summaryrefslogtreecommitdiff
path: root/Modules/_decimal/tests/deccheck.py
blob: ab7d5bdf4effbf1f84e625c74b3f0e66db6e15bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
#
# Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#

#
# Usage: python deccheck.py [--short|--medium|--long|--all]
#

import sys, random
from copy import copy
from collections import defaultdict
from test.support import import_fresh_module
from randdec import randfloat, all_unary, all_binary, all_ternary
from randdec import unary_optarg, binary_optarg, ternary_optarg
from formathelper import rand_format, rand_locale
from _pydecimal import _dec_from_triple

C = import_fresh_module('decimal', fresh=['_decimal'])
P = import_fresh_module('decimal', blocked=['_decimal'])
EXIT_STATUS = 0


# Contains all categories of Decimal methods.
Functions = {
    # Plain unary:
    'unary': (
        '__abs__', '__bool__', '__ceil__', '__complex__', '__copy__',
        '__floor__', '__float__', '__hash__', '__int__', '__neg__',
        '__pos__', '__reduce__', '__repr__', '__str__', '__trunc__',
        'adjusted', 'as_tuple', 'canonical', 'conjugate', 'copy_abs',
        'copy_negate', 'is_canonical', 'is_finite', 'is_infinite',
        'is_nan', 'is_qnan', 'is_signed', 'is_snan', 'is_zero', 'radix'
    ),
    # Unary with optional context:
    'unary_ctx': (
        'exp', 'is_normal', 'is_subnormal', 'ln', 'log10', 'logb',
        'logical_invert', 'next_minus', 'next_plus', 'normalize',
        'number_class', 'sqrt', 'to_eng_string'
    ),
    # Unary with optional rounding mode and context:
    'unary_rnd_ctx': ('to_integral', 'to_integral_exact', 'to_integral_value'),
    # Plain binary:
    'binary': (
        '__add__', '__divmod__', '__eq__', '__floordiv__', '__ge__', '__gt__',
        '__le__', '__lt__', '__mod__', '__mul__', '__ne__', '__pow__',
        '__radd__', '__rdivmod__', '__rfloordiv__', '__rmod__', '__rmul__',
        '__rpow__', '__rsub__', '__rtruediv__', '__sub__', '__truediv__',
        'compare_total', 'compare_total_mag', 'copy_sign', 'quantize',
        'same_quantum'
    ),
    # Binary with optional context:
    'binary_ctx': (
        'compare', 'compare_signal', 'logical_and', 'logical_or', 'logical_xor',
        'max', 'max_mag', 'min', 'min_mag', 'next_toward', 'remainder_near',
        'rotate', 'scaleb', 'shift'
    ),
    # Plain ternary:
    'ternary': ('__pow__',),
    # Ternary with optional context:
    'ternary_ctx': ('fma',),
    # Special:
    'special': ('__format__', '__reduce_ex__', '__round__', 'from_float',
                'quantize'),
    # Properties:
    'property': ('real', 'imag')
}

# Contains all categories of Context methods. The n-ary classification
# applies to the number of Decimal arguments.
ContextFunctions = {
    # Plain nullary:
    'nullary': ('context.__hash__', 'context.__reduce__', 'context.radix'),
    # Plain unary:
    'unary': ('context.abs', 'context.canonical', 'context.copy_abs',
              'context.copy_decimal', 'context.copy_negate',
              'context.create_decimal', 'context.exp', 'context.is_canonical',
              'context.is_finite', 'context.is_infinite', 'context.is_nan',
              'context.is_normal', 'context.is_qnan', 'context.is_signed',
              'context.is_snan', 'context.is_subnormal', 'context.is_zero',
              'context.ln', 'context.log10', 'context.logb',
              'context.logical_invert', 'context.minus', 'context.next_minus',
              'context.next_plus', 'context.normalize', 'context.number_class',
              'context.plus', 'context.sqrt', 'context.to_eng_string',
              'context.to_integral', 'context.to_integral_exact',
              'context.to_integral_value', 'context.to_sci_string'
    ),
    # Plain binary:
    'binary': ('context.add', 'context.compare', 'context.compare_signal',
               'context.compare_total', 'context.compare_total_mag',
               'context.copy_sign', 'context.divide', 'context.divide_int',
               'context.divmod', 'context.logical_and', 'context.logical_or',
               'context.logical_xor', 'context.max', 'context.max_mag',
               'context.min', 'context.min_mag', 'context.multiply',
               'context.next_toward', 'context.power', 'context.quantize',
               'context.remainder', 'context.remainder_near', 'context.rotate',
               'context.same_quantum', 'context.scaleb', 'context.shift',
               'context.subtract'
    ),
    # Plain ternary:
    'ternary': ('context.fma', 'context.power'),
    # Special:
    'special': ('context.__reduce_ex__', 'context.create_decimal_from_float')
}

# Functions that require a restricted exponent range for reasonable runtimes.
UnaryRestricted = [
  '__ceil__', '__floor__', '__int__', '__trunc__',
  'to_integral', 'to_integral_value'
]

BinaryRestricted = ['__round__']

TernaryRestricted = ['__pow__', 'context.power']


# ======================================================================
#                            Unified Context
# ======================================================================

# Translate symbols.
CondMap = {
        C.Clamped:             P.Clamped,
        C.ConversionSyntax:    P.ConversionSyntax,
        C.DivisionByZero:      P.DivisionByZero,
        C.DivisionImpossible:  P.InvalidOperation,
        C.DivisionUndefined:   P.DivisionUndefined,
        C.Inexact:             P.Inexact,
        C.InvalidContext:      P.InvalidContext,
        C.InvalidOperation:    P.InvalidOperation,
        C.Overflow:            P.Overflow,
        C.Rounded:             P.Rounded,
        C.Subnormal:           P.Subnormal,
        C.Underflow:           P.Underflow,
        C.FloatOperation:      P.FloatOperation,
}

RoundModes = [C.ROUND_UP, C.ROUND_DOWN, C.ROUND_CEILING, C.ROUND_FLOOR,
              C.ROUND_HALF_UP, C.ROUND_HALF_DOWN, C.ROUND_HALF_EVEN,
              C.ROUND_05UP]


class Context(object):
    """Provides a convenient way of syncing the C and P contexts"""

    __slots__ = ['c', 'p']

    def __init__(self, c_ctx=None, p_ctx=None):
        """Initialization is from the C context"""
        self.c = C.getcontext() if c_ctx is None else c_ctx
        self.p = P.getcontext() if p_ctx is None else p_ctx
        self.p.prec = self.c.prec
        self.p.Emin = self.c.Emin
        self.p.Emax = self.c.Emax
        self.p.rounding = self.c.rounding
        self.p.capitals = self.c.capitals
        self.settraps([sig for sig in self.c.traps if self.c.traps[sig]])
        self.setstatus([sig for sig in self.c.flags if self.c.flags[sig]])
        self.p.clamp = self.c.clamp

    def __str__(self):
        return str(self.c) + '\n' + str(self.p)

    def getprec(self):
        assert(self.c.prec == self.p.prec)
        return self.c.prec

    def setprec(self, val):
        self.c.prec = val
        self.p.prec = val

    def getemin(self):
        assert(self.c.Emin == self.p.Emin)
        return self.c.Emin

    def setemin(self, val):
        self.c.Emin = val
        self.p.Emin = val

    def getemax(self):
        assert(self.c.Emax == self.p.Emax)
        return self.c.Emax

    def setemax(self, val):
        self.c.Emax = val
        self.p.Emax = val

    def getround(self):
        assert(self.c.rounding == self.p.rounding)
        return self.c.rounding

    def setround(self, val):
        self.c.rounding = val
        self.p.rounding = val

    def getcapitals(self):
        assert(self.c.capitals == self.p.capitals)
        return self.c.capitals

    def setcapitals(self, val):
        self.c.capitals = val
        self.p.capitals = val

    def getclamp(self):
        assert(self.c.clamp == self.p.clamp)
        return self.c.clamp

    def setclamp(self, val):
        self.c.clamp = val
        self.p.clamp = val

    prec = property(getprec, setprec)
    Emin = property(getemin, setemin)
    Emax = property(getemax, setemax)
    rounding = property(getround, setround)
    clamp = property(getclamp, setclamp)
    capitals = property(getcapitals, setcapitals)

    def clear_traps(self):
        self.c.clear_traps()
        for trap in self.p.traps:
            self.p.traps[trap] = False

    def clear_status(self):
        self.c.clear_flags()
        self.p.clear_flags()

    def settraps(self, lst):
        """lst: C signal list"""
        self.clear_traps()
        for signal in lst:
            self.c.traps[signal] = True
            self.p.traps[CondMap[signal]] = True

    def setstatus(self, lst):
        """lst: C signal list"""
        self.clear_status()
        for signal in lst:
            self.c.flags[signal] = True
            self.p.flags[CondMap[signal]] = True

    def assert_eq_status(self):
        """assert equality of C and P status"""
        for signal in self.c.flags:
            if self.c.flags[signal] == (not self.p.flags[CondMap[signal]]):
                return False
        return True


# We don't want exceptions so that we can compare the status flags.
context = Context()
context.Emin = C.MIN_EMIN
context.Emax = C.MAX_EMAX
context.clear_traps()

# When creating decimals, _decimal is ultimately limited by the maximum
# context values. We emulate this restriction for decimal.py.
maxcontext = P.Context(
    prec=C.MAX_PREC,
    Emin=C.MIN_EMIN,
    Emax=C.MAX_EMAX,
    rounding=P.ROUND_HALF_UP,
    capitals=1
)
maxcontext.clamp = 0

def RestrictedDecimal(value):
    maxcontext.traps = copy(context.p.traps)
    maxcontext.clear_flags()
    if isinstance(value, str):
        value = value.strip()
    dec = maxcontext.create_decimal(value)
    if maxcontext.flags[P.Inexact] or \
       maxcontext.flags[P.Rounded] or \
       maxcontext.flags[P.Clamped] or \
       maxcontext.flags[P.InvalidOperation]:
        return context.p._raise_error(P.InvalidOperation)
    if maxcontext.flags[P.FloatOperation]:
        context.p.flags[P.FloatOperation] = True
    return dec


# ======================================================================
#      TestSet: Organize data and events during a single test case
# ======================================================================

class RestrictedList(list):
    """List that can only be modified by appending items."""
    def __getattribute__(self, name):
        if name != 'append':
            raise AttributeError("unsupported operation")
        return list.__getattribute__(self, name)
    def unsupported(self, *_):
        raise AttributeError("unsupported operation")
    __add__ = __delattr__ = __delitem__ = __iadd__ = __imul__ = unsupported
    __mul__ = __reversed__ = __rmul__ = __setattr__ = __setitem__ = unsupported

class TestSet(object):
    """A TestSet contains the original input operands, converted operands,
       Python exceptions that occurred either during conversion or during
       execution of the actual function, and the final results.

       For safety, most attributes are lists that only support the append
       operation.

       If a function name is prefixed with 'context.', the corresponding
       context method is called.
    """
    def __init__(self, funcname, operands):
        if funcname.startswith("context."):
            self.funcname = funcname.replace("context.", "")
            self.contextfunc = True
        else:
            self.funcname = funcname
            self.contextfunc = False
        self.op = operands               # raw operand tuple
        self.context = context           # context used for the operation
        self.cop = RestrictedList()      # converted C.Decimal operands
        self.cex = RestrictedList()      # Python exceptions for C.Decimal
        self.cresults = RestrictedList() # C.Decimal results
        self.pop = RestrictedList()      # converted P.Decimal operands
        self.pex = RestrictedList()      # Python exceptions for P.Decimal
        self.presults = RestrictedList() # P.Decimal results


# ======================================================================
#                SkipHandler: skip known discrepancies
# ======================================================================

class SkipHandler:
    """Handle known discrepancies between decimal.py and _decimal.so.
       These are either ULP differences in the power function or
       extremely minor issues."""

    def __init__(self):
        self.ulpdiff = 0
        self.powmod_zeros = 0
        self.maxctx = P.Context(Emax=10**18, Emin=-10**18)

    def default(self, t):
        return False
    __ge__ =  __gt__ = __le__ = __lt__ = __ne__ = __eq__ = default
    __reduce__ = __format__ = __repr__ = __str__ = default

    def harrison_ulp(self, dec):
        """ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5504.pdf"""
        a = dec.next_plus()
        b = dec.next_minus()
        return abs(a - b)

    def standard_ulp(self, dec, prec):
        return _dec_from_triple(0, '1', dec._exp+len(dec._int)-prec)

    def rounding_direction(self, x, mode):
        """Determine the effective direction of the rounding when
           the exact result x is rounded according to mode.
           Return -1 for downwards, 0 for undirected, 1 for upwards,
           2 for ROUND_05UP."""
        cmp = 1 if x.compare_total(P.Decimal("+0")) >= 0 else -1

        if mode in (P.ROUND_HALF_EVEN, P.ROUND_HALF_UP, P.ROUND_HALF_DOWN):
            return 0
        elif mode == P.ROUND_CEILING:
            return 1
        elif mode == P.ROUND_FLOOR:
            return -1
        elif mode == P.ROUND_UP:
            return cmp
        elif mode == P.ROUND_DOWN:
            return -cmp
        elif mode == P.ROUND_05UP:
            return 2
        else:
            raise ValueError("Unexpected rounding mode: %s" % mode)

    def check_ulpdiff(self, exact, rounded):
        # current precision
        p = context.p.prec

        # Convert infinities to the largest representable number + 1.
        x = exact
        if exact.is_infinite():
            x = _dec_from_triple(exact._sign, '10', context.p.Emax)
        y = rounded
        if rounded.is_infinite():
            y = _dec_from_triple(rounded._sign, '10', context.p.Emax)

        # err = (rounded - exact) / ulp(rounded)
        self.maxctx.prec = p * 2
        t = self.maxctx.subtract(y, x)
        if context.c.flags[C.Clamped] or \
           context.c.flags[C.Underflow]:
            # The standard ulp does not work in Underflow territory.
            ulp = self.harrison_ulp(y)
        else:
            ulp = self.standard_ulp(y, p)
        # Error in ulps.
        err = self.maxctx.divide(t, ulp)

        dir = self.rounding_direction(x, context.p.rounding)
        if dir == 0:
            if P.Decimal("-0.6") < err < P.Decimal("0.6"):
                return True
        elif dir == 1: # directed, upwards
            if P.Decimal("-0.1") < err < P.Decimal("1.1"):
                return True
        elif dir == -1: # directed, downwards
            if P.Decimal("-1.1") < err < P.Decimal("0.1"):
                return True
        else: # ROUND_05UP
            if P.Decimal("-1.1") < err < P.Decimal("1.1"):
                return True

        print("ulp: %s  error: %s  exact: %s  c_rounded: %s"
              % (ulp, err, exact, rounded))
        return False

    def bin_resolve_ulp(self, t):
        """Check if results of _decimal's power function are within the
           allowed ulp ranges."""
        # NaNs are beyond repair.
        if t.rc.is_nan() or t.rp.is_nan():
            return False

        # "exact" result, double precision, half_even
        self.maxctx.prec = context.p.prec * 2

        op1, op2 = t.pop[0], t.pop[1]
        if t.contextfunc:
            exact = getattr(self.maxctx, t.funcname)(op1, op2)
        else:
            exact = getattr(op1, t.funcname)(op2, context=self.maxctx)

        # _decimal's rounded result
        rounded = P.Decimal(t.cresults[0])

        self.ulpdiff += 1
        return self.check_ulpdiff(exact, rounded)

    ############################ Correct rounding #############################
    def resolve_underflow(self, t):
        """In extremely rare cases where the infinite precision result is just
           below etiny, cdecimal does not set Subnormal/Underflow. Example:

           setcontext(Context(prec=21, rounding=ROUND_UP, Emin=-55, Emax=85))
           Decimal("1.00000000000000000000000000000000000000000000000"
                   "0000000100000000000000000000000000000000000000000"
                   "0000000000000025").ln()
        """
        if t.cresults != t.presults:
            return False # Results must be identical.
        if context.c.flags[C.Rounded] and \
           context.c.flags[C.Inexact] and \
           context.p.flags[P.Rounded] and \
           context.p.flags[P.Inexact]:
            return True # Subnormal/Underflow may be missing.
        return False

    def exp(self, t):
        """Resolve Underflow or ULP difference."""
        return self.resolve_underflow(t)

    def log10(self, t):
        """Resolve Underflow or ULP difference."""
        return self.resolve_underflow(t)

    def ln(self, t):
        """Resolve Underflow or ULP difference."""
        return self.resolve_underflow(t)

    def __pow__(self, t):
        """Always calls the resolve function. C.Decimal does not have correct
           rounding for the power function."""
        if context.c.flags[C.Rounded] and \
           context.c.flags[C.Inexact] and \
           context.p.flags[P.Rounded] and \
           context.p.flags[P.Inexact]:
            return self.bin_resolve_ulp(t)
        else:
            return False
    power = __rpow__ = __pow__

    ############################## Technicalities #############################
    def __float__(self, t):
        """NaN comparison in the verify() function obviously gives an
           incorrect answer:  nan == nan -> False"""
        if t.cop[0].is_nan() and t.pop[0].is_nan():
            return True
        return False
    __complex__ = __float__

    def __radd__(self, t):
        """decimal.py gives precedence to the first NaN; this is
           not important, as __radd__ will not be called for
           two decimal arguments."""
        if t.rc.is_nan() and t.rp.is_nan():
            return True
        return False
    __rmul__ = __radd__

    ################################ Various ##################################
    def __round__(self, t):
        """Exception: Decimal('1').__round__(-100000000000000000000000000)
           Should it really be InvalidOperation?"""
        if t.rc is None and t.rp.is_nan():
            return True
        return False

shandler = SkipHandler()
def skip_error(t):
    return getattr(shandler, t.funcname, shandler.default)(t)


# ======================================================================
#                      Handling verification errors
# ======================================================================

class VerifyError(Exception):
    """Verification failed."""
    pass

def function_as_string(t):
    if t.contextfunc:
        cargs = t.cop
        pargs = t.pop
        cfunc = "c_func: %s(" % t.funcname
        pfunc = "p_func: %s(" % t.funcname
    else:
        cself, cargs = t.cop[0], t.cop[1:]
        pself, pargs = t.pop[0], t.pop[1:]
        cfunc = "c_func: %s.%s(" % (repr(cself), t.funcname)
        pfunc = "p_func: %s.%s(" % (repr(pself), t.funcname)

    err = cfunc
    for arg in cargs:
        err += "%s, " % repr(arg)
    err = err.rstrip(", ")
    err += ")\n"

    err += pfunc
    for arg in pargs:
        err += "%s, " % repr(arg)
    err = err.rstrip(", ")
    err += ")"

    return err

def raise_error(t):
    global EXIT_STATUS

    if skip_error(t):
        return
    EXIT_STATUS = 1

    err = "Error in %s:\n\n" % t.funcname
    err += "input operands: %s\n\n" % (t.op,)
    err += function_as_string(t)
    err += "\n\nc_result: %s\np_result: %s\n\n" % (t.cresults, t.presults)
    err += "c_exceptions: %s\np_exceptions: %s\n\n" % (t.cex, t.pex)
    err += "%s\n\n" % str(t.context)

    raise VerifyError(err)


# ======================================================================
#                        Main testing functions
#
#  The procedure is always (t is the TestSet):
#
#   convert(t) -> Initialize the TestSet as necessary.
#
#                 Return 0 for early abortion (e.g. if a TypeError
#                 occurs during conversion, there is nothing to test).
#
#                 Return 1 for continuing with the test case.
#
#   callfuncs(t) -> Call the relevant function for each implementation
#                   and record the results in the TestSet.
#
#   verify(t) -> Verify the results. If verification fails, details
#                are printed to stdout.
# ======================================================================

def convert(t, convstr=True):
    """ t is the testset. At this stage the testset contains a tuple of
        operands t.op of various types. For decimal methods the first
        operand (self) is always converted to Decimal. If 'convstr' is
        true, string operands are converted as well.

        Context operands are of type deccheck.Context, rounding mode
        operands are given as a tuple (C.rounding, P.rounding).

        Other types (float, int, etc.) are left unchanged.
    """
    for i, op in enumerate(t.op):

        context.clear_status()

        if op in RoundModes:
            t.cop.append(op)
            t.pop.append(op)

        elif not t.contextfunc and i == 0 or \
             convstr and isinstance(op, str):
            try:
                c = C.Decimal(op)
                cex = None
            except (TypeError, ValueError, OverflowError) as e:
                c = None
                cex = e.__class__

            try:
                p = RestrictedDecimal(op)
                pex = None
            except (TypeError, ValueError, OverflowError) as e:
                p = None
                pex = e.__class__

            t.cop.append(c)
            t.cex.append(cex)
            t.pop.append(p)
            t.pex.append(pex)

            if cex is pex:
                if str(c) != str(p) or not context.assert_eq_status():
                    raise_error(t)
                if cex and pex:
                    # nothing to test
                    return 0
            else:
                raise_error(t)

        elif isinstance(op, Context):
            t.context = op
            t.cop.append(op.c)
            t.pop.append(op.p)

        else:
            t.cop.append(op)
            t.pop.append(op)

    return 1

def callfuncs(t):
    """ t is the testset. At this stage the testset contains operand lists
        t.cop and t.pop for the C and Python versions of decimal.
        For Decimal methods, the first operands are of type C.Decimal and
        P.Decimal respectively. The remaining operands can have various types.
        For Context methods, all operands can have any type.

        t.rc and t.rp are the results of the operation.
    """
    context.clear_status()

    try:
        if t.contextfunc:
            cargs = t.cop
            t.rc = getattr(context.c, t.funcname)(*cargs)
        else:
            cself = t.cop[0]
            cargs = t.cop[1:]
            t.rc = getattr(cself, t.funcname)(*cargs)
        t.cex.append(None)
    except (TypeError, ValueError, OverflowError, MemoryError) as e:
        t.rc = None
        t.cex.append(e.__class__)

    try:
        if t.contextfunc:
            pargs = t.pop
            t.rp = getattr(context.p, t.funcname)(*pargs)
        else:
            pself = t.pop[0]
            pargs = t.pop[1:]
            t.rp = getattr(pself, t.funcname)(*pargs)
        t.pex.append(None)
    except (TypeError, ValueError, OverflowError, MemoryError) as e:
        t.rp = None
        t.pex.append(e.__class__)

def verify(t, stat):
    """ t is the testset. At this stage the testset contains the following
        tuples:

            t.op: original operands
            t.cop: C.Decimal operands (see convert for details)
            t.pop: P.Decimal operands (see convert for details)
            t.rc: C result
            t.rp: Python result

        t.rc and t.rp can have various types.
    """
    t.cresults.append(str(t.rc))
    t.presults.append(str(t.rp))
    if isinstance(t.rc, C.Decimal) and isinstance(t.rp, P.Decimal):
        # General case: both results are Decimals.
        t.cresults.append(t.rc.to_eng_string())
        t.cresults.append(t.rc.as_tuple())
        t.cresults.append(str(t.rc.imag))
        t.cresults.append(str(t.rc.real))
        t.presults.append(t.rp.to_eng_string())
        t.presults.append(t.rp.as_tuple())
        t.presults.append(str(t.rp.imag))
        t.presults.append(str(t.rp.real))

        nc = t.rc.number_class().lstrip('+-s')
        stat[nc] += 1
    else:
        # Results from e.g. __divmod__ can only be compared as strings.
        if not isinstance(t.rc, tuple) and not isinstance(t.rp, tuple):
            if t.rc != t.rp:
                raise_error(t)
        stat[type(t.rc).__name__] += 1

    # The return value lists must be equal.
    if t.cresults != t.presults:
        raise_error(t)
    # The Python exception lists (TypeError, etc.) must be equal.
    if t.cex != t.pex:
        raise_error(t)
    # The context flags must be equal.
    if not t.context.assert_eq_status():
        raise_error(t)


# ======================================================================
#                           Main test loops
#
#  test_method(method, testspecs, testfunc) ->
#
#     Loop through various context settings. The degree of
#     thoroughness is determined by 'testspec'. For each
#     setting, call 'testfunc'. Generally, 'testfunc' itself
#     a loop, iterating through many test cases generated
#     by the functions in randdec.py.
#
#  test_n-ary(method, prec, exp_range, restricted_range, itr, stat) ->
#
#     'test_unary', 'test_binary' and 'test_ternary' are the
#     main test functions passed to 'test_method'. They deal
#     with the regular cases. The thoroughness of testing is
#     determined by 'itr'.
#
#     'prec', 'exp_range' and 'restricted_range' are passed
#     to the test-generating functions and limit the generated
#     values. In some cases, for reasonable run times a
#     maximum exponent of 9999 is required.
#
#     The 'stat' parameter is passed down to the 'verify'
#     function, which records statistics for the result values.
# ======================================================================

def log(fmt, args=None):
    if args:
        sys.stdout.write(''.join((fmt, '\n')) % args)
    else:
        sys.stdout.write(''.join((str(fmt), '\n')))
    sys.stdout.flush()

def test_method(method, testspecs, testfunc):
    """Iterate a test function through many context settings."""
    log("testing %s ...", method)
    stat = defaultdict(int)
    for spec in testspecs:
        if 'samples' in spec:
            spec['prec'] = sorted(random.sample(range(1, 101),
                                  spec['samples']))
        for prec in spec['prec']:
            context.prec = prec
            for expts in spec['expts']:
                emin, emax = expts
                if emin == 'rand':
                    context.Emin = random.randrange(-1000, 0)
                    context.Emax = random.randrange(prec, 1000)
                else:
                    context.Emin, context.Emax = emin, emax
                if prec > context.Emax: continue
                log("    prec: %d  emin: %d  emax: %d",
                    (context.prec, context.Emin, context.Emax))
                restr_range = 9999 if context.Emax > 9999 else context.Emax+99
                for rounding in RoundModes:
                    context.rounding = rounding
                    context.capitals = random.randrange(2)
                    if spec['clamp'] == 'rand':
                        context.clamp = random.randrange(2)
                    else:
                        context.clamp = spec['clamp']
                    exprange = context.c.Emax
                    testfunc(method, prec, exprange, restr_range,
                             spec['iter'], stat)
    log("    result types: %s" % sorted([t for t in stat.items()]))

def test_unary(method, prec, exp_range, restricted_range, itr, stat):
    """Iterate a unary function through many test cases."""
    if method in UnaryRestricted:
        exp_range = restricted_range
    for op in all_unary(prec, exp_range, itr):
        t = TestSet(method, op)
        try:
            if not convert(t):
                continue
            callfuncs(t)
            verify(t, stat)
        except VerifyError as err:
            log(err)

    if not method.startswith('__'):
        for op in unary_optarg(prec, exp_range, itr):
            t = TestSet(method, op)
            try:
                if not convert(t):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)

def test_binary(method, prec, exp_range, restricted_range, itr, stat):
    """Iterate a binary function through many test cases."""
    if method in BinaryRestricted:
        exp_range = restricted_range
    for op in all_binary(prec, exp_range, itr):
        t = TestSet(method, op)
        try:
            if not convert(t):
                continue
            callfuncs(t)
            verify(t, stat)
        except VerifyError as err:
            log(err)

    if not method.startswith('__'):
        for op in binary_optarg(prec, exp_range, itr):
            t = TestSet(method, op)
            try:
                if not convert(t):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)

def test_ternary(method, prec, exp_range, restricted_range, itr, stat):
    """Iterate a ternary function through many test cases."""
    if method in TernaryRestricted:
        exp_range = restricted_range
    for op in all_ternary(prec, exp_range, itr):
        t = TestSet(method, op)
        try:
            if not convert(t):
                continue
            callfuncs(t)
            verify(t, stat)
        except VerifyError as err:
            log(err)

    if not method.startswith('__'):
        for op in ternary_optarg(prec, exp_range, itr):
            t = TestSet(method, op)
            try:
                if not convert(t):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)

def test_format(method, prec, exp_range, restricted_range, itr, stat):
    """Iterate the __format__ method through many test cases."""
    for op in all_unary(prec, exp_range, itr):
        fmt1 = rand_format(chr(random.randrange(0, 128)), 'EeGgn')
        fmt2 = rand_locale()
        for fmt in (fmt1, fmt2):
            fmtop = (op[0], fmt)
            t = TestSet(method, fmtop)
            try:
                if not convert(t, convstr=False):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)
    for op in all_unary(prec, 9999, itr):
        fmt1 = rand_format(chr(random.randrange(0, 128)), 'Ff%')
        fmt2 = rand_locale()
        for fmt in (fmt1, fmt2):
            fmtop = (op[0], fmt)
            t = TestSet(method, fmtop)
            try:
                if not convert(t, convstr=False):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)

def test_round(method, prec, exprange, restricted_range, itr, stat):
    """Iterate the __round__ method through many test cases."""
    for op in all_unary(prec, 9999, itr):
        n = random.randrange(10)
        roundop = (op[0], n)
        t = TestSet(method, roundop)
        try:
            if not convert(t):
                continue
            callfuncs(t)
            verify(t, stat)
        except VerifyError as err:
            log(err)

def test_from_float(method, prec, exprange, restricted_range, itr, stat):
    """Iterate the __float__ method through many test cases."""
    for rounding in RoundModes:
        context.rounding = rounding
        for i in range(1000):
            f = randfloat()
            op = (f,) if method.startswith("context.") else ("sNaN", f)
            t = TestSet(method, op)
            try:
                if not convert(t):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)

def randcontext(exprange):
    c = Context(C.Context(), P.Context())
    c.Emax = random.randrange(1, exprange+1)
    c.Emin = random.randrange(-exprange, 0)
    maxprec = 100 if c.Emax >= 100 else c.Emax
    c.prec = random.randrange(1, maxprec+1)
    c.clamp = random.randrange(2)
    c.clear_traps()
    return c

def test_quantize_api(method, prec, exprange, restricted_range, itr, stat):
    """Iterate the 'quantize' method through many test cases, using
       the optional arguments."""
    for op in all_binary(prec, restricted_range, itr):
        for rounding in RoundModes:
            c = randcontext(exprange)
            quantizeop = (op[0], op[1], rounding, c)
            t = TestSet(method, quantizeop)
            try:
                if not convert(t):
                    continue
                callfuncs(t)
                verify(t, stat)
            except VerifyError as err:
                log(err)


def check_untested(funcdict, c_cls, p_cls):
    """Determine untested, C-only and Python-only attributes.
       Uncomment print lines for debugging."""
    c_attr = set(dir(c_cls))
    p_attr = set(dir(p_cls))
    intersect = c_attr & p_attr

    funcdict['c_only'] = tuple(sorted(c_attr-intersect))
    funcdict['p_only'] = tuple(sorted(p_attr-intersect))

    tested = set()
    for lst in funcdict.values():
        for v in lst:
            v = v.replace("context.", "") if c_cls == C.Context else v
            tested.add(v)

    funcdict['untested'] = tuple(sorted(intersect-tested))

    #for key in ('untested', 'c_only', 'p_only'):
    #    s = 'Context' if c_cls == C.Context else 'Decimal'
    #    print("\n%s %s:\n%s" % (s, key, funcdict[key]))


if __name__ == '__main__':

    import time

    randseed = int(time.time())
    random.seed(randseed)

    # Set up the testspecs list. A testspec is simply a dictionary
    # that determines the amount of different contexts that 'test_method'
    # will generate.
    base_expts = [(C.MIN_EMIN, C.MAX_EMAX)]
    if C.MAX_EMAX == 999999999999999999:
        base_expts.append((-999999999, 999999999))

    # Basic contexts.
    base = {
        'expts': base_expts,
        'prec': [],
        'clamp': 'rand',
        'iter': None,
        'samples': None,
    }
    # Contexts with small values for prec, emin, emax.
    small = {
        'prec': [1, 2, 3, 4, 5],
        'expts': [(-1, 1), (-2, 2), (-3, 3), (-4, 4), (-5, 5)],
        'clamp': 'rand',
        'iter': None
    }
    # IEEE interchange format.
    ieee = [
        # DECIMAL32
        {'prec': [7], 'expts': [(-95, 96)], 'clamp': 1, 'iter': None},
        # DECIMAL64
        {'prec': [16], 'expts': [(-383, 384)], 'clamp': 1, 'iter': None},
        # DECIMAL128
        {'prec': [34], 'expts': [(-6143, 6144)], 'clamp': 1, 'iter': None}
    ]

    if '--medium' in sys.argv:
        base['expts'].append(('rand', 'rand'))
        # 5 random precisions
        base['samples'] = 5
        testspecs = [small] + ieee + [base]
    if '--long' in sys.argv:
        base['expts'].append(('rand', 'rand'))
        # 10 random precisions
        base['samples'] = 10
        testspecs = [small] + ieee + [base]
    elif '--all' in sys.argv:
        base['expts'].append(('rand', 'rand'))
        # All precisions in [1, 100]
        base['samples'] = 100
        testspecs = [small] + ieee + [base]
    else: # --short
        rand_ieee = random.choice(ieee)
        base['iter'] = small['iter'] = rand_ieee['iter'] = 1
        # 1 random precision and exponent pair
        base['samples'] = 1
        base['expts'] = [random.choice(base_expts)]
        # 1 random precision and exponent pair
        prec = random.randrange(1, 6)
        small['prec'] = [prec]
        small['expts'] = [(-prec, prec)]
        testspecs = [small, rand_ieee, base]

    check_untested(Functions, C.Decimal, P.Decimal)
    check_untested(ContextFunctions, C.Context, P.Context)


    log("\n\nRandom seed: %d\n\n", randseed)

    # Decimal methods:
    for method in Functions['unary'] + Functions['unary_ctx'] + \
                  Functions['unary_rnd_ctx']:
        test_method(method, testspecs, test_unary)

    for method in Functions['binary'] + Functions['binary_ctx']:
        test_method(method, testspecs, test_binary)

    for method in Functions['ternary'] + Functions['ternary_ctx']:
        test_method(method, testspecs, test_ternary)

    test_method('__format__', testspecs, test_format)
    test_method('__round__', testspecs, test_round)
    test_method('from_float', testspecs, test_from_float)
    test_method('quantize', testspecs, test_quantize_api)

    # Context methods:
    for method in ContextFunctions['unary']:
        test_method(method, testspecs, test_unary)

    for method in ContextFunctions['binary']:
        test_method(method, testspecs, test_binary)

    for method in ContextFunctions['ternary']:
        test_method(method, testspecs, test_ternary)

    test_method('context.create_decimal_from_float', testspecs, test_from_float)


    sys.exit(EXIT_STATUS)