summaryrefslogtreecommitdiff
path: root/Lib/typing.py
blob: 38e07ad50b7557e34fbc79d8deeb1ed5ea18f54c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
# TODO:
# - Generic[T, T] is invalid
# - Look for TODO below

# TODO nits:
# Get rid of asserts that are the caller's fault.
# Docstrings (e.g. ABCs).

import abc
from abc import abstractmethod, abstractproperty
import collections
import functools
import re as stdlib_re  # Avoid confusion with the re we export.
import sys
import types
try:
    import collections.abc as collections_abc
except ImportError:
    import collections as collections_abc  # Fallback for PY3.2.


# Please keep __all__ alphabetized within each category.
__all__ = [
    # Super-special typing primitives.
    'Any',
    'Callable',
    'Generic',
    'Optional',
    'TypeVar',
    'Union',
    'Tuple',

    # ABCs (from collections.abc).
    'AbstractSet',  # collections.abc.Set.
    'ByteString',
    'Container',
    'Hashable',
    'ItemsView',
    'Iterable',
    'Iterator',
    'KeysView',
    'Mapping',
    'MappingView',
    'MutableMapping',
    'MutableSequence',
    'MutableSet',
    'Sequence',
    'Sized',
    'ValuesView',

    # Structural checks, a.k.a. protocols.
    'Reversible',
    'SupportsAbs',
    'SupportsFloat',
    'SupportsInt',
    'SupportsRound',

    # Concrete collection types.
    'Dict',
    'List',
    'Set',
    'NamedTuple',  # Not really a type.
    'Generator',

    # One-off things.
    'AnyStr',
    'cast',
    'get_type_hints',
    'no_type_check',
    'no_type_check_decorator',
    'overload',

    # Submodules.
    'io',
    're',
]


def _qualname(x):
    if sys.version_info[:2] >= (3, 3):
        return x.__qualname__
    else:
        # Fall back to just name.
        return x.__name__


class TypingMeta(type):
    """Metaclass for every type defined below.

    This overrides __new__() to require an extra keyword parameter
    '_root', which serves as a guard against naive subclassing of the
    typing classes.  Any legitimate class defined using a metaclass
    derived from TypingMeta (including internal subclasses created by
    e.g.  Union[X, Y]) must pass _root=True.

    This also defines a dummy constructor (all the work is done in
    __new__) and a nicer repr().
    """

    _is_protocol = False

    def __new__(cls, name, bases, namespace, *, _root=False):
        if not _root:
            raise TypeError("Cannot subclass %s" %
                            (', '.join(map(_type_repr, bases)) or '()'))
        return super().__new__(cls, name, bases, namespace)

    def __init__(self, *args, **kwds):
        pass

    def _eval_type(self, globalns, localns):
        """Override this in subclasses to interpret forward references.

        For example, Union['C'] is internally stored as
        Union[_ForwardRef('C')], which should evaluate to _Union[C],
        where C is an object found in globalns or localns (searching
        localns first, of course).
        """
        return self

    def _has_type_var(self):
        return False

    def __repr__(self):
        return '%s.%s' % (self.__module__, _qualname(self))


class Final:
    """Mix-in class to prevent instantiation."""

    def __new__(self, *args, **kwds):
        raise TypeError("Cannot instantiate %r" % self.__class__)


class _ForwardRef(TypingMeta):
    """Wrapper to hold a forward reference."""

    def __new__(cls, arg):
        if not isinstance(arg, str):
            raise TypeError('ForwardRef must be a string -- got %r' % (arg,))
        try:
            code = compile(arg, '<string>', 'eval')
        except SyntaxError:
            raise SyntaxError('ForwardRef must be an expression -- got %r' %
                              (arg,))
        self = super().__new__(cls, arg, (), {}, _root=True)
        self.__forward_arg__ = arg
        self.__forward_code__ = code
        self.__forward_evaluated__ = False
        self.__forward_value__ = None
        typing_globals = globals()
        frame = sys._getframe(1)
        while frame is not None and frame.f_globals is typing_globals:
            frame = frame.f_back
        assert frame is not None
        self.__forward_frame__ = frame
        return self

    def _eval_type(self, globalns, localns):
        if not isinstance(localns, dict):
            raise TypeError('ForwardRef localns must be a dict -- got %r' %
                            (localns,))
        if not isinstance(globalns, dict):
            raise TypeError('ForwardRef globalns must be a dict -- got %r' %
                            (globalns,))
        if not self.__forward_evaluated__:
            if globalns is None and localns is None:
                globalns = localns = {}
            elif globalns is None:
                globalns = localns
            elif localns is None:
                localns = globalns
            self.__forward_value__ = _type_check(
                eval(self.__forward_code__, globalns, localns),
                "Forward references must evaluate to types.")
            self.__forward_evaluated__ = True
        return self.__forward_value__

    def __subclasscheck__(self, cls):
        if not self.__forward_evaluated__:
            globalns = self.__forward_frame__.f_globals
            localns = self.__forward_frame__.f_locals
            try:
                self._eval_type(globalns, localns)
            except NameError:
                return False  # Too early.
        return issubclass(cls, self.__forward_value__)

    def __instancecheck__(self, obj):
        if not self.__forward_evaluated__:
            globalns = self.__forward_frame__.f_globals
            localns = self.__forward_frame__.f_locals
            try:
                self._eval_type(globalns, localns)
            except NameError:
                return False  # Too early.
        return isinstance(obj, self.__forward_value__)

    def __repr__(self):
        return '_ForwardRef(%r)' % (self.__forward_arg__,)


class _TypeAlias:
    """Internal helper class for defining generic variants of concrete types.

    Note that this is not a type; let's call it a pseudo-type.  It can
    be used in instance and subclass checks, e.g. isinstance(m, Match)
    or issubclass(type(m), Match).  However, it cannot be itself the
    target of an issubclass() call; e.g. issubclass(Match, C) (for
    some arbitrary class C) raises TypeError rather than returning
    False.
    """

    def __new__(cls, *args, **kwds):
        """Constructor.

        This only exists to give a better error message in case
        someone tries to subclass a type alias (not a good idea).
        """
        if (len(args) == 3 and
            isinstance(args[0], str) and
            isinstance(args[1], tuple)):
            # Close enough.
            raise TypeError("A type alias cannot be subclassed")
        return object.__new__(cls)

    def __init__(self, name, type_var, impl_type, type_checker):
        """Initializer.

        Args:
            name: The name, e.g. 'Pattern'.
            type_var: The type parameter, e.g. AnyStr, or the
                specific type, e.g. str.
            impl_type: The implementation type.
            type_checker: Function that takes an impl_type instance.
                and returns a value that should be a type_var instance.
        """
        assert isinstance(name, str), repr(name)
        assert isinstance(type_var, type), repr(type_var)
        assert isinstance(impl_type, type), repr(impl_type)
        assert not isinstance(impl_type, TypingMeta), repr(impl_type)
        self.name = name
        self.type_var = type_var
        self.impl_type = impl_type
        self.type_checker = type_checker

    def __repr__(self):
        return "%s[%s]" % (self.name, _type_repr(self.type_var))

    def __getitem__(self, parameter):
        assert isinstance(parameter, type), repr(parameter)
        if not isinstance(self.type_var, TypeVar):
            raise TypeError("%s cannot be further parameterized." % self)
        if self.type_var.__constraints__:
            if not issubclass(parameter, Union[self.type_var.__constraints__]):
                raise TypeError("%s is not a valid substitution for %s." %
                                (parameter, self.type_var))
        return self.__class__(self.name, parameter,
                              self.impl_type, self.type_checker)

    def __instancecheck__(self, obj):
        return (isinstance(obj, self.impl_type) and
                isinstance(self.type_checker(obj), self.type_var))

    def __subclasscheck__(self, cls):
        if cls is Any:
            return True
        if isinstance(cls, _TypeAlias):
            # Covariance.  For now, we compare by name.
            return (cls.name == self.name and
                    issubclass(cls.type_var, self.type_var))
        else:
            # Note that this is too lenient, because the
            # implementation type doesn't carry information about
            # whether it is about bytes or str (for example).
            return issubclass(cls, self.impl_type)


def _has_type_var(t):
    return t is not None and isinstance(t, TypingMeta) and t._has_type_var()


def _eval_type(t, globalns, localns):
    if isinstance(t, TypingMeta):
        return t._eval_type(globalns, localns)
    else:
        return t


def _type_check(arg, msg):
    """Check that the argument is a type, and return it.

    As a special case, accept None and return type(None) instead.
    Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.

    The msg argument is a human-readable error message, e.g.

        "Union[arg, ...]: arg should be a type."

    We append the repr() of the actual value (truncated to 100 chars).
    """
    if arg is None:
        return type(None)
    if isinstance(arg, str):
        arg = _ForwardRef(arg)
    if not isinstance(arg, (type, _TypeAlias)):
        raise TypeError(msg + " Got %.100r." % (arg,))
    return arg


def _type_repr(obj):
    """Return the repr() of an object, special-casing types.

    If obj is a type, we return a shorter version than the default
    type.__repr__, based on the module and qualified name, which is
    typically enough to uniquely identify a type.  For everything
    else, we fall back on repr(obj).
    """
    if isinstance(obj, type) and not isinstance(obj, TypingMeta):
        if obj.__module__ == 'builtins':
            return _qualname(obj)
        else:
            return '%s.%s' % (obj.__module__, _qualname(obj))
    else:
        return repr(obj)


class AnyMeta(TypingMeta):
    """Metaclass for Any."""

    def __new__(cls, name, bases, namespace, _root=False):
        self = super().__new__(cls, name, bases, namespace, _root=_root)
        return self

    def __instancecheck__(self, instance):
        return True

    def __subclasscheck__(self, cls):
        if not isinstance(cls, type):
            return super().__subclasscheck__(cls)  # To TypeError.
        return True


class Any(Final, metaclass=AnyMeta, _root=True):
    """Special type indicating an unconstrained type.

    - Any object is an instance of Any.
    - Any class is a subclass of Any.
    - As a special case, Any and object are subclasses of each other.
    """


class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True):
    """Type variable.

    Usage::

      T = TypeVar('T')  # Can be anything
      A = TypeVar('A', str, bytes)  # Must be str or bytes

    Type variables exist primarily for the benefit of static type
    checkers.  They serve as the parameters for generic types as well
    as for generic function definitions.  See class Generic for more
    information on generic types.  Generic functions work as follows:

      def repeat(x: T, n: int) -> Sequence[T]:
          '''Return a list containing n references to x.'''
          return [x]*n

      def longest(x: A, y: A) -> A:
          '''Return the longest of two strings.'''
          return x if len(x) >= len(y) else y

    The latter example's signature is essentially the overloading
    of (str, str) -> str and (bytes, bytes) -> bytes.  Also note
    that if the arguments are instances of some subclass of str,
    the return type is still plain str.

    At runtime, isinstance(x, T) will raise TypeError.  However,
    issubclass(C, T) is true for any class C, and issubclass(str, A)
    and issubclass(bytes, A) are true, and issubclass(int, A) is
    false.

    Type variables may be marked covariant or contravariant by passing
    covariant=True or contravariant=True.  See PEP 484 for more
    details.  By default type variables are invariant.

    Type variables can be introspected. e.g.:

      T.__name__ == 'T'
      T.__constraints__ == ()
      T.__covariant__ == False
      T.__contravariant__ = False
      A.__constraints__ == (str, bytes)
    """

    def __new__(cls, name, *constraints, bound=None,
                covariant=False, contravariant=False):
        self = super().__new__(cls, name, (Final,), {}, _root=True)
        if covariant and contravariant:
            raise ValueError("Bivariant type variables are not supported.")
        self.__covariant__ = bool(covariant)
        self.__contravariant__ = bool(contravariant)
        if constraints and bound is not None:
            raise TypeError("Constraints cannot be combined with bound=...")
        if constraints and len(constraints) == 1:
            raise TypeError("A single constraint is not allowed")
        msg = "TypeVar(name, constraint, ...): constraints must be types."
        self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
        if bound:
            self.__bound__ = _type_check(bound, "Bound must be a type.")
        else:
            self.__bound__ = None
        return self

    def _has_type_var(self):
        return True

    def __repr__(self):
        if self.__covariant__:
            prefix = '+'
        elif self.__contravariant__:
            prefix = '-'
        else:
            prefix = '~'
        return prefix + self.__name__

    def __instancecheck__(self, instance):
        raise TypeError("Type variables cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        # TODO: Make this raise TypeError too?
        if cls is self:
            return True
        if cls is Any:
            return True
        if self.__bound__ is not None:
            return issubclass(cls, self.__bound__)
        if self.__constraints__:
            return any(issubclass(cls, c) for c in self.__constraints__)
        return True


# Some unconstrained type variables.  These are used by the container types.
T = TypeVar('T')  # Any type.
KT = TypeVar('KT')  # Key type.
VT = TypeVar('VT')  # Value type.
T_co = TypeVar('T_co', covariant=True)  # Any type covariant containers.
V_co = TypeVar('V_co', covariant=True)  # Any type covariant containers.
KT_co = TypeVar('KT_co', covariant=True)  # Key type covariant containers.
VT_co = TypeVar('VT_co', covariant=True)  # Value type covariant containers.
T_contra = TypeVar('T_contra', contravariant=True)  # Ditto contravariant.

# A useful type variable with constraints.  This represents string types.
# TODO: What about bytearray, memoryview?
AnyStr = TypeVar('AnyStr', bytes, str)


class UnionMeta(TypingMeta):
    """Metaclass for Union."""

    def __new__(cls, name, bases, namespace, parameters=None, _root=False):
        if parameters is None:
            return super().__new__(cls, name, bases, namespace, _root=_root)
        if not isinstance(parameters, tuple):
            raise TypeError("Expected parameters=<tuple>")
        # Flatten out Union[Union[...], ...] and type-check non-Union args.
        params = []
        msg = "Union[arg, ...]: each arg must be a type."
        for p in parameters:
            if isinstance(p, UnionMeta):
                params.extend(p.__union_params__)
            else:
                params.append(_type_check(p, msg))
        # Weed out strict duplicates, preserving the first of each occurrence.
        all_params = set(params)
        if len(all_params) < len(params):
            new_params = []
            for t in params:
                if t in all_params:
                    new_params.append(t)
                    all_params.remove(t)
            params = new_params
            assert not all_params, all_params
        # Weed out subclasses.
        # E.g. Union[int, Employee, Manager] == Union[int, Employee].
        # If Any or object is present it will be the sole survivor.
        # If both Any and object are present, Any wins.
        # Never discard type variables, except against Any.
        # (In particular, Union[str, AnyStr] != AnyStr.)
        all_params = set(params)
        for t1 in params:
            if t1 is Any:
                return Any
            if isinstance(t1, TypeVar):
                continue
            if any(issubclass(t1, t2)
                   for t2 in all_params - {t1} if not isinstance(t2, TypeVar)):
                all_params.remove(t1)
        # It's not a union if there's only one type left.
        if len(all_params) == 1:
            return all_params.pop()
        # Create a new class with these params.
        self = super().__new__(cls, name, bases, {}, _root=True)
        self.__union_params__ = tuple(t for t in params if t in all_params)
        self.__union_set_params__ = frozenset(self.__union_params__)
        return self

    def _eval_type(self, globalns, localns):
        p = tuple(_eval_type(t, globalns, localns)
                  for t in self.__union_params__)
        if p == self.__union_params__:
            return self
        else:
            return self.__class__(self.__name__, self.__bases__, {},
                                  p, _root=True)

    def _has_type_var(self):
        if self.__union_params__:
            for t in self.__union_params__:
                if _has_type_var(t):
                    return True
        return False

    def __repr__(self):
        r = super().__repr__()
        if self.__union_params__:
            r += '[%s]' % (', '.join(_type_repr(t)
                                     for t in self.__union_params__))
        return r

    def __getitem__(self, parameters):
        if self.__union_params__ is not None:
            raise TypeError(
                "Cannot subscript an existing Union. Use Union[u, t] instead.")
        if parameters == ():
            raise TypeError("Cannot take a Union of no types.")
        if not isinstance(parameters, tuple):
            parameters = (parameters,)
        return self.__class__(self.__name__, self.__bases__,
                              dict(self.__dict__), parameters, _root=True)

    def __eq__(self, other):
        if not isinstance(other, UnionMeta):
            return NotImplemented
        return self.__union_set_params__ == other.__union_set_params__

    def __hash__(self):
        return hash(self.__union_set_params__)

    def __instancecheck__(self, instance):
        return (self.__union_set_params__ is not None and
                any(isinstance(instance, t) for t in self.__union_params__))

    def __subclasscheck__(self, cls):
        if cls is Any:
            return True
        if self.__union_params__ is None:
            return isinstance(cls, UnionMeta)
        elif isinstance(cls, UnionMeta):
            if cls.__union_params__ is None:
                return False
            return all(issubclass(c, self) for c in (cls.__union_params__))
        elif isinstance(cls, TypeVar):
            if cls in self.__union_params__:
                return True
            if cls.__constraints__:
                return issubclass(Union[cls.__constraints__], self)
            return False
        else:
            return any(issubclass(cls, t) for t in self.__union_params__)


class Union(Final, metaclass=UnionMeta, _root=True):
    """Union type; Union[X, Y] means either X or Y.

    To define a union, use e.g. Union[int, str].  Details:

    - The arguments must be types and there must be at least one.

    - None as an argument is a special case and is replaced by
      type(None).

    - Unions of unions are flattened, e.g.::

        Union[Union[int, str], float] == Union[int, str, float]

    - Unions of a single argument vanish, e.g.::

        Union[int] == int  # The constructor actually returns int

    - Redundant arguments are skipped, e.g.::

        Union[int, str, int] == Union[int, str]

    - When comparing unions, the argument order is ignored, e.g.::

        Union[int, str] == Union[str, int]

    - When two arguments have a subclass relationship, the least
      derived argument is kept, e.g.::

        class Employee: pass
        class Manager(Employee): pass
        Union[int, Employee, Manager] == Union[int, Employee]
        Union[Manager, int, Employee] == Union[int, Employee]
        Union[Employee, Manager] == Employee

    - Corollary: if Any is present it is the sole survivor, e.g.::

        Union[int, Any] == Any

    - Similar for object::

        Union[int, object] == object

    - To cut a tie: Union[object, Any] == Union[Any, object] == Any.

    - You cannot subclass or instantiate a union.

    - You cannot write Union[X][Y] (what would it mean?).

    - You can use Optional[X] as a shorthand for Union[X, None].
    """

    # Unsubscripted Union type has params set to None.
    __union_params__ = None
    __union_set_params__ = None


class OptionalMeta(TypingMeta):
    """Metaclass for Optional."""

    def __new__(cls, name, bases, namespace, _root=False):
        return super().__new__(cls, name, bases, namespace, _root=_root)

    def __getitem__(self, arg):
        arg = _type_check(arg, "Optional[t] requires a single type.")
        return Union[arg, type(None)]


class Optional(Final, metaclass=OptionalMeta, _root=True):
    """Optional type.

    Optional[X] is equivalent to Union[X, type(None)].
    """


class TupleMeta(TypingMeta):
    """Metaclass for Tuple."""

    def __new__(cls, name, bases, namespace, parameters=None,
                use_ellipsis=False, _root=False):
        self = super().__new__(cls, name, bases, namespace, _root=_root)
        self.__tuple_params__ = parameters
        self.__tuple_use_ellipsis__ = use_ellipsis
        return self

    def _has_type_var(self):
        if self.__tuple_params__:
            for t in self.__tuple_params__:
                if _has_type_var(t):
                    return True
        return False

    def _eval_type(self, globalns, localns):
        tp = self.__tuple_params__
        if tp is None:
            return self
        p = tuple(_eval_type(t, globalns, localns) for t in tp)
        if p == self.__tuple_params__:
            return self
        else:
            return self.__class__(self.__name__, self.__bases__, {},
                                  p, _root=True)

    def __repr__(self):
        r = super().__repr__()
        if self.__tuple_params__ is not None:
            params = [_type_repr(p) for p in self.__tuple_params__]
            if self.__tuple_use_ellipsis__:
                params.append('...')
            r += '[%s]' % (
                ', '.join(params))
        return r

    def __getitem__(self, parameters):
        if self.__tuple_params__ is not None:
            raise TypeError("Cannot re-parameterize %r" % (self,))
        if not isinstance(parameters, tuple):
            parameters = (parameters,)
        if len(parameters) == 2 and parameters[1] == Ellipsis:
            parameters = parameters[:1]
            use_ellipsis = True
            msg = "Tuple[t, ...]: t must be a type."
        else:
            use_ellipsis = False
            msg = "Tuple[t0, t1, ...]: each t must be a type."
        parameters = tuple(_type_check(p, msg) for p in parameters)
        return self.__class__(self.__name__, self.__bases__,
                              dict(self.__dict__), parameters,
                              use_ellipsis=use_ellipsis, _root=True)

    def __eq__(self, other):
        if not isinstance(other, TupleMeta):
            return NotImplemented
        return self.__tuple_params__ == other.__tuple_params__

    def __hash__(self):
        return hash(self.__tuple_params__)

    def __instancecheck__(self, t):
        if not isinstance(t, tuple):
            return False
        if self.__tuple_params__ is None:
            return True
        if self.__tuple_use_ellipsis__:
            p = self.__tuple_params__[0]
            return all(isinstance(x, p) for x in t)
        else:
            return (len(t) == len(self.__tuple_params__) and
                    all(isinstance(x, p)
                        for x, p in zip(t, self.__tuple_params__)))

    def __subclasscheck__(self, cls):
        if cls is Any:
            return True
        if not isinstance(cls, type):
            return super().__subclasscheck__(cls)  # To TypeError.
        if issubclass(cls, tuple):
            return True  # Special case.
        if not isinstance(cls, TupleMeta):
            return super().__subclasscheck__(cls)  # False.
        if self.__tuple_params__ is None:
            return True
        if cls.__tuple_params__ is None:
            return False  # ???
        if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__:
            return False
        # Covariance.
        return (len(self.__tuple_params__) == len(cls.__tuple_params__) and
                all(issubclass(x, p)
                    for x, p in zip(cls.__tuple_params__,
                                    self.__tuple_params__)))


class Tuple(Final, metaclass=TupleMeta, _root=True):
    """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.

    Example: Tuple[T1, T2] is a tuple of two elements corresponding
    to type variables T1 and T2.  Tuple[int, float, str] is a tuple
    of an int, a float and a string.

    To specify a variable-length tuple of homogeneous type, use Sequence[T].
    """


class CallableMeta(TypingMeta):
    """Metaclass for Callable."""

    def __new__(cls, name, bases, namespace, _root=False,
                args=None, result=None):
        if args is None and result is None:
            pass  # Must be 'class Callable'.
        else:
            if args is not Ellipsis:
                if not isinstance(args, list):
                    raise TypeError("Callable[args, result]: "
                                    "args must be a list."
                                    " Got %.100r." % (args,))
                msg = "Callable[[arg, ...], result]: each arg must be a type."
                args = tuple(_type_check(arg, msg) for arg in args)
            msg = "Callable[args, result]: result must be a type."
            result = _type_check(result, msg)
        self = super().__new__(cls, name, bases, namespace, _root=_root)
        self.__args__ = args
        self.__result__ = result
        return self

    def _has_type_var(self):
        if self.__args__:
            for t in self.__args__:
                if _has_type_var(t):
                    return True
        return _has_type_var(self.__result__)

    def _eval_type(self, globalns, localns):
        if self.__args__ is None and self.__result__ is None:
            return self
        args = [_eval_type(t, globalns, localns) for t in self.__args__]
        result = _eval_type(self.__result__, globalns, localns)
        if args == self.__args__ and result == self.__result__:
            return self
        else:
            return self.__class__(self.__name__, self.__bases__, {},
                                  args=args, result=result, _root=True)

    def __repr__(self):
        r = super().__repr__()
        if self.__args__ is not None or self.__result__ is not None:
            if self.__args__ is Ellipsis:
                args_r = '...'
            else:
                args_r = '[%s]' % ', '.join(_type_repr(t)
                                            for t in self.__args__)
            r += '[%s, %s]' % (args_r, _type_repr(self.__result__))
        return r

    def __getitem__(self, parameters):
        if self.__args__ is not None or self.__result__ is not None:
            raise TypeError("This Callable type is already parameterized.")
        if not isinstance(parameters, tuple) or len(parameters) != 2:
            raise TypeError(
                "Callable must be used as Callable[[arg, ...], result].")
        args, result = parameters
        return self.__class__(self.__name__, self.__bases__,
                              dict(self.__dict__), _root=True,
                              args=args, result=result)

    def __eq__(self, other):
        if not isinstance(other, CallableMeta):
            return NotImplemented
        return (self.__args__ == other.__args__ and
                self.__result__ == other.__result__)

    def __hash__(self):
        return hash(self.__args__) ^ hash(self.__result__)

    def __instancecheck__(self, instance):
        if not callable(instance):
            return False
        if self.__args__ is None and self.__result__ is None:
            return True
        assert self.__args__ is not None
        assert self.__result__ is not None
        my_args, my_result = self.__args__, self.__result__
        import inspect  # TODO: Avoid this import.
        # Would it be better to use Signature objects?
        try:
            (args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults,
             annotations) = inspect.getfullargspec(instance)
        except TypeError:
            return False  # We can't find the signature.  Give up.
        msg = ("When testing isinstance(<callable>, Callable[...], "
               "<calleble>'s annotations must be types.")
        if my_args is not Ellipsis:
            if kwonlyargs and (not kwonlydefaults or
                               len(kwonlydefaults) < len(kwonlyargs)):
                return False
            if isinstance(instance, types.MethodType):
                # For methods, getfullargspec() includes self/cls,
                # but it's not part of the call signature, so drop it.
                del args[0]
            min_call_args = len(args)
            if defaults:
                min_call_args -= len(defaults)
            if varargs:
                max_call_args = 999999999
                if len(args) < len(my_args):
                    args += [varargs] * (len(my_args) - len(args))
            else:
                max_call_args = len(args)
            if not min_call_args <= len(my_args) <= max_call_args:
                return False
            for my_arg_type, name in zip(my_args, args):
                if name in annotations:
                    annot_type = _type_check(annotations[name], msg)
                else:
                    annot_type = Any
                if not issubclass(my_arg_type, annot_type):
                    return False
                # TODO: If mutable type, check invariance?
        if 'return' in annotations:
            annot_return_type = _type_check(annotations['return'], msg)
            # Note contravariance here!
            if not issubclass(annot_return_type, my_result):
                return False
        # Can't find anything wrong...
        return True

    def __subclasscheck__(self, cls):
        if cls is Any:
            return True
        if not isinstance(cls, CallableMeta):
            return super().__subclasscheck__(cls)
        if self.__args__ is None and self.__result__ is None:
            return True
        # We're not doing covariance or contravariance -- this is *invariance*.
        return self == cls


class Callable(Final, metaclass=CallableMeta, _root=True):
    """Callable type; Callable[[int], str] is a function of (int) -> str.

    The subscription syntax must always be used with exactly two
    values: the argument list and the return type.  The argument list
    must be a list of types; the return type must be a single type.

    There is no syntax to indicate optional or keyword arguments,
    such function types are rarely used as callback types.
    """


def _gorg(a):
    """Return the farthest origin of a generic class."""
    assert isinstance(a, GenericMeta)
    while a.__origin__ is not None:
        a = a.__origin__
    return a


def _geqv(a, b):
    """Return whether two generic classes are equivalent.

    The intention is to consider generic class X and any of its
    parameterized forms (X[T], X[int], etc.)  as equivalent.

    However, X is not equivalent to a subclass of X.

    The relation is reflexive, symmetric and transitive.
    """
    assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta)
    # Reduce each to its origin.
    return _gorg(a) is _gorg(b)


class GenericMeta(TypingMeta, abc.ABCMeta):
    """Metaclass for generic types."""

    # TODO: Constrain more how Generic is used; only a few
    # standard patterns should be allowed.

    # TODO: Use a more precise rule than matching __name__ to decide
    # whether two classes are the same.  Also, save the formal
    # parameters.  (These things are related!  A solution lies in
    # using origin.)

    __extra__ = None

    def __new__(cls, name, bases, namespace,
                parameters=None, origin=None, extra=None):
        if parameters is None:
            # Extract parameters from direct base classes.  Only
            # direct bases are considered and only those that are
            # themselves generic, and parameterized with type
            # variables.  Don't use bases like Any, Union, Tuple,
            # Callable or type variables.
            params = None
            for base in bases:
                if isinstance(base, TypingMeta):
                    if not isinstance(base, GenericMeta):
                        raise TypeError(
                            "You cannot inherit from magic class %s" %
                            repr(base))
                    if base.__parameters__ is None:
                        continue  # The base is unparameterized.
                    for bp in base.__parameters__:
                        if _has_type_var(bp) and not isinstance(bp, TypeVar):
                            raise TypeError(
                                "Cannot inherit from a generic class "
                                "parameterized with "
                                "non-type-variable %s" % bp)
                        if params is None:
                            params = []
                        if bp not in params:
                            params.append(bp)
            if params is not None:
                parameters = tuple(params)
        self = super().__new__(cls, name, bases, namespace, _root=True)
        self.__parameters__ = parameters
        if extra is not None:
            self.__extra__ = extra
        # Else __extra__ is inherited, eventually from the
        # (meta-)class default above.
        self.__origin__ = origin
        return self

    def _has_type_var(self):
        if self.__parameters__:
            for t in self.__parameters__:
                if _has_type_var(t):
                    return True
        return False

    def __repr__(self):
        r = super().__repr__()
        if self.__parameters__ is not None:
            r += '[%s]' % (
                ', '.join(_type_repr(p) for p in self.__parameters__))
        return r

    def __eq__(self, other):
        if not isinstance(other, GenericMeta):
            return NotImplemented
        return (_geqv(self, other) and
                self.__parameters__ == other.__parameters__)

    def __hash__(self):
        return hash((self.__name__, self.__parameters__))

    def __getitem__(self, params):
        if not isinstance(params, tuple):
            params = (params,)
        if not params:
            raise TypeError("Cannot have empty parameter list")
        msg = "Parameters to generic types must be types."
        params = tuple(_type_check(p, msg) for p in params)
        if self.__parameters__ is None:
            for p in params:
                if not isinstance(p, TypeVar):
                    raise TypeError("Initial parameters must be "
                                    "type variables; got %s" % p)
        else:
            if len(params) != len(self.__parameters__):
                raise TypeError("Cannot change parameter count from %d to %d" %
                                (len(self.__parameters__), len(params)))
            for new, old in zip(params, self.__parameters__):
                if isinstance(old, TypeVar):
                    if not old.__constraints__:
                        # Substituting for an unconstrained TypeVar is OK.
                        continue
                    if issubclass(new, Union[old.__constraints__]):
                        # Specializing a constrained type variable is OK.
                        continue
                if not issubclass(new, old):
                    raise TypeError(
                        "Cannot substitute %s for %s in %s" %
                        (_type_repr(new), _type_repr(old), self))

        return self.__class__(self.__name__, self.__bases__,
                              dict(self.__dict__),
                              parameters=params,
                              origin=self,
                              extra=self.__extra__)

    def __subclasscheck__(self, cls):
        if cls is Any:
            return True
        if isinstance(cls, GenericMeta):
            # For a class C(Generic[T]) where T is co-variant,
            # C[X] is a subclass of C[Y] iff X is a subclass of Y.
            origin = self.__origin__
            if origin is not None and origin is cls.__origin__:
                assert len(self.__parameters__) == len(origin.__parameters__)
                assert len(cls.__parameters__) == len(origin.__parameters__)
                for p_self, p_cls, p_origin in zip(self.__parameters__,
                                                   cls.__parameters__,
                                                   origin.__parameters__):
                    if isinstance(p_origin, TypeVar):
                        if p_origin.__covariant__:
                            # Covariant -- p_cls must be a subclass of p_self.
                            if not issubclass(p_cls, p_self):
                                break
                        elif p_origin.__contravariant__:
                            # Contravariant.  I think it's the opposite. :-)
                            if not issubclass(p_self, p_cls):
                                break
                        else:
                            # Invariant -- p_cls and p_self must equal.
                            if p_self != p_cls:
                                break
                    else:
                        # If the origin's parameter is not a typevar,
                        # insist on invariance.
                        if p_self != p_cls:
                            break
                else:
                    return True
                # If we break out of the loop, the superclass gets a chance.
        if super().__subclasscheck__(cls):
            return True
        if self.__extra__ is None or isinstance(cls, GenericMeta):
            return False
        return issubclass(cls, self.__extra__)

    def __instancecheck__(self, obj):
        if super().__instancecheck__(obj):
            return True
        if self.__extra__ is None:
            return False
        return isinstance(obj, self.__extra__)


class Generic(metaclass=GenericMeta):
    """Abstract base class for generic types.

    A generic type is typically declared by inheriting from an
    instantiation of this class with one or more type variables.
    For example, a generic mapping type might be defined as::

      class Mapping(Generic[KT, VT]):
          def __getitem__(self, key: KT) -> VT:
              ...
          # Etc.

    This class can then be used as follows::

      def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT:
          try:
              return mapping[key]
          except KeyError:
              return default

    For clarity the type variables may be redefined, e.g.::

      X = TypeVar('X')
      Y = TypeVar('Y')
      def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
          # Same body as above.
    """

    def __new__(cls, *args, **kwds):
        next_in_mro = object
        # Look for the last occurrence of Generic or Generic[...].
        for i, c in enumerate(cls.__mro__[:-1]):
            if isinstance(c, GenericMeta) and _gorg(c) is Generic:
                next_in_mro = cls.__mro__[i+1]
        return next_in_mro.__new__(_gorg(cls))


def cast(typ, val):
    """Cast a value to a type.

    This returns the value unchanged.  To the type checker this
    signals that the return value has the designated type, but at
    runtime we intentionally don't check anything (we want this
    to be as fast as possible).
    """
    return val


def _get_defaults(func):
    """Internal helper to extract the default arguments, by name."""
    code = func.__code__
    pos_count = code.co_argcount
    kw_count = code.co_kwonlyargcount
    arg_names = code.co_varnames
    kwarg_names = arg_names[pos_count:pos_count + kw_count]
    arg_names = arg_names[:pos_count]
    defaults = func.__defaults__ or ()
    kwdefaults = func.__kwdefaults__
    res = dict(kwdefaults) if kwdefaults else {}
    pos_offset = pos_count - len(defaults)
    for name, value in zip(arg_names[pos_offset:], defaults):
        assert name not in res
        res[name] = value
    return res


def get_type_hints(obj, globalns=None, localns=None):
    """Return type hints for a function or method object.

    This is often the same as obj.__annotations__, but it handles
    forward references encoded as string literals, and if necessary
    adds Optional[t] if a default value equal to None is set.

    BEWARE -- the behavior of globalns and localns is counterintuitive
    (unless you are familiar with how eval() and exec() work).  The
    search order is locals first, then globals.

    - If no dict arguments are passed, an attempt is made to use the
      globals from obj, and these are also used as the locals.  If the
      object does not appear to have globals, an exception is raised.

    - If one dict argument is passed, it is used for both globals and
      locals.

    - If two dict arguments are passed, they specify globals and
      locals, respectively.
    """
    if getattr(obj, '__no_type_check__', None):
        return {}
    if globalns is None:
        globalns = getattr(obj, '__globals__', {})
        if localns is None:
            localns = globalns
    elif localns is None:
        localns = globalns
    defaults = _get_defaults(obj)
    hints = dict(obj.__annotations__)
    for name, value in hints.items():
        if isinstance(value, str):
            value = _ForwardRef(value)
        value = _eval_type(value, globalns, localns)
        if name in defaults and defaults[name] is None:
            value = Optional[value]
        hints[name] = value
    return hints


# TODO: Also support this as a class decorator.
def no_type_check(arg):
    """Decorator to indicate that annotations are not type hints.

    The argument must be a class or function; if it is a class, it
    applies recursively to all methods defined in that class (but not
    to methods defined in its superclasses or subclasses).

    This mutates the function(s) in place.
    """
    if isinstance(arg, type):
        for obj in arg.__dict__.values():
            if isinstance(obj, types.FunctionType):
                obj.__no_type_check__ = True
    else:
        arg.__no_type_check__ = True
    return arg


def no_type_check_decorator(decorator):
    """Decorator to give another decorator the @no_type_check effect.

    This wraps the decorator with something that wraps the decorated
    function in @no_type_check.
    """

    @functools.wraps(decorator)
    def wrapped_decorator(*args, **kwds):
        func = decorator(*args, **kwds)
        func = no_type_check(func)
        return func

    return wrapped_decorator


def overload(func):
    raise RuntimeError("Overloading is only supported in library stubs")


class _ProtocolMeta(GenericMeta):
    """Internal metaclass for _Protocol.

    This exists so _Protocol classes can be generic without deriving
    from Generic.
    """

    def __subclasscheck__(self, cls):
        if not self._is_protocol:
            # No structural checks since this isn't a protocol.
            return NotImplemented

        if self is _Protocol:
            # Every class is a subclass of the empty protocol.
            return True

        # Find all attributes defined in the protocol.
        attrs = self._get_protocol_attrs()

        for attr in attrs:
            if not any(attr in d.__dict__ for d in cls.__mro__):
                return False
        return True

    def _get_protocol_attrs(self):
        # Get all Protocol base classes.
        protocol_bases = []
        for c in self.__mro__:
            if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
                protocol_bases.append(c)

        # Get attributes included in protocol.
        attrs = set()
        for base in protocol_bases:
            for attr in base.__dict__.keys():
                # Include attributes not defined in any non-protocol bases.
                for c in self.__mro__:
                    if (c is not base and attr in c.__dict__ and
                            not getattr(c, '_is_protocol', False)):
                        break
                else:
                    if (not attr.startswith('_abc_') and
                        attr != '__abstractmethods__' and
                        attr != '_is_protocol' and
                        attr != '__dict__' and
                        attr != '_get_protocol_attrs' and
                        attr != '__parameters__' and
                        attr != '__origin__' and
                        attr != '__module__'):
                        attrs.add(attr)

        return attrs


class _Protocol(metaclass=_ProtocolMeta):
    """Internal base class for protocol classes.

    This implements a simple-minded structural isinstance check
    (similar but more general than the one-offs in collections.abc
    such as Hashable).
    """

    _is_protocol = True


# Various ABCs mimicking those in collections.abc.
# A few are simply re-exported for completeness.

Hashable = collections_abc.Hashable  # Not generic.


class Iterable(Generic[T_co], extra=collections_abc.Iterable):
    pass


class Iterator(Iterable[T_co], extra=collections_abc.Iterator):
    pass


class SupportsInt(_Protocol):

    @abstractmethod
    def __int__(self) -> int:
        pass


class SupportsFloat(_Protocol):

    @abstractmethod
    def __float__(self) -> float:
        pass


class SupportsComplex(_Protocol):

    @abstractmethod
    def __complex__(self) -> complex:
        pass


class SupportsBytes(_Protocol):

    @abstractmethod
    def __bytes__(self) -> bytes:
        pass


class SupportsAbs(_Protocol[T]):

    @abstractmethod
    def __abs__(self) -> T:
        pass


class SupportsRound(_Protocol[T]):

    @abstractmethod
    def __round__(self, ndigits: int = 0) -> T:
        pass


class Reversible(_Protocol[T]):

    @abstractmethod
    def __reversed__(self) -> 'Iterator[T]':
        pass


Sized = collections_abc.Sized  # Not generic.


class Container(Generic[T_co], extra=collections_abc.Container):
    pass


# Callable was defined earlier.


class AbstractSet(Sized, Iterable[T_co], Container[T_co],
                  extra=collections_abc.Set):
    pass


class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet):
    pass


class Mapping(Sized, Iterable[KT_co], Container[KT_co], Generic[KT_co, VT_co],
              extra=collections_abc.Mapping):
    pass


class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping):
    pass


class Sequence(Sized, Iterable[T_co], Container[T_co],
               extra=collections_abc.Sequence):
    pass


class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence):
    pass


class ByteString(Sequence[int], extra=collections_abc.ByteString):
    pass


ByteString.register(type(memoryview(b'')))


class _ListMeta(GenericMeta):

    def __instancecheck__(self, obj):
        if not super().__instancecheck__(obj):
            return False
        itemtype = self.__parameters__[0]
        for x in obj:
            if not isinstance(x, itemtype):
                return False
        return True


class List(list, MutableSequence[T], metaclass=_ListMeta):

    def __new__(cls, *args, **kwds):
        if _geqv(cls, List):
            raise TypeError("Type List cannot be instantiated; "
                            "use list() instead")
        return list.__new__(cls, *args, **kwds)


class _SetMeta(GenericMeta):

    def __instancecheck__(self, obj):
        if not super().__instancecheck__(obj):
            return False
        itemtype = self.__parameters__[0]
        for x in obj:
            if not isinstance(x, itemtype):
                return False
        return True


class Set(set, MutableSet[T], metaclass=_SetMeta):

    def __new__(cls, *args, **kwds):
        if _geqv(cls, Set):
            raise TypeError("Type Set cannot be instantiated; "
                            "use set() instead")
        return set.__new__(cls, *args, **kwds)


class _FrozenSetMeta(_SetMeta):
    """This metaclass ensures set is not a subclass of FrozenSet.

    Without this metaclass, set would be considered a subclass of
    FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and
    set is a subclass of that.
    """

    def __subclasscheck__(self, cls):
        if issubclass(cls, Set):
            return False
        return super().__subclasscheck__(cls)

    def __instancecheck__(self, obj):
        if issubclass(obj.__class__, Set):
            return False
        return super().__instancecheck__(obj)


class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta):

    def __new__(cls, *args, **kwds):
        if _geqv(cls, FrozenSet):
            raise TypeError("Type FrozenSet cannot be instantiated; "
                            "use frozenset() instead")
        return frozenset.__new__(cls, *args, **kwds)


class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView):
    pass


class KeysView(MappingView[KT_co], AbstractSet[KT_co],
               extra=collections_abc.KeysView):
    pass


# TODO: Enable Set[Tuple[KT_co, VT_co]] instead of Generic[KT_co, VT_co].
class ItemsView(MappingView, Generic[KT_co, VT_co],
                extra=collections_abc.ItemsView):
    pass


class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView):
    pass


class _DictMeta(GenericMeta):

    def __instancecheck__(self, obj):
        if not super().__instancecheck__(obj):
            return False
        keytype, valuetype = self.__parameters__
        for key, value in obj.items():
            if not (isinstance(key, keytype) and
                    isinstance(value, valuetype)):
                return False
        return True


class Dict(dict, MutableMapping[KT, VT], metaclass=_DictMeta):

    def __new__(cls, *args, **kwds):
        if _geqv(cls, Dict):
            raise TypeError("Type Dict cannot be instantiated; "
                            "use dict() instead")
        return dict.__new__(cls, *args, **kwds)


# Determine what base class to use for Generator.
if hasattr(collections_abc, 'Generator'):
    # Sufficiently recent versions of 3.5 have a Generator ABC.
    _G_base = collections_abc.Generator
else:
    # Fall back on the exact type.
    _G_base = types.GeneratorType


class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co],
                extra=_G_base):

    def __new__(cls, *args, **kwds):
        if _geqv(cls, Generator):
            raise TypeError("Type Generator cannot be instantiated; "
                            "create a subclass instead")
        return super().__new__(cls, *args, **kwds)


def NamedTuple(typename, fields):
    """Typed version of namedtuple.

    Usage::

        Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)])

    This is equivalent to::

        Employee = collections.namedtuple('Employee', ['name', 'id'])

    The resulting class has one extra attribute: _field_types,
    giving a dict mapping field names to types.  (The field names
    are in the _fields attribute, which is part of the namedtuple
    API.)
    """
    fields = [(n, t) for n, t in fields]
    cls = collections.namedtuple(typename, [n for n, t in fields])
    cls._field_types = dict(fields)
    return cls


class IO(Generic[AnyStr]):
    """Generic base class for TextIO and BinaryIO.

    This is an abstract, generic version of the return of open().

    NOTE: This does not distinguish between the different possible
    classes (text vs. binary, read vs. write vs. read/write,
    append-only, unbuffered).  The TextIO and BinaryIO subclasses
    below capture the distinctions between text vs. binary, which is
    pervasive in the interface; however we currently do not offer a
    way to track the other distinctions in the type system.
    """

    @abstractproperty
    def mode(self) -> str:
        pass

    @abstractproperty
    def name(self) -> str:
        pass

    @abstractmethod
    def close(self) -> None:
        pass

    @abstractmethod
    def closed(self) -> bool:
        pass

    @abstractmethod
    def fileno(self) -> int:
        pass

    @abstractmethod
    def flush(self) -> None:
        pass

    @abstractmethod
    def isatty(self) -> bool:
        pass

    @abstractmethod
    def read(self, n: int = -1) -> AnyStr:
        pass

    @abstractmethod
    def readable(self) -> bool:
        pass

    @abstractmethod
    def readline(self, limit: int = -1) -> AnyStr:
        pass

    @abstractmethod
    def readlines(self, hint: int = -1) -> List[AnyStr]:
        pass

    @abstractmethod
    def seek(self, offset: int, whence: int = 0) -> int:
        pass

    @abstractmethod
    def seekable(self) -> bool:
        pass

    @abstractmethod
    def tell(self) -> int:
        pass

    @abstractmethod
    def truncate(self, size: int = None) -> int:
        pass

    @abstractmethod
    def writable(self) -> bool:
        pass

    @abstractmethod
    def write(self, s: AnyStr) -> int:
        pass

    @abstractmethod
    def writelines(self, lines: List[AnyStr]) -> None:
        pass

    @abstractmethod
    def __enter__(self) -> 'IO[AnyStr]':
        pass

    @abstractmethod
    def __exit__(self, type, value, traceback) -> None:
        pass


class BinaryIO(IO[bytes]):
    """Typed version of the return of open() in binary mode."""

    @abstractmethod
    def write(self, s: Union[bytes, bytearray]) -> int:
        pass

    @abstractmethod
    def __enter__(self) -> 'BinaryIO':
        pass


class TextIO(IO[str]):
    """Typed version of the return of open() in text mode."""

    @abstractproperty
    def buffer(self) -> BinaryIO:
        pass

    @abstractproperty
    def encoding(self) -> str:
        pass

    @abstractproperty
    def errors(self) -> str:
        pass

    @abstractproperty
    def line_buffering(self) -> bool:
        pass

    @abstractproperty
    def newlines(self) -> Any:
        pass

    @abstractmethod
    def __enter__(self) -> 'TextIO':
        pass


class io:
    """Wrapper namespace for IO generic classes."""

    __all__ = ['IO', 'TextIO', 'BinaryIO']
    IO = IO
    TextIO = TextIO
    BinaryIO = BinaryIO

io.__name__ = __name__ + '.io'
sys.modules[io.__name__] = io


Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
                     lambda p: p.pattern)
Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
                   lambda m: m.re.pattern)


class re:
    """Wrapper namespace for re type aliases."""

    __all__ = ['Pattern', 'Match']
    Pattern = Pattern
    Match = Match

re.__name__ = __name__ + '.re'
sys.modules[re.__name__] = re