.71828)
        # Zero and non-integer step
        raises(0, 42, 0)
        raises(0, 42, 3.14159)

    def test_genrandbits(self):
        # Verify ranges
        for k in range(1, 1000):
            self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)

        # Verify all bits active
        getbits = self.gen.getrandbits
        for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
            cum = 0
            for i in range(100):
                cum |= getbits(span)
            self.assertEqual(cum, 2**span-1)

        # Verify argument checking
        self.assertRaises(TypeError, self.gen.getrandbits)
        self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
        self.assertRaises(ValueError, self.gen.getrandbits, 0)
        self.assertRaises(ValueError, self.gen.getrandbits, -1)
        self.assertRaises(TypeError, self.gen.getrandbits, 10.1)

    def test_randbelow_logic(self, _log=log, int=int):
        # check bitcount transition points:  2**i and 2**(i+1)-1
        # show that: k = int(1.001 + _log(n, 2))
        # is equal to or one greater than the number of bits in n
        for i in range(1, 1000):
            n = 1 << i # check an exact power of two
            numbits = i+1
            k = int(1.00001 + _log(n, 2))
            self.assertEqual(k, numbits)
            self.assertEqual(n, 2**(k-1))

            n += n - 1      # check 1 below the next power of two
            k = int(1.00001 + _log(n, 2))
            self.assertIn(k, [numbits, numbits+1])
            self.assertTrue(2**k > n > 2**(k-2))

            n -= n >> 15     # check a little farther below the next power of two
            k = int(1.00001 + _log(n, 2))
            self.assertEqual(k, numbits)        # note the stronger assertion
            self.assertTrue(2**k > n > 2**(k-1))   # note the stronger assertion


class MersenneTwister_TestBasicOps(TestBasicOps, unittest.TestCase):
    gen = random.Random()

    def test_guaranteed_stable(self):
        # These sequences are guaranteed to stay the same across versions of python
        self.gen.seed(3456147, version=1)
        self.assertEqual([self.gen.random().hex() for i in range(4)],
            ['0x1.ac362300d90d2p-1', '0x1.9d16f74365005p-1',
             '0x1.1ebb4352e4c4dp-1', '0x1.1a7422abf9c11p-1'])
        self.gen.seed("the quick brown fox", version=2)
        self.assertEqual([self.gen.random().hex() for i in range(4)],
            ['0x1.1239ddfb11b7cp-3', '0x1.b3cbb5c51b120p-4',
             '0x1.8c4f55116b60fp-1', '0x1.63eb525174a27p-1'])

    def test_bug_27706(self):
        # Verify that version 1 seeds are unaffected by hash randomization

        self.gen.seed('nofar', version=1)   # hash('nofar') == 5990528763808513177
        self.assertEqual([self.gen.random().hex() for i in range(4)],
            ['0x1.8645314505ad7p-1', '0x1.afb1f82e40a40p-5',
             '0x1.2a59d2285e971p-1', '0x1.56977142a7880p-6'])

        self.gen.seed('rachel', version=1)  # hash('rachel') == -9091735575445484789
        self.assertEqual([self.gen.random().hex() for i in range(4)],
            ['0x1.0b294cc856fcdp-1', '0x1.2ad22d79e77b8p-3',
             '0x1.3052b9c072678p-2', '0x1.578f332106574p-3'])

        self.gen.seed('', version=1)        # hash('') == 0
        self.assertEqual([self.gen.random().hex() for i in range(4)],
            ['0x1.b0580f98a7dbep-1', '0x1.84129978f9c1ap-1',
             '0x1.aeaa51052e978p-2', '0x1.092178fb945a6p-2'])

    def test_setstate_first_arg(self):
        self.assertRaises(ValueError, self.gen.setstate, (1, None, None))

    def test_setstate_middle_arg(self):
        # Wrong type, s/b tuple
        self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
        # Wrong length, s/b 625
        self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
        # Wrong type, s/b tuple of 625 ints
        self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
        # Last element s/b an int also
        self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
        # Last element s/b between 0 and 624
        with self.assertRaises((ValueError, OverflowError)):
            self.gen.setstate((2, (1,)*624+(625,), None))
        with self.assertRaises((ValueError, OverflowError)):
            self.gen.setstate((2, (1,)*624+(-1,), None))

        # Little trick to make "tuple(x % (2**32) for x in internalstate)"
        # raise ValueError. I cannot think of a simple way to achieve this, so
        # I am opting for using a generator as the middle argument of setstate
        # which attempts to cast a NaN to integer.
        state_values = self.gen.getstate()[1]
        state_values = list(state_values)
        state_values[-1] = float('nan')
        state = (int(x) for x in state_values)
        self.assertRaises(TypeError, self.gen.setstate, (2, state, None))

    def test_referenceImplementation(self):
        # Compare the python implementation with results from the original
        # code.  Create 2000 53-bit precision random floats.  Compare only
        # the last ten entries to show that the independent implementations
        # are tracking.  Here is the main() function needed to create the
        # list of expected random numbers:
        #    void main(void){
        #         int i;
        #         unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
        #         init_by_array(init, length);
        #         for (i=0; i<2000; i++) {
        #           printf("%.15f ", genrand_res53());
        #           if (i%5==4) printf("\n");
        #         }
        #     }
        expected = [0.45839803073713259,
                    0.86057815201978782,
                    0.92848331726782152,
                    0.35932681119782461,
                    0.081823493762449573,
                    0.14332226470169329,
                    0.084297823823520024,
                    0.53814864671831453,
                    0.089215024911993401,
                    0.78486196105372907]

        self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
        actual = self.randomlist(2000)[-10:]
        for a, e in zip(actual, expected):
            self.assertAlmostEqual(a,e,places=14)

    def test_strong_reference_implementation(self):
        # Like test_referenceImplementation, but checks for exact bit-level
        # equality.  This should pass on any box where C double contains
        # at least 53 bits of precision (the underlying algorithm suffers
        # no rounding errors -- all results are exact).
        from math import ldexp

        expected = [0x0eab3258d2231f,
                    0x1b89db315277a5,
                    0x1db622a5518016,
                    0x0b7f9af0d575bf,
                    0x029e4c4db82240,
                    0x04961892f5d673,
                    0x02b291598e4589,
                    0x11388382c15694,
                    0x02dad977c9e1fe,
                    0x191d96d4d334c6]
        self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
        actual = self.randomlist(2000)[-10:]
        for a, e in zip(actual, expected):
            self.assertEqual(int(ldexp(a, 53)), e)

    def test_long_seed(self):
        # This is most interesting to run in debug mode, just to make sure
        # nothing blows up.  Under the covers, a dynamically resized array
        # is allocated, consuming space proportional to the number of bits
        # in the seed.  Unfortunately, that's a quadratic-time algorithm,
        # so don't make this horribly big.
        seed = (1 << (10000 * 8)) - 1  # about 10K bytes
        self.gen.seed(seed)

    def test_53_bits_per_float(self):
        # This should pass whenever a C double has 53 bit precision.
        span = 2 ** 53
        cum = 0
        for i in range(100):
            cum |= int(self.gen.random() * span)
        self.assertEqual(cum, span-1)

    def test_bigrand(self):
        # The randrange routine should build-up the required number of bits
        # in stages so that all bit positions are active.
        span = 2 ** 500
        cum = 0
        for i in range(100):
            r = self.gen.randrange(span)
            self.assertTrue(0 <= r < span)
            cum |= r
        self.assertEqual(cum, span-1)

    def test_bigrand_ranges(self):
        for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
            start = self.gen.randrange(2 ** (i-2))
            stop = self.gen.randrange(2 ** i)
            if stop <= start:
                continue
            self.assertTrue(start <= self.gen.randrange(start, stop) < stop)

    def test_rangelimits(self):
        for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
            self.assertEqual(set(range(start,stop)),
                set([self.gen.randrange(start,stop) for i in range(100)]))

    def test_genrandbits(self):
        # Verify cross-platform repeatability
        self.gen.seed(1234567)
        self.assertEqual(self.gen.getrandbits(100),
                         97904845777343510404718956115)
        # Verify ranges
        for k in range(1, 1000):
            self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)

        # Verify all bits active
        getbits = self.gen.getrandbits
        for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
            cum = 0
            for i in range(100):
                cum |= getbits(span)
            self.assertEqual(cum, 2**span-1)

        # Verify argument checking
        self.assertRaises(TypeError, self.gen.getrandbits)
        self.assertRaises(TypeError, self.gen.getrandbits, 'a')
        self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
        self.assertRaises(ValueError, self.gen.getrandbits, 0)
        self.assertRaises(ValueError, self.gen.getrandbits, -1)

    def test_randbelow_logic(self, _log=log, int=int):
        # check bitcount transition points:  2**i and 2**(i+1)-1
        # show that: k = int(1.001 + _log(n, 2))
        # is equal to or one greater than the number of bits in n
        for i in range(1, 1000):
            n = 1 << i # check an exact power of two
            numbits = i+1
            k = int(1.00001 + _log(n, 2))
            self.assertEqual(k, numbits)
            self.assertEqual(n, 2**(k-1))

            n += n - 1      # check 1 below the next power of two
            k = int(1.00001 + _log(n, 2))
            self.assertIn(k, [numbits, numbits+1])
            self.assertTrue(2**k > n > 2**(k-2))

            n -= n >> 15     # check a little farther below the next power of two
            k = int(1.00001 + _log(n, 2))
            self.assertEqual(k, numbits)        # note the stronger assertion
            self.assertTrue(2**k > n > 2**(k-1))   # note the stronger assertion

    @unittest.mock.patch('random.Random.random')
    def test_randbelow_overridden_random(self, random_mock):
        # Random._randbelow() can only use random() when the built-in one
        # has been overridden but no new getrandbits() method was supplied.
        random_mock.side_effect = random.SystemRandom().random
        maxsize = 1<<random.BPF
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", UserWarning)
            # Population range too large (n >= maxsize)
            self.gen._randbelow(maxsize+1, maxsize = maxsize)
        self.gen._randbelow(5640, maxsize = maxsize)

        # This might be going too far to test a single line, but because of our
        # noble aim of achieving 100% test coverage we need to write a case in
        # which the following line in Random._randbelow() gets executed:
        #
        # rem = maxsize % n
        # limit = (maxsize - rem) / maxsize
        # r = random()
        # while r >= limit:
        #     r = random() # <== *This line* <==<
        #
        # Therefore, to guarantee that the while loop is executed at least
        # once, we need to mock random() so that it returns a number greater
        # than 'limit' the first time it gets called.

        n = 42
        epsilon = 0.01
        limit = (maxsize - (maxsize % n)) / maxsize
        random_mock.side_effect = [limit + epsilon, limit - epsilon]
        self.gen._randbelow(n, maxsize = maxsize)

    def test_randrange_bug_1590891(self):
        start = 1000000000000
        stop = -100000000000000000000
        step = -200
        x = self.gen.randrange(start, stop, step)
        self.assertTrue(stop < x <= start)
        self.assertEqual((x+stop)%step, 0)

    def test_choices_algorithms(self):
        # The various ways of specifying weights should produce the same results
        choices = self.gen.choices
        n = 104729

        self.gen.seed(8675309)
        a = self.gen.choices(range(n), k=10000)

        self.gen.seed(8675309)
        b = self.gen.choices(range(n), [1]*n, k=10000)
        self.assertEqual(a, b)

        self.gen.seed(8675309)
        c = self.gen.choices(range(n), cum_weights=range(1, n+1), k=10000)
        self.assertEqual(a, c)

        # Amerian Roulette
        population = ['Red', 'Black', 'Green']
        weights = [18, 18, 2]
        cum_weights = [18, 36, 38]
        expanded_population = ['Red'] * 18 + ['Black'] * 18 + ['Green'] * 2

        self.gen.seed(9035768)
        a = self.gen.choices(expanded_population, k=10000)

        self.gen.seed(9035768)
        b = self.gen.choices(population, weights, k=10000)
        self.assertEqual(a, b)

        self.gen.seed(9035768)
        c = self.gen.choices(population, cum_weights=cum_weights, k=10000)
        self.assertEqual(a, c)

def gamma(z, sqrt2pi=(2.0*pi)**0.5):
    # Reflection to right half of complex plane
    if z < 0.5:
        return pi / sin(pi*z) / gamma(1.0-z)
    # Lanczos approximation with g=7
    az = z + (7.0 - 0.5)
    return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([
        0.9999999999995183,
        676.5203681218835 / z,
        -1259.139216722289 / (z+1.0),
        771.3234287757674 / (z+2.0),
        -176.6150291498386 / (z+3.0),
        12.50734324009056 / (z+4.0),
        -0.1385710331296526 / (z+5.0),
        0.9934937113930748e-05 / (z+6.0),
        0.1659470187408462e-06 / (z+7.0),
    ])

class TestDistributions(unittest.TestCase):
    def test_zeroinputs(self):
        # Verify that distributions can handle a series of zero inputs'
        g = random.Random()
        x = [g.random() for i in range(50)] + [0.0]*5
        g.random = x[:].pop; g.uniform(1,10)
        g.random = x[:].pop; g.paretovariate(1.0)
        g.random = x[:].pop; g.expovariate(1.0)
        g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
        g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0)
        g.random = x[:].pop; g.normalvariate(0.0, 1.0)
        g.random = x[:].pop; g.gauss(0.0, 1.0)
        g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
        g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
        g.random = x[:].pop; g.gammavariate(0.01, 1.0)
        g.random = x[:].pop; g.gammavariate(1.0, 1.0)
        g.random = x[:].pop; g.gammavariate(200.0, 1.0)
        g.random = x[:].pop; g.betavariate(3.0, 3.0)
        g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0)

    def test_avg_std(self):
        # Use integration to test distribution average and standard deviation.
        # Only works for distributions which do not consume variates in pairs
        g = random.Random()
        N = 5000
        x = [i/float(N) for i in range(1,N)]
        for variate, args, mu, sigmasqrd in [
                (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
                (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
                (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
                (g.vonmisesvariate, (1.23, 0), pi, pi**2/3),
                (g.paretovariate, (5.0,), 5.0/(5.0-1),
                                  5.0/((5.0-1)**2*(5.0-2))),
                (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
                                  gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
            g.random = x[:].pop
            y = []
            for i in range(len(x)):
                try:
                    y.append(variate(*args))
                except IndexError:
                    pass
            s1 = s2 = 0
            for e in y:
                s1 += e
                s2 += (e - mu) ** 2
            N = len(y)
            self.assertAlmostEqual(s1/N, mu, places=2,
                                   msg='%s%r' % (variate.__name__, args))
            self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2,
                                   msg='%s%r' % (variate.__name__, args))

    def test_constant(self):
        g = random.Random()
        N = 100
        for variate, args, expected in [
                (g.uniform, (10.0, 10.0), 10.0),
                (g.triangular, (10.0, 10.0), 10.0),
                (g.triangular, (10.0, 10.0, 10.0), 10.0),
                (g.expovariate, (float('inf'),), 0.0),
                (g.vonmisesvariate, (3.0, float('inf')), 3.0),
                (g.gauss, (10.0, 0.0), 10.0),
                (g.lognormvariate, (0.0, 0.0), 1.0),
                (g.lognormvariate, (-float('inf'), 0.0), 0.0),
                (g.normalvariate, (10.0, 0.0), 10.0),
                (g.paretovariate, (float('inf'),), 1.0),
                (g.weibullvariate, (10.0, float('inf')), 10.0),
                (g.weibullvariate, (0.0, 10.0), 0.0),
            ]:
            for i in range(N):
                self.assertEqual(variate(*args), expected)

    def test_von_mises_range(self):
        # Issue 17149: von mises variates were not consistently in the
        # range [0, 2*PI].
        g = random.Random()
        N = 100
        for mu in 0.0, 0.1, 3.1, 6.2:
            for kappa in 0.0, 2.3, 500.0:
                for _ in range(N):
                    sample = g.vonmisesvariate(mu, kappa)
                    self.assertTrue(
                        0 <= sample <= random.TWOPI,
                        msg=("vonmisesvariate({}, {}) produced a result {} out"
                             " of range [0, 2*pi]").format(mu, kappa, sample))

    def test_von_mises_large_kappa(self):
        # Issue #17141: vonmisesvariate() was hang for large kappas
        random.vonmisesvariate(0, 1e15)
        random.vonmisesvariate(0, 1e100)

    def test_gammavariate_errors(self):
        # Both alpha and beta must be > 0.0
        self.assertRaises(ValueError, random.gammavariate, -1, 3)
        self.assertRaises(ValueError, random.gammavariate, 0, 2)
        self.assertRaises(ValueError, random.gammavariate, 2, 0)
        self.assertRaises(ValueError, random.gammavariate, 1, -3)

    @unittest.mock.patch('random.Random.random')
    def test_gammavariate_full_code_coverage(self, random_mock):
        # There are three different possibilities in the current implementation
        # of random.gammavariate(), depending on the value of 'alpha'. What we
        # are going to do here is to fix the values returned by random() to
        # generate test cases that provide 100% line coverage of the method.

        # #1: alpha > 1.0: we want the first random number to be outside the
        # [1e-7, .9999999] range, so that the continue statement executes
        # once. The values of u1 and u2 will be 0.5 and 0.3, respectively.
        random_mock.side_effect = [1e-8, 0.5, 0.3]
        returned_value = random.gammavariate(1.1, 2.3)
        self.assertAlmostEqual(returned_value, 2.53)

        # #2: alpha == 1: first random number less than 1e-7 to that the body
        # of the while loop executes once. Then random.random() returns 0.45,
        # which causes while to stop looping and the algorithm to terminate.
        random_mock.side_effect = [1e-8, 0.45]
        returned_value = random.gammavariate(1.0, 3.14)
        self.assertAlmostEqual(returned_value, 2.507314166123803)

        # #3: 0 < alpha < 1. This is the most complex region of code to cover,
        # as there are multiple if-else statements. Let's take a look at the
        # source code, and determine the values that we need accordingly:
        #
        # while 1:
        #     u = random()
        #     b = (_e + alpha)/_e
        #     p = b*u
        #     if p <= 1.0: # <=== (A)
        #         x = p ** (1.0/alpha)
        #     else: # <=== (B)
        #         x = -_log((b-p)/alpha)
        #     u1 = random()
        #     if p > 1.0: # <=== (C)
        #         if u1 <= x ** (alpha - 1.0): # <=== (D)
        #             break
        #     elif u1 <= _exp(-x): # <=== (E)
        #         break
        # return x * beta
        #
        # First, we want (A) to be True. For that we need that:
        # b*random() <= 1.0
        # r1 = random() <= 1.0 / b
        #
        # We now get to the second if-else branch, and here, since p <= 1.0,
        # (C) is False and we take the elif branch, (E). For it to be True,
        # so that the break is executed, we need that:
        # r2 = random() <= _exp(-x)
        # r2 <= _exp(-(p ** (1.0/alpha)))
        # r2 <= _exp(-((b*r1) ** (1.0/alpha)))

        _e = random._e
        _exp = random._exp
        _log = random._log
        alpha = 0.35
        beta = 1.45
        b = (_e + alpha)/_e
        epsilon = 0.01

        r1 = 0.8859296441566 # 1.0 / b
        r2 = 0.3678794411714 # _exp(-((b*r1) ** (1.0/alpha)))

        # These four "random" values result in the following trace:
        # (A) True, (E) False --> [next iteration of while]
        # (A) True, (E) True --> [while loop breaks]
        random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
        returned_value = random.gammavariate(alpha, beta)
        self.assertAlmostEqual(returned_value, 1.4499999999997544)

        # Let's now make (A) be False. If this is the case, when we get to the
        # second if-else 'p' is greater than 1, so (C) evaluates to True. We
        # now encounter a second if statement, (D), which in order to execute
        # must satisfy the following condition:
        # r2 <= x ** (alpha - 1.0)
        # r2 <= (-_log((b-p)/alpha)) ** (alpha - 1.0)
        # r2 <= (-_log((b-(b*r1))/alpha)) ** (alpha - 1.0)
        r1 = 0.8959296441566 # (1.0 / b) + epsilon -- so that (A) is False
        r2 = 0.9445400408898141

        # And these four values result in the following trace:
        # (B) and (C) True, (D) False --> [next iteration of while]
        # (B) and (C) True, (D) True [while loop breaks]
        random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
        returned_value = random.gammavariate(alpha, beta)
        self.assertAlmostEqual(returned_value, 1.5830349561760781)

    @unittest.mock.patch('random.Random.gammavariate')
    def test_betavariate_return_zero(self, gammavariate_mock):
        # betavariate() returns zero when the Gamma distribution
        # that it uses internally returns this same value.
        gammavariate_mock.return_value = 0.0
        self.assertEqual(0.0, random.betavariate(2.71828, 3.14159))

class TestModule(unittest.TestCase):
    def testMagicConstants(self):
        self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
        self.assertAlmostEqual(random.TWOPI, 6.28318530718)
        self.assertAlmostEqual(random.LOG4, 1.38629436111989)
        self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)

    def test__all__(self):
        # tests validity but not completeness of the __all__ list
        self.assertTrue(set(random.__all__) <= set(dir(random)))

    def test_random_subclass_with_kwargs(self):
        # SF bug #1486663 -- this used to erroneously raise a TypeError
        class Subclass(random.Random):
            def __init__(self, newarg=None):
                random.Random.__init__(self)
        Subclass(newarg=1)


if __name__ == "__main__":
    unittest.main()