summaryrefslogtreecommitdiff
path: root/Modules/_ctypes/libffi/doc/libffi.info
blob: 3990939473b5b22fe93992bc0fb91b1bcf80816c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
This is libffi.info, produced by makeinfo version 5.1 from libffi.texi.

This manual is for Libffi, a portable foreign-function interface
library.

   Copyright (C) 2008, 2010, 2011 Red Hat, Inc.

     Permission is granted to copy, distribute and/or modify this
     document under the terms of the GNU General Public License as
     published by the Free Software Foundation; either version 2, or (at
     your option) any later version.  A copy of the license is included
     in the section entitled "GNU General Public License".

INFO-DIR-SECTION Development
START-INFO-DIR-ENTRY
* libffi: (libffi).             Portable foreign-function interface library.
END-INFO-DIR-ENTRY


File: libffi.info,  Node: Top,  Next: Introduction,  Up: (dir)

libffi
******

This manual is for Libffi, a portable foreign-function interface
library.

   Copyright (C) 2008, 2010, 2011 Red Hat, Inc.

     Permission is granted to copy, distribute and/or modify this
     document under the terms of the GNU General Public License as
     published by the Free Software Foundation; either version 2, or (at
     your option) any later version.  A copy of the license is included
     in the section entitled "GNU General Public License".

* Menu:

* Introduction::                What is libffi?
* Using libffi::                How to use libffi.
* Missing Features::            Things libffi can't do.
* Index::                       Index.


File: libffi.info,  Node: Introduction,  Next: Using libffi,  Prev: Top,  Up: Top

1 What is libffi?
*****************

Compilers for high level languages generate code that follow certain
conventions.  These conventions are necessary, in part, for separate
compilation to work.  One such convention is the "calling convention".
The calling convention is a set of assumptions made by the compiler
about where function arguments will be found on entry to a function.  A
calling convention also specifies where the return value for a function
is found.  The calling convention is also sometimes called the "ABI" or
"Application Binary Interface".

   Some programs may not know at the time of compilation what arguments
are to be passed to a function.  For instance, an interpreter may be
told at run-time about the number and types of arguments used to call a
given function.  'Libffi' can be used in such programs to provide a
bridge from the interpreter program to compiled code.

   The 'libffi' library provides a portable, high level programming
interface to various calling conventions.  This allows a programmer to
call any function specified by a call interface description at run time.

   FFI stands for Foreign Function Interface.  A foreign function
interface is the popular name for the interface that allows code written
in one language to call code written in another language.  The 'libffi'
library really only provides the lowest, machine dependent layer of a
fully featured foreign function interface.  A layer must exist above
'libffi' that handles type conversions for values passed between the two
languages.


File: libffi.info,  Node: Using libffi,  Next: Missing Features,  Prev: Introduction,  Up: Top

2 Using libffi
**************

* Menu:

* The Basics::                  The basic libffi API.
* Simple Example::              A simple example.
* Types::                       libffi type descriptions.
* Multiple ABIs::               Different passing styles on one platform.
* The Closure API::             Writing a generic function.
* Closure Example::             A closure example.


File: libffi.info,  Node: The Basics,  Next: Simple Example,  Up: Using libffi

2.1 The Basics
==============

'Libffi' assumes that you have a pointer to the function you wish to
call and that you know the number and types of arguments to pass it, as
well as the return type of the function.

   The first thing you must do is create an 'ffi_cif' object that
matches the signature of the function you wish to call.  This is a
separate step because it is common to make multiple calls using a single
'ffi_cif'.  The "cif" in 'ffi_cif' stands for Call InterFace.  To
prepare a call interface object, use the function 'ffi_prep_cif'.

 -- Function: ffi_status ffi_prep_cif (ffi_cif *CIF, ffi_abi ABI,
          unsigned int NARGS, ffi_type *RTYPE, ffi_type **ARGTYPES)
     This initializes CIF according to the given parameters.

     ABI is the ABI to use; normally 'FFI_DEFAULT_ABI' is what you want.
     *note Multiple ABIs:: for more information.

     NARGS is the number of arguments that this function accepts.

     RTYPE is a pointer to an 'ffi_type' structure that describes the
     return type of the function.  *Note Types::.

     ARGTYPES is a vector of 'ffi_type' pointers.  ARGTYPES must have
     NARGS elements.  If NARGS is 0, this argument is ignored.

     'ffi_prep_cif' returns a 'libffi' status code, of type
     'ffi_status'.  This will be either 'FFI_OK' if everything worked
     properly; 'FFI_BAD_TYPEDEF' if one of the 'ffi_type' objects is
     incorrect; or 'FFI_BAD_ABI' if the ABI parameter is invalid.

   If the function being called is variadic (varargs) then
'ffi_prep_cif_var' must be used instead of 'ffi_prep_cif'.

 -- Function: ffi_status ffi_prep_cif_var (ffi_cif *CIF, ffi_abi varabi,
          unsigned int NFIXEDARGS, unsigned int varntotalargs, ffi_type
          *RTYPE, ffi_type **ARGTYPES)
     This initializes CIF according to the given parameters for a call
     to a variadic function.  In general it's operation is the same as
     for 'ffi_prep_cif' except that:

     NFIXEDARGS is the number of fixed arguments, prior to any variadic
     arguments.  It must be greater than zero.

     NTOTALARGS the total number of arguments, including variadic and
     fixed arguments.

     Note that, different cif's must be prepped for calls to the same
     function when different numbers of arguments are passed.

     Also note that a call to 'ffi_prep_cif_var' with
     NFIXEDARGS=NOTOTALARGS is NOT equivalent to a call to
     'ffi_prep_cif'.

   To call a function using an initialized 'ffi_cif', use the 'ffi_call'
function:

 -- Function: void ffi_call (ffi_cif *CIF, void *FN, void *RVALUE, void
          **AVALUES)
     This calls the function FN according to the description given in
     CIF.  CIF must have already been prepared using 'ffi_prep_cif'.

     RVALUE is a pointer to a chunk of memory that will hold the result
     of the function call.  This must be large enough to hold the
     result, no smaller than the system register size (generally 32 or
     64 bits), and must be suitably aligned; it is the caller's
     responsibility to ensure this.  If CIF declares that the function
     returns 'void' (using 'ffi_type_void'), then RVALUE is ignored.

     AVALUES is a vector of 'void *' pointers that point to the memory
     locations holding the argument values for a call.  If CIF declares
     that the function has no arguments (i.e., NARGS was 0), then
     AVALUES is ignored.  Note that argument values may be modified by
     the callee (for instance, structs passed by value); the burden of
     copying pass-by-value arguments is placed on the caller.


File: libffi.info,  Node: Simple Example,  Next: Types,  Prev: The Basics,  Up: Using libffi

2.2 Simple Example
==================

Here is a trivial example that calls 'puts' a few times.

     #include <stdio.h>
     #include <ffi.h>

     int main()
     {
       ffi_cif cif;
       ffi_type *args[1];
       void *values[1];
       char *s;
       ffi_arg rc;

       /* Initialize the argument info vectors */
       args[0] = &ffi_type_pointer;
       values[0] = &s;

       /* Initialize the cif */
       if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
     		       &ffi_type_sint, args) == FFI_OK)
         {
           s = "Hello World!";
           ffi_call(&cif, puts, &rc, values);
           /* rc now holds the result of the call to puts */

           /* values holds a pointer to the function's arg, so to
              call puts() again all we need to do is change the
              value of s */
           s = "This is cool!";
           ffi_call(&cif, puts, &rc, values);
         }

       return 0;
     }


File: libffi.info,  Node: Types,  Next: Multiple ABIs,  Prev: Simple Example,  Up: Using libffi

2.3 Types
=========

* Menu:

* Primitive Types::             Built-in types.
* Structures::                  Structure types.
* Type Example::                Structure type example.


File: libffi.info,  Node: Primitive Types,  Next: Structures,  Up: Types

2.3.1 Primitive Types
---------------------

'Libffi' provides a number of built-in type descriptors that can be used
to describe argument and return types:

'ffi_type_void'
     The type 'void'.  This cannot be used for argument types, only for
     return values.

'ffi_type_uint8'
     An unsigned, 8-bit integer type.

'ffi_type_sint8'
     A signed, 8-bit integer type.

'ffi_type_uint16'
     An unsigned, 16-bit integer type.

'ffi_type_sint16'
     A signed, 16-bit integer type.

'ffi_type_uint32'
     An unsigned, 32-bit integer type.

'ffi_type_sint32'
     A signed, 32-bit integer type.

'ffi_type_uint64'
     An unsigned, 64-bit integer type.

'ffi_type_sint64'
     A signed, 64-bit integer type.

'ffi_type_float'
     The C 'float' type.

'ffi_type_double'
     The C 'double' type.

'ffi_type_uchar'
     The C 'unsigned char' type.

'ffi_type_schar'
     The C 'signed char' type.  (Note that there is not an exact
     equivalent to the C 'char' type in 'libffi'; ordinarily you should
     either use 'ffi_type_schar' or 'ffi_type_uchar' depending on
     whether 'char' is signed.)

'ffi_type_ushort'
     The C 'unsigned short' type.

'ffi_type_sshort'
     The C 'short' type.

'ffi_type_uint'
     The C 'unsigned int' type.

'ffi_type_sint'
     The C 'int' type.

'ffi_type_ulong'
     The C 'unsigned long' type.

'ffi_type_slong'
     The C 'long' type.

'ffi_type_longdouble'
     On platforms that have a C 'long double' type, this is defined.  On
     other platforms, it is not.

'ffi_type_pointer'
     A generic 'void *' pointer.  You should use this for all pointers,
     regardless of their real type.

   Each of these is of type 'ffi_type', so you must take the address
when passing to 'ffi_prep_cif'.


File: libffi.info,  Node: Structures,  Next: Type Example,  Prev: Primitive Types,  Up: Types

2.3.2 Structures
----------------

Although 'libffi' has no special support for unions or bit-fields, it is
perfectly happy passing structures back and forth.  You must first
describe the structure to 'libffi' by creating a new 'ffi_type' object
for it.

 -- Data type: ffi_type
     The 'ffi_type' has the following members:
     'size_t size'
          This is set by 'libffi'; you should initialize it to zero.

     'unsigned short alignment'
          This is set by 'libffi'; you should initialize it to zero.

     'unsigned short type'
          For a structure, this should be set to 'FFI_TYPE_STRUCT'.

     'ffi_type **elements'
          This is a 'NULL'-terminated array of pointers to 'ffi_type'
          objects.  There is one element per field of the struct.


File: libffi.info,  Node: Type Example,  Prev: Structures,  Up: Types

2.3.3 Type Example
------------------

The following example initializes a 'ffi_type' object representing the
'tm' struct from Linux's 'time.h'.

   Here is how the struct is defined:

     struct tm {
         int tm_sec;
         int tm_min;
         int tm_hour;
         int tm_mday;
         int tm_mon;
         int tm_year;
         int tm_wday;
         int tm_yday;
         int tm_isdst;
         /* Those are for future use. */
         long int __tm_gmtoff__;
         __const char *__tm_zone__;
     };

   Here is the corresponding code to describe this struct to 'libffi':

         {
           ffi_type tm_type;
           ffi_type *tm_type_elements[12];
           int i;

           tm_type.size = tm_type.alignment = 0;
           tm_type.type = FFI_TYPE_STRUCT;
           tm_type.elements = &tm_type_elements;

           for (i = 0; i < 9; i++)
               tm_type_elements[i] = &ffi_type_sint;

           tm_type_elements[9] = &ffi_type_slong;
           tm_type_elements[10] = &ffi_type_pointer;
           tm_type_elements[11] = NULL;

           /* tm_type can now be used to represent tm argument types and
     	 return types for ffi_prep_cif() */
         }


File: libffi.info,  Node: Multiple ABIs,  Next: The Closure API,  Prev: Types,  Up: Using libffi

2.4 Multiple ABIs
=================

A given platform may provide multiple different ABIs at once.  For
instance, the x86 platform has both 'stdcall' and 'fastcall' functions.

   'libffi' provides some support for this.  However, this is
necessarily platform-specific.


File: libffi.info,  Node: The Closure API,  Next: Closure Example,  Prev: Multiple ABIs,  Up: Using libffi

2.5 The Closure API
===================

'libffi' also provides a way to write a generic function - a function
that can accept and decode any combination of arguments.  This can be
useful when writing an interpreter, or to provide wrappers for arbitrary
functions.

   This facility is called the "closure API". Closures are not supported
on all platforms; you can check the 'FFI_CLOSURES' define to determine
whether they are supported on the current platform.

   Because closures work by assembling a tiny function at runtime, they
require special allocation on platforms that have a non-executable heap.
Memory management for closures is handled by a pair of functions:

 -- Function: void *ffi_closure_alloc (size_t SIZE, void **CODE)
     Allocate a chunk of memory holding SIZE bytes.  This returns a
     pointer to the writable address, and sets *CODE to the
     corresponding executable address.

     SIZE should be sufficient to hold a 'ffi_closure' object.

 -- Function: void ffi_closure_free (void *WRITABLE)
     Free memory allocated using 'ffi_closure_alloc'.  The argument is
     the writable address that was returned.

   Once you have allocated the memory for a closure, you must construct
a 'ffi_cif' describing the function call.  Finally you can prepare the
closure function:

 -- Function: ffi_status ffi_prep_closure_loc (ffi_closure *CLOSURE,
          ffi_cif *CIF, void (*FUN) (ffi_cif *CIF, void *RET, void
          **ARGS, void *USER_DATA), void *USER_DATA, void *CODELOC)
     Prepare a closure function.

     CLOSURE is the address of a 'ffi_closure' object; this is the
     writable address returned by 'ffi_closure_alloc'.

     CIF is the 'ffi_cif' describing the function parameters.

     USER_DATA is an arbitrary datum that is passed, uninterpreted, to
     your closure function.

     CODELOC is the executable address returned by 'ffi_closure_alloc'.

     FUN is the function which will be called when the closure is
     invoked.  It is called with the arguments:
     CIF
          The 'ffi_cif' passed to 'ffi_prep_closure_loc'.

     RET
          A pointer to the memory used for the function's return value.
          FUN must fill this, unless the function is declared as
          returning 'void'.

     ARGS
          A vector of pointers to memory holding the arguments to the
          function.

     USER_DATA
          The same USER_DATA that was passed to 'ffi_prep_closure_loc'.

     'ffi_prep_closure_loc' will return 'FFI_OK' if everything went ok,
     and something else on error.

     After calling 'ffi_prep_closure_loc', you can cast CODELOC to the
     appropriate pointer-to-function type.

   You may see old code referring to 'ffi_prep_closure'.  This function
is deprecated, as it cannot handle the need for separate writable and
executable addresses.


File: libffi.info,  Node: Closure Example,  Prev: The Closure API,  Up: Using libffi

2.6 Closure Example
===================

A trivial example that creates a new 'puts' by binding 'fputs' with
'stdout'.

     #include <stdio.h>
     #include <ffi.h>

     /* Acts like puts with the file given at time of enclosure. */
     void puts_binding(ffi_cif *cif, void *ret, void* args[],
                       void *stream)
     {
       *(ffi_arg *)ret = fputs(*(char **)args[0], (FILE *)stream);
     }

     typedef int (*puts_t)(char *);

     int main()
     {
       ffi_cif cif;
       ffi_type *args[1];
       ffi_closure *closure;

       void *bound_puts;
       int rc;

       /* Allocate closure and bound_puts */
       closure = ffi_closure_alloc(sizeof(ffi_closure), &bound_puts);

       if (closure)
         {
           /* Initialize the argument info vectors */
           args[0] = &ffi_type_pointer;

           /* Initialize the cif */
           if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
                            &ffi_type_sint, args) == FFI_OK)
             {
               /* Initialize the closure, setting stream to stdout */
               if (ffi_prep_closure_loc(closure, &cif, puts_binding,
                                        stdout, bound_puts) == FFI_OK)
                 {
                   rc = ((puts_t)bound_puts)("Hello World!");
                   /* rc now holds the result of the call to fputs */
                 }
             }
         }

       /* Deallocate both closure, and bound_puts */
       ffi_closure_free(closure);

       return 0;
     }


File: libffi.info,  Node: Missing Features,  Next: Index,  Prev: Using libffi,  Up: Top

3 Missing Features
******************

'libffi' is missing a few features.  We welcome patches to add support
for these.

   * Variadic closures.

   * There is no support for bit fields in structures.

   * The closure API is

   * The "raw" API is undocumented.

   Note that variadic support is very new and tested on a relatively
small number of platforms.


File: libffi.info,  Node: Index,  Prev: Missing Features,  Up: Top

Index
*****