summaryrefslogtreecommitdiff
path: root/Modules/mathmodule.c
blob: 95ea4f7fef83aa9a9e66165f53304414dfe3ae36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
/* Math module -- standard C math library functions, pi and e */

/* Here are some comments from Tim Peters, extracted from the
   discussion attached to http://bugs.python.org/issue1640.  They
   describe the general aims of the math module with respect to
   special values, IEEE-754 floating-point exceptions, and Python
   exceptions.

These are the "spirit of 754" rules:

1. If the mathematical result is a real number, but of magnitude too
large to approximate by a machine float, overflow is signaled and the
result is an infinity (with the appropriate sign).

2. If the mathematical result is a real number, but of magnitude too
small to approximate by a machine float, underflow is signaled and the
result is a zero (with the appropriate sign).

3. At a singularity (a value x such that the limit of f(y) as y
approaches x exists and is an infinity), "divide by zero" is signaled
and the result is an infinity (with the appropriate sign).  This is
complicated a little by that the left-side and right-side limits may
not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
from the positive or negative directions.  In that specific case, the
sign of the zero determines the result of 1/0.

4. At a point where a function has no defined result in the extended
reals (i.e., the reals plus an infinity or two), invalid operation is
signaled and a NaN is returned.

And these are what Python has historically /tried/ to do (but not
always successfully, as platform libm behavior varies a lot):

For #1, raise OverflowError.

For #2, return a zero (with the appropriate sign if that happens by
accident ;-)).

For #3 and #4, raise ValueError.  It may have made sense to raise
Python's ZeroDivisionError in #3, but historically that's only been
raised for division by zero and mod by zero.

*/

/*
   In general, on an IEEE-754 platform the aim is to follow the C99
   standard, including Annex 'F', whenever possible.  Where the
   standard recommends raising the 'divide-by-zero' or 'invalid'
   floating-point exceptions, Python should raise a ValueError.  Where
   the standard recommends raising 'overflow', Python should raise an
   OverflowError.  In all other circumstances a value should be
   returned.
 */

#include "Python.h"
#include "_math.h"

/*
   sin(pi*x), giving accurate results for all finite x (especially x
   integral or close to an integer).  This is here for use in the
   reflection formula for the gamma function.  It conforms to IEEE
   754-2008 for finite arguments, but not for infinities or nans.
*/

static const double pi = 3.141592653589793238462643383279502884197;
static const double sqrtpi = 1.772453850905516027298167483341145182798;
static const double logpi = 1.144729885849400174143427351353058711647;

static double
sinpi(double x)
{
    double y, r;
    int n;
    /* this function should only ever be called for finite arguments */
    assert(Py_IS_FINITE(x));
    y = fmod(fabs(x), 2.0);
    n = (int)round(2.0*y);
    assert(0 <= n && n <= 4);
    switch (n) {
    case 0:
        r = sin(pi*y);
        break;
    case 1:
        r = cos(pi*(y-0.5));
        break;
    case 2:
        /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
           -0.0 instead of 0.0 when y == 1.0. */
        r = sin(pi*(1.0-y));
        break;
    case 3:
        r = -cos(pi*(y-1.5));
        break;
    case 4:
        r = sin(pi*(y-2.0));
        break;
    default:
        assert(0);  /* should never get here */
        r = -1.23e200; /* silence gcc warning */
    }
    return copysign(1.0, x)*r;
}

/* Implementation of the real gamma function.  In extensive but non-exhaustive
   random tests, this function proved accurate to within <= 10 ulps across the
   entire float domain.  Note that accuracy may depend on the quality of the
   system math functions, the pow function in particular.  Special cases
   follow C99 annex F.  The parameters and method are tailored to platforms
   whose double format is the IEEE 754 binary64 format.

   Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
   and g=6.024680040776729583740234375; these parameters are amongst those
   used by the Boost library.  Following Boost (again), we re-express the
   Lanczos sum as a rational function, and compute it that way.  The
   coefficients below were computed independently using MPFR, and have been
   double-checked against the coefficients in the Boost source code.

   For x < 0.0 we use the reflection formula.

   There's one minor tweak that deserves explanation: Lanczos' formula for
   Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5).  For many x
   values, x+g-0.5 can be represented exactly.  However, in cases where it
   can't be represented exactly the small error in x+g-0.5 can be magnified
   significantly by the pow and exp calls, especially for large x.  A cheap
   correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
   involved in the computation of x+g-0.5 (that is, e = computed value of
   x+g-0.5 - exact value of x+g-0.5).  Here's the proof:

   Correction factor
   -----------------
   Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
   double, and e is tiny.  Then:

     pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
     = pow(y, x-0.5)/exp(y) * C,

   where the correction_factor C is given by

     C = pow(1-e/y, x-0.5) * exp(e)

   Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:

     C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y

   But y-(x-0.5) = g+e, and g+e ~ g.  So we get C ~ 1 + e*g/y, and

     pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),

   Note that for accuracy, when computing r*C it's better to do

     r + e*g/y*r;

   than

     r * (1 + e*g/y);

   since the addition in the latter throws away most of the bits of
   information in e*g/y.
*/

#define LANCZOS_N 13
static const double lanczos_g = 6.024680040776729583740234375;
static const double lanczos_g_minus_half = 5.524680040776729583740234375;
static const double lanczos_num_coeffs[LANCZOS_N] = {
    23531376880.410759688572007674451636754734846804940,
    42919803642.649098768957899047001988850926355848959,
    35711959237.355668049440185451547166705960488635843,
    17921034426.037209699919755754458931112671403265390,
    6039542586.3520280050642916443072979210699388420708,
    1439720407.3117216736632230727949123939715485786772,
    248874557.86205415651146038641322942321632125127801,
    31426415.585400194380614231628318205362874684987640,
    2876370.6289353724412254090516208496135991145378768,
    186056.26539522349504029498971604569928220784236328,
    8071.6720023658162106380029022722506138218516325024,
    210.82427775157934587250973392071336271166969580291,
    2.5066282746310002701649081771338373386264310793408
};

/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
static const double lanczos_den_coeffs[LANCZOS_N] = {
    0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
    13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};

/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
#define NGAMMA_INTEGRAL 23
static const double gamma_integral[NGAMMA_INTEGRAL] = {
    1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
    3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
    1307674368000.0, 20922789888000.0, 355687428096000.0,
    6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
    51090942171709440000.0, 1124000727777607680000.0,
};

/* Lanczos' sum L_g(x), for positive x */

static double
lanczos_sum(double x)
{
    double num = 0.0, den = 0.0;
    int i;
    assert(x > 0.0);
    /* evaluate the rational function lanczos_sum(x).  For large
       x, the obvious algorithm risks overflow, so we instead
       rescale the denominator and numerator of the rational
       function by x**(1-LANCZOS_N) and treat this as a
       rational function in 1/x.  This also reduces the error for
       larger x values.  The choice of cutoff point (5.0 below) is
       somewhat arbitrary; in tests, smaller cutoff values than
       this resulted in lower accuracy. */
    if (x < 5.0) {
        for (i = LANCZOS_N; --i >= 0; ) {
            num = num * x + lanczos_num_coeffs[i];
            den = den * x + lanczos_den_coeffs[i];
        }
    }
    else {
        for (i = 0; i < LANCZOS_N; i++) {
            num = num / x + lanczos_num_coeffs[i];
            den = den / x + lanczos_den_coeffs[i];
        }
    }
    return num/den;
}

/* Constant for +infinity, generated in the same way as float('inf'). */

static double
m_inf(void)
{
#ifndef PY_NO_SHORT_FLOAT_REPR
    return _Py_dg_infinity(0);
#else
    return Py_HUGE_VAL;
#endif
}

/* Constant nan value, generated in the same way as float('nan'). */
/* We don't currently assume that Py_NAN is defined everywhere. */

#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)

static double
m_nan(void)
{
#ifndef PY_NO_SHORT_FLOAT_REPR
    return _Py_dg_stdnan(0);
#else
    return Py_NAN;
#endif
}

#endif

static double
m_tgamma(double x)
{
    double absx, r, y, z, sqrtpow;

    /* special cases */
    if (!Py_IS_FINITE(x)) {
        if (Py_IS_NAN(x) || x > 0.0)
            return x;  /* tgamma(nan) = nan, tgamma(inf) = inf */
        else {
            errno = EDOM;
            return Py_NAN;  /* tgamma(-inf) = nan, invalid */
        }
    }
    if (x == 0.0) {
        errno = EDOM;
        /* tgamma(+-0.0) = +-inf, divide-by-zero */
        return copysign(Py_HUGE_VAL, x);
    }

    /* integer arguments */
    if (x == floor(x)) {
        if (x < 0.0) {
            errno = EDOM;  /* tgamma(n) = nan, invalid for */
            return Py_NAN; /* negative integers n */
        }
        if (x <= NGAMMA_INTEGRAL)
            return gamma_integral[(int)x - 1];
    }
    absx = fabs(x);

    /* tiny arguments:  tgamma(x) ~ 1/x for x near 0 */
    if (absx < 1e-20) {
        r = 1.0/x;
        if (Py_IS_INFINITY(r))
            errno = ERANGE;
        return r;
    }

    /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
       x > 200, and underflows to +-0.0 for x < -200, not a negative
       integer. */
    if (absx > 200.0) {
        if (x < 0.0) {
            return 0.0/sinpi(x);
        }
        else {
            errno = ERANGE;
            return Py_HUGE_VAL;
        }
    }

    y = absx + lanczos_g_minus_half;
    /* compute error in sum */
    if (absx > lanczos_g_minus_half) {
        /* note: the correction can be foiled by an optimizing
           compiler that (incorrectly) thinks that an expression like
           a + b - a - b can be optimized to 0.0.  This shouldn't
           happen in a standards-conforming compiler. */
        double q = y - absx;
        z = q - lanczos_g_minus_half;
    }
    else {
        double q = y - lanczos_g_minus_half;
        z = q - absx;
    }
    z = z * lanczos_g / y;
    if (x < 0.0) {
        r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
        r -= z * r;
        if (absx < 140.0) {
            r /= pow(y, absx - 0.5);
        }
        else {
            sqrtpow = pow(y, absx / 2.0 - 0.25);
            r /= sqrtpow;
            r /= sqrtpow;
        }
    }
    else {
        r = lanczos_sum(absx) / exp(y);
        r += z * r;
        if (absx < 140.0) {
            r *= pow(y, absx - 0.5);
        }
        else {
            sqrtpow = pow(y, absx / 2.0 - 0.25);
            r *= sqrtpow;
            r *= sqrtpow;
        }
    }
    if (Py_IS_INFINITY(r))
        errno = ERANGE;
    return r;
}

/*
   lgamma:  natural log of the absolute value of the Gamma function.
   For large arguments, Lanczos' formula works extremely well here.
*/

static double
m_lgamma(double x)
{
    double r, absx;

    /* special cases */
    if (!Py_IS_FINITE(x)) {
        if (Py_IS_NAN(x))
            return x;  /* lgamma(nan) = nan */
        else
            return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
    }

    /* integer arguments */
    if (x == floor(x) && x <= 2.0) {
        if (x <= 0.0) {
            errno = EDOM;  /* lgamma(n) = inf, divide-by-zero for */
            return Py_HUGE_VAL; /* integers n <= 0 */
        }
        else {
            return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
        }
    }

    absx = fabs(x);
    /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
    if (absx < 1e-20)
        return -log(absx);

    /* Lanczos' formula.  We could save a fraction of a ulp in accuracy by
       having a second set of numerator coefficients for lanczos_sum that
       absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
       subtraction below; it's probably not worth it. */
    r = log(lanczos_sum(absx)) - lanczos_g;
    r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
    if (x < 0.0)
        /* Use reflection formula to get value for negative x. */
        r = logpi - log(fabs(sinpi(absx))) - log(absx) - r;
    if (Py_IS_INFINITY(r))
        errno = ERANGE;
    return r;
}

/*
   Implementations of the error function erf(x) and the complementary error
   function erfc(x).

   Method: we use a series approximation for erf for small x, and a continued
   fraction approximation for erfc(x) for larger x;
   combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
   this gives us erf(x) and erfc(x) for all x.

   The series expansion used is:

      erf(x) = x*exp(-x*x)/sqrt(pi) * [
                     2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]

   The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
   This series converges well for smallish x, but slowly for larger x.

   The continued fraction expansion used is:

      erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
                              3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]

   after the first term, the general term has the form:

      k*(k-0.5)/(2*k+0.5 + x**2 - ...).

   This expansion converges fast for larger x, but convergence becomes
   infinitely slow as x approaches 0.0.  The (somewhat naive) continued
   fraction evaluation algorithm used below also risks overflow for large x;
   but for large x, erfc(x) == 0.0 to within machine precision.  (For
   example, erfc(30.0) is approximately 2.56e-393).

   Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
   continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
   ERFC_CONTFRAC_CUTOFF.  ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
   numbers of terms to use for the relevant expansions.  */

#define ERF_SERIES_CUTOFF 1.5
#define ERF_SERIES_TERMS 25
#define ERFC_CONTFRAC_CUTOFF 30.0
#define ERFC_CONTFRAC_TERMS 50

/*
   Error function, via power series.

   Given a finite float x, return an approximation to erf(x).
   Converges reasonably fast for small x.
*/

static double
m_erf_series(double x)
{
    double x2, acc, fk, result;
    int i, saved_errno;

    x2 = x * x;
    acc = 0.0;
    fk = (double)ERF_SERIES_TERMS + 0.5;
    for (i = 0; i < ERF_SERIES_TERMS; i++) {
        acc = 2.0 + x2 * acc / fk;
        fk -= 1.0;
    }
    /* Make sure the exp call doesn't affect errno;
       see m_erfc_contfrac for more. */
    saved_errno = errno;
    result = acc * x * exp(-x2) / sqrtpi;
    errno = saved_errno;
    return result;
}

/*
   Complementary error function, via continued fraction expansion.

   Given a positive float x, return an approximation to erfc(x).  Converges
   reasonably fast for x large (say, x > 2.0), and should be safe from
   overflow if x and nterms are not too large.  On an IEEE 754 machine, with x
   <= 30.0, we're safe up to nterms = 100.  For x >= 30.0, erfc(x) is smaller
   than the smallest representable nonzero float.  */

static double
m_erfc_contfrac(double x)
{
    double x2, a, da, p, p_last, q, q_last, b, result;
    int i, saved_errno;

    if (x >= ERFC_CONTFRAC_CUTOFF)
        return 0.0;

    x2 = x*x;
    a = 0.0;
    da = 0.5;
    p = 1.0; p_last = 0.0;
    q = da + x2; q_last = 1.0;
    for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
        double temp;
        a += da;
        da += 2.0;
        b = da + x2;
        temp = p; p = b*p - a*p_last; p_last = temp;
        temp = q; q = b*q - a*q_last; q_last = temp;
    }
    /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
       save the current errno value so that we can restore it later. */
    saved_errno = errno;
    result = p / q * x * exp(-x2) / sqrtpi;
    errno = saved_errno;
    return result;
}

/* Error function erf(x), for general x */

static double
m_erf(double x)
{
    double absx, cf;

    if (Py_IS_NAN(x))
        return x;
    absx = fabs(x);
    if (absx < ERF_SERIES_CUTOFF)
        return m_erf_series(x);
    else {
        cf = m_erfc_contfrac(absx);
        return x > 0.0 ? 1.0 - cf : cf - 1.0;
    }
}

/* Complementary error function erfc(x), for general x. */

static double
m_erfc(double x)
{
    double absx, cf;

    if (Py_IS_NAN(x))
        return x;
    absx = fabs(x);
    if (absx < ERF_SERIES_CUTOFF)
        return 1.0 - m_erf_series(x);
    else {
        cf = m_erfc_contfrac(absx);
        return x > 0.0 ? cf : 2.0 - cf;
    }
}

/*
   wrapper for atan2 that deals directly with special cases before
   delegating to the platform libm for the remaining cases.  This
   is necessary to get consistent behaviour across platforms.
   Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
   always follow C99.
*/

static double
m_atan2(double y, double x)
{
    if (Py_IS_NAN(x) || Py_IS_NAN(y))
        return Py_NAN;
    if (Py_IS_INFINITY(y)) {
        if (Py_IS_INFINITY(x)) {
            if (copysign(1., x) == 1.)
                /* atan2(+-inf, +inf) == +-pi/4 */
                return copysign(0.25*Py_MATH_PI, y);
            else
                /* atan2(+-inf, -inf) == +-pi*3/4 */
                return copysign(0.75*Py_MATH_PI, y);
        }
        /* atan2(+-inf, x) == +-pi/2 for finite x */
        return copysign(0.5*Py_MATH_PI, y);
    }
    if (Py_IS_INFINITY(x) || y == 0.) {
        if (copysign(1., x) == 1.)
            /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
            return copysign(0., y);
        else
            /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
            return copysign(Py_MATH_PI, y);
    }
    return atan2(y, x);
}

/*
    Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
    log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with
    special values directly, passing positive non-special values through to
    the system log/log10.
 */

static double
m_log(double x)
{
    if (Py_IS_FINITE(x)) {
        if (x > 0.0)
            return log(x);
        errno = EDOM;
        if (x == 0.0)
            return -Py_HUGE_VAL; /* log(0) = -inf */
        else
            return Py_NAN; /* log(-ve) = nan */
    }
    else if (Py_IS_NAN(x))
        return x; /* log(nan) = nan */
    else if (x > 0.0)
        return x; /* log(inf) = inf */
    else {
        errno = EDOM;
        return Py_NAN; /* log(-inf) = nan */
    }
}

/*
   log2: log to base 2.

   Uses an algorithm that should:

     (a) produce exact results for powers of 2, and
     (b) give a monotonic log2 (for positive finite floats),
         assuming that the system log is monotonic.
*/

static double
m_log2(double x)
{
    if (!Py_IS_FINITE(x)) {
        if (Py_IS_NAN(x))
            return x; /* log2(nan) = nan */
        else if (x > 0.0)
            return x; /* log2(+inf) = +inf */
        else {
            errno = EDOM;
            return Py_NAN; /* log2(-inf) = nan, invalid-operation */
        }
    }

    if (x > 0.0) {
#ifdef HAVE_LOG2
        return log2(x);
#else
        double m;
        int e;
        m = frexp(x, &e);
        /* We want log2(m * 2**e) == log(m) / log(2) + e.  Care is needed when
         * x is just greater than 1.0: in that case e is 1, log(m) is negative,
         * and we get significant cancellation error from the addition of
         * log(m) / log(2) to e.  The slight rewrite of the expression below
         * avoids this problem.
         */
        if (x >= 1.0) {
            return log(2.0 * m) / log(2.0) + (e - 1);
        }
        else {
            return log(m) / log(2.0) + e;
        }
#endif
    }
    else if (x == 0.0) {
        errno = EDOM;
        return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
    }
    else {
        errno = EDOM;
        return Py_NAN; /* log2(-inf) = nan, invalid-operation */
    }
}

static double
m_log10(double x)
{
    if (Py_IS_FINITE(x)) {
        if (x > 0.0)
            return log10(x);
        errno = EDOM;
        if (x == 0.0)
            return -Py_HUGE_VAL; /* log10(0) = -inf */
        else
            return Py_NAN; /* log10(-ve) = nan */
    }
    else if (Py_IS_NAN(x))
        return x; /* log10(nan) = nan */
    else if (x > 0.0)
        return x; /* log10(inf) = inf */
    else {
        errno = EDOM;
        return Py_NAN; /* log10(-inf) = nan */
    }
}


static PyObject *
math_gcd(PyObject *self, PyObject *args)
{
    PyObject *a, *b, *g;

    if (!PyArg_ParseTuple(args, "OO:gcd", &a, &b))
        return NULL;

    a = PyNumber_Index(a);
    if (a == NULL)
        return NULL;
    b = PyNumber_Index(b);
    if (b == NULL) {
        Py_DECREF(a);
        return NULL;
    }
    g = _PyLong_GCD(a, b);
    Py_DECREF(a);
    Py_DECREF(b);
    return g;
}

PyDoc_STRVAR(math_gcd_doc,
"gcd(x, y) -> int\n\
greatest common divisor of x and y");


/* Call is_error when errno != 0, and where x is the result libm
 * returned.  is_error will usually set up an exception and return
 * true (1), but may return false (0) without setting up an exception.
 */
static int
is_error(double x)
{
    int result = 1;     /* presumption of guilt */
    assert(errno);      /* non-zero errno is a precondition for calling */
    if (errno == EDOM)
        PyErr_SetString(PyExc_ValueError, "math domain error");

    else if (errno == ERANGE) {
        /* ANSI C generally requires libm functions to set ERANGE
         * on overflow, but also generally *allows* them to set
         * ERANGE on underflow too.  There's no consistency about
         * the latter across platforms.
         * Alas, C99 never requires that errno be set.
         * Here we suppress the underflow errors (libm functions
         * should return a zero on underflow, and +- HUGE_VAL on
         * overflow, so testing the result for zero suffices to
         * distinguish the cases).
         *
         * On some platforms (Ubuntu/ia64) it seems that errno can be
         * set to ERANGE for subnormal results that do *not* underflow
         * to zero.  So to be safe, we'll ignore ERANGE whenever the
         * function result is less than one in absolute value.
         */
        if (fabs(x) < 1.0)
            result = 0;
        else
            PyErr_SetString(PyExc_OverflowError,
                            "math range error");
    }
    else
        /* Unexpected math error */
        PyErr_SetFromErrno(PyExc_ValueError);
    return result;
}

/*
   math_1 is used to wrap a libm function f that takes a double
   arguments and returns a double.

   The error reporting follows these rules, which are designed to do
   the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
   platforms.

   - a NaN result from non-NaN inputs causes ValueError to be raised
   - an infinite result from finite inputs causes OverflowError to be
     raised if can_overflow is 1, or raises ValueError if can_overflow
     is 0.
   - if the result is finite and errno == EDOM then ValueError is
     raised
   - if the result is finite and nonzero and errno == ERANGE then
     OverflowError is raised

   The last rule is used to catch overflow on platforms which follow
   C89 but for which HUGE_VAL is not an infinity.

   For the majority of one-argument functions these rules are enough
   to ensure that Python's functions behave as specified in 'Annex F'
   of the C99 standard, with the 'invalid' and 'divide-by-zero'
   floating-point exceptions mapping to Python's ValueError and the
   'overflow' floating-point exception mapping to OverflowError.
   math_1 only works for functions that don't have singularities *and*
   the possibility of overflow; fortunately, that covers everything we
   care about right now.
*/

static PyObject *
math_1_to_whatever(PyObject *arg, double (*func) (double),
                   PyObject *(*from_double_func) (double),
                   int can_overflow)
{
    double x, r;
    x = PyFloat_AsDouble(arg);
    if (x == -1.0 && PyErr_Occurred())
        return NULL;
    errno = 0;
    PyFPE_START_PROTECT("in math_1", return 0);
    r = (*func)(x);
    PyFPE_END_PROTECT(r);
    if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
        PyErr_SetString(PyExc_ValueError,
                        "math domain error"); /* invalid arg */
        return NULL;
    }
    if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
        if (can_overflow)
            PyErr_SetString(PyExc_OverflowError,
                            "math range error"); /* overflow */
        else
            PyErr_SetString(PyExc_ValueError,
                            "math domain error"); /* singularity */
        return NULL;
    }
    if (Py_IS_FINITE(r) && errno && is_error(r))
        /* this branch unnecessary on most platforms */
        return NULL;

    return (*from_double_func)(r);
}

/* variant of math_1, to be used when the function being wrapped is known to
   set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
   errno = ERANGE for overflow). */

static PyObject *
math_1a(PyObject *arg, double (*func) (double))
{
    double x, r;
    x = PyFloat_AsDouble(arg);
    if (x == -1.0 && PyErr_Occurred())
        return NULL;
    errno = 0;
    PyFPE_START_PROTECT("in math_1a", return 0);
    r = (*func)(x);
    PyFPE_END_PROTECT(r);
    if (errno && is_error(r))
        return NULL;
    return PyFloat_FromDouble(r);
}

/*
   math_2 is used to wrap a libm function f that takes two double
   arguments and returns a double.

   The error reporting follows these rules, which are designed to do
   the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
   platforms.

   - a NaN result from non-NaN inputs causes ValueError to be raised
   - an infinite result from finite inputs causes OverflowError to be
     raised.
   - if the result is finite and errno == EDOM then ValueError is
     raised
   - if the result is finite and nonzero and errno == ERANGE then
     OverflowError is raised

   The last rule is used to catch overflow on platforms which follow
   C89 but for which HUGE_VAL is not an infinity.

   For most two-argument functions (copysign, fmod, hypot, atan2)
   these rules are enough to ensure that Python's functions behave as
   specified in 'Annex F' of the C99 standard, with the 'invalid' and
   'divide-by-zero' floating-point exceptions mapping to Python's
   ValueError and the 'overflow' floating-point exception mapping to
   OverflowError.
*/

static PyObject *
math_1(PyObject *arg, double (*func) (double), int can_overflow)
{
    return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
}

static PyObject *
math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
{
    return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
}

static PyObject *
math_2(PyObject *args, double (*func) (double, double), const char *funcname)
{
    PyObject *ox, *oy;
    double x, y, r;
    if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
        return NULL;
    x = PyFloat_AsDouble(ox);
    y = PyFloat_AsDouble(oy);
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
        return NULL;
    errno = 0;
    PyFPE_START_PROTECT("in math_2", return 0);
    r = (*func)(x, y);
    PyFPE_END_PROTECT(r);
    if (Py_IS_NAN(r)) {
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
            errno = EDOM;
        else
            errno = 0;
    }
    else if (Py_IS_INFINITY(r)) {
        if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
            errno = ERANGE;
        else
            errno = 0;
    }
    if (errno && is_error(r))
        return NULL;
    else
        return PyFloat_FromDouble(r);
}

#define FUNC1(funcname, func, can_overflow, docstring)                  \
    static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
        return math_1(args, func, can_overflow);                            \
    }\
    PyDoc_STRVAR(math_##funcname##_doc, docstring);

#define FUNC1A(funcname, func, docstring)                               \
    static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
        return math_1a(args, func);                                     \
    }\
    PyDoc_STRVAR(math_##funcname##_doc, docstring);

#define FUNC2(funcname, func, docstring) \
    static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
        return math_2(args, func, #funcname); \
    }\
    PyDoc_STRVAR(math_##funcname##_doc, docstring);

FUNC1(acos, acos, 0,
      "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
FUNC1(acosh, m_acosh, 0,
      "acosh(x)\n\nReturn the inverse hyperbolic cosine of x.")
FUNC1(asin, asin, 0,
      "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
FUNC1(asinh, m_asinh, 0,
      "asinh(x)\n\nReturn the inverse hyperbolic sine of x.")
FUNC1(atan, atan, 0,
      "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
FUNC2(atan2, m_atan2,
      "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
      "Unlike atan(y/x), the signs of both x and y are considered.")
FUNC1(atanh, m_atanh, 0,
      "atanh(x)\n\nReturn the inverse hyperbolic tangent of x.")

static PyObject * math_ceil(PyObject *self, PyObject *number) {
    _Py_IDENTIFIER(__ceil__);
    PyObject *method, *result;

    method = _PyObject_LookupSpecial(number, &PyId___ceil__);
    if (method == NULL) {
        if (PyErr_Occurred())
            return NULL;
        return math_1_to_int(number, ceil, 0);
    }
    result = PyObject_CallFunctionObjArgs(method, NULL);
    Py_DECREF(method);
    return result;
}

PyDoc_STRVAR(math_ceil_doc,
             "ceil(x)\n\nReturn the ceiling of x as an Integral.\n"
             "This is the smallest integer >= x.");

FUNC2(copysign, copysign,
      "copysign(x, y)\n\nReturn a float with the magnitude (absolute value) "
      "of x but the sign \nof y. On platforms that support signed zeros, "
      "copysign(1.0, -0.0) \nreturns -1.0.\n")
FUNC1(cos, cos, 0,
      "cos(x)\n\nReturn the cosine of x (measured in radians).")
FUNC1(cosh, cosh, 1,
      "cosh(x)\n\nReturn the hyperbolic cosine of x.")
FUNC1A(erf, m_erf,
       "erf(x)\n\nError function at x.")
FUNC1A(erfc, m_erfc,
       "erfc(x)\n\nComplementary error function at x.")
FUNC1(exp, exp, 1,
      "exp(x)\n\nReturn e raised to the power of x.")
FUNC1(expm1, m_expm1, 1,
      "expm1(x)\n\nReturn exp(x)-1.\n"
      "This function avoids the loss of precision involved in the direct "
      "evaluation of exp(x)-1 for small x.")
FUNC1(fabs, fabs, 0,
      "fabs(x)\n\nReturn the absolute value of the float x.")

static PyObject * math_floor(PyObject *self, PyObject *number) {
    _Py_IDENTIFIER(__floor__);
    PyObject *method, *result;

    method = _PyObject_LookupSpecial(number, &PyId___floor__);
    if (method == NULL) {
        if (PyErr_Occurred())
            return NULL;
        return math_1_to_int(number, floor, 0);
    }
    result = PyObject_CallFunctionObjArgs(method, NULL);
    Py_DECREF(method);
    return result;
}

PyDoc_STRVAR(math_floor_doc,
             "floor(x)\n\nReturn the floor of x as an Integral.\n"
             "This is the largest integer <= x.");

FUNC1A(gamma, m_tgamma,
      "gamma(x)\n\nGamma function at x.")
FUNC1A(lgamma, m_lgamma,
      "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
FUNC1(log1p, m_log1p, 0,
      "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
      "The result is computed in a way which is accurate for x near zero.")
FUNC1(sin, sin, 0,
      "sin(x)\n\nReturn the sine of x (measured in radians).")
FUNC1(sinh, sinh, 1,
      "sinh(x)\n\nReturn the hyperbolic sine of x.")
FUNC1(sqrt, sqrt, 0,
      "sqrt(x)\n\nReturn the square root of x.")
FUNC1(tan, tan, 0,
      "tan(x)\n\nReturn the tangent of x (measured in radians).")
FUNC1(tanh, tanh, 0,
      "tanh(x)\n\nReturn the hyperbolic tangent of x.")

/* Precision summation function as msum() by Raymond Hettinger in
   <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
   enhanced with the exact partials sum and roundoff from Mark
   Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
   See those links for more details, proofs and other references.

   Note 1: IEEE 754R floating point semantics are assumed,
   but the current implementation does not re-establish special
   value semantics across iterations (i.e. handling -Inf + Inf).

   Note 2:  No provision is made for intermediate overflow handling;
   therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
   sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
   overflow of the first partial sum.

   Note 3: The intermediate values lo, yr, and hi are declared volatile so
   aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
   Also, the volatile declaration forces the values to be stored in memory as
   regular doubles instead of extended long precision (80-bit) values.  This
   prevents double rounding because any addition or subtraction of two doubles
   can be resolved exactly into double-sized hi and lo values.  As long as the
   hi value gets forced into a double before yr and lo are computed, the extra
   bits in downstream extended precision operations (x87 for example) will be
   exactly zero and therefore can be losslessly stored back into a double,
   thereby preventing double rounding.

   Note 4: A similar implementation is in Modules/cmathmodule.c.
   Be sure to update both when making changes.

   Note 5: The signature of math.fsum() differs from builtins.sum()
   because the start argument doesn't make sense in the context of
   accurate summation.  Since the partials table is collapsed before
   returning a result, sum(seq2, start=sum(seq1)) may not equal the
   accurate result returned by sum(itertools.chain(seq1, seq2)).
*/

#define NUM_PARTIALS  32  /* initial partials array size, on stack */

/* Extend the partials array p[] by doubling its size. */
static int                          /* non-zero on error */
_fsum_realloc(double **p_ptr, Py_ssize_t  n,
             double  *ps,    Py_ssize_t *m_ptr)
{
    void *v = NULL;
    Py_ssize_t m = *m_ptr;

    m += m;  /* double */
    if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
        double *p = *p_ptr;
        if (p == ps) {
            v = PyMem_Malloc(sizeof(double) * m);
            if (v != NULL)
                memcpy(v, ps, sizeof(double) * n);
        }
        else
            v = PyMem_Realloc(p, sizeof(double) * m);
    }
    if (v == NULL) {        /* size overflow or no memory */
        PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
        return 1;
    }
    *p_ptr = (double*) v;
    *m_ptr = m;
    return 0;
}

/* Full precision summation of a sequence of floats.

   def msum(iterable):
       partials = []  # sorted, non-overlapping partial sums
       for x in iterable:
           i = 0
           for y in partials:
               if abs(x) < abs(y):
                   x, y = y, x
               hi = x + y
               lo = y - (hi - x)
               if lo:
                   partials[i] = lo
                   i += 1
               x = hi
           partials[i:] = [x]
       return sum_exact(partials)

   Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo
   are exactly equal to x+y.  The inner loop applies hi/lo summation to each
   partial so that the list of partial sums remains exact.

   Sum_exact() adds the partial sums exactly and correctly rounds the final
   result (using the round-half-to-even rule).  The items in partials remain
   non-zero, non-special, non-overlapping and strictly increasing in
   magnitude, but possibly not all having the same sign.

   Depends on IEEE 754 arithmetic guarantees and half-even rounding.
*/

static PyObject*
math_fsum(PyObject *self, PyObject *seq)
{
    PyObject *item, *iter, *sum = NULL;
    Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
    double x, y, t, ps[NUM_PARTIALS], *p = ps;
    double xsave, special_sum = 0.0, inf_sum = 0.0;
    volatile double hi, yr, lo;

    iter = PyObject_GetIter(seq);
    if (iter == NULL)
        return NULL;

    PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)

    for(;;) {           /* for x in iterable */
        assert(0 <= n && n <= m);
        assert((m == NUM_PARTIALS && p == ps) ||
               (m >  NUM_PARTIALS && p != NULL));

        item = PyIter_Next(iter);
        if (item == NULL) {
            if (PyErr_Occurred())
                goto _fsum_error;
            break;
        }
        x = PyFloat_AsDouble(item);
        Py_DECREF(item);
        if (PyErr_Occurred())
            goto _fsum_error;

        xsave = x;
        for (i = j = 0; j < n; j++) {       /* for y in partials */
            y = p[j];
            if (fabs(x) < fabs(y)) {
                t = x; x = y; y = t;
            }
            hi = x + y;
            yr = hi - x;
            lo = y - yr;
            if (lo != 0.0)
                p[i++] = lo;
            x = hi;
        }

        n = i;                              /* ps[i:] = [x] */
        if (x != 0.0) {
            if (! Py_IS_FINITE(x)) {
                /* a nonfinite x could arise either as
                   a result of intermediate overflow, or
                   as a result of a nan or inf in the
                   summands */
                if (Py_IS_FINITE(xsave)) {
                    PyErr_SetString(PyExc_OverflowError,
                          "intermediate overflow in fsum");
                    goto _fsum_error;
                }
                if (Py_IS_INFINITY(xsave))
                    inf_sum += xsave;
                special_sum += xsave;
                /* reset partials */
                n = 0;
            }
            else if (n >= m && _fsum_realloc(&p, n, ps, &m))
                goto _fsum_error;
            else
                p[n++] = x;
        }
    }

    if (special_sum != 0.0) {
        if (Py_IS_NAN(inf_sum))
            PyErr_SetString(PyExc_ValueError,
                            "-inf + inf in fsum");
        else
            sum = PyFloat_FromDouble(special_sum);
        goto _fsum_error;
    }

    hi = 0.0;
    if (n > 0) {
        hi = p[--n];
        /* sum_exact(ps, hi) from the top, stop when the sum becomes
           inexact. */
        while (n > 0) {
            x = hi;
            y = p[--n];
            assert(fabs(y) < fabs(x));
            hi = x + y;
            yr = hi - x;
            lo = y - yr;
            if (lo != 0.0)
                break;
        }
        /* Make half-even rounding work across multiple partials.
           Needed so that sum([1e-16, 1, 1e16]) will round-up the last
           digit to two instead of down to zero (the 1e-16 makes the 1
           slightly closer to two).  With a potential 1 ULP rounding
           error fixed-up, math.fsum() can guarantee commutativity. */
        if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
                      (lo > 0.0 && p[n-1] > 0.0))) {
            y = lo * 2.0;
            x = hi + y;
            yr = x - hi;
            if (y == yr)
                hi = x;
        }
    }
    sum = PyFloat_FromDouble(hi);

_fsum_error:
    PyFPE_END_PROTECT(hi)
    Py_DECREF(iter);
    if (p != ps)
        PyMem_Free(p);
    return sum;
}

#undef NUM_PARTIALS

PyDoc_STRVAR(math_fsum_doc,
"fsum(iterable)\n\n\
Return an accurate floating point sum of values in the iterable.\n\
Assumes IEEE-754 floating point arithmetic.");

/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
 * Equivalent to floor(lg(x))+1.  Also equivalent to: bitwidth_of_type -
 * count_leading_zero_bits(x)
 */

/* XXX: This routine does more or less the same thing as
 * bits_in_digit() in Objects/longobject.c.  Someday it would be nice to
 * consolidate them.  On BSD, there's a library function called fls()
 * that we could use, and GCC provides __builtin_clz().
 */

static unsigned long
bit_length(unsigned long n)
{
    unsigned long len = 0;
    while (n != 0) {
        ++len;
        n >>= 1;
    }
    return len;
}

static unsigned long
count_set_bits(unsigned long n)
{
    unsigned long count = 0;
    while (n != 0) {
        ++count;
        n &= n - 1; /* clear least significant bit */
    }
    return count;
}

/* Divide-and-conquer factorial algorithm
 *
 * Based on the formula and pseudo-code provided at:
 * http://www.luschny.de/math/factorial/binarysplitfact.html
 *
 * Faster algorithms exist, but they're more complicated and depend on
 * a fast prime factorization algorithm.
 *
 * Notes on the algorithm
 * ----------------------
 *
 * factorial(n) is written in the form 2**k * m, with m odd.  k and m are
 * computed separately, and then combined using a left shift.
 *
 * The function factorial_odd_part computes the odd part m (i.e., the greatest
 * odd divisor) of factorial(n), using the formula:
 *
 *   factorial_odd_part(n) =
 *
 *        product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
 *
 * Example: factorial_odd_part(20) =
 *
 *        (1) *
 *        (1) *
 *        (1 * 3 * 5) *
 *        (1 * 3 * 5 * 7 * 9)
 *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 *
 * Here i goes from large to small: the first term corresponds to i=4 (any
 * larger i gives an empty product), and the last term corresponds to i=0.
 * Each term can be computed from the last by multiplying by the extra odd
 * numbers required: e.g., to get from the penultimate term to the last one,
 * we multiply by (11 * 13 * 15 * 17 * 19).
 *
 * To see a hint of why this formula works, here are the same numbers as above
 * but with the even parts (i.e., the appropriate powers of 2) included.  For
 * each subterm in the product for i, we multiply that subterm by 2**i:
 *
 *   factorial(20) =
 *
 *        (16) *
 *        (8) *
 *        (4 * 12 * 20) *
 *        (2 * 6 * 10 * 14 * 18) *
 *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 *
 * The factorial_partial_product function computes the product of all odd j in
 * range(start, stop) for given start and stop.  It's used to compute the
 * partial products like (11 * 13 * 15 * 17 * 19) in the example above.  It
 * operates recursively, repeatedly splitting the range into two roughly equal
 * pieces until the subranges are small enough to be computed using only C
 * integer arithmetic.
 *
 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
 * the factorial) is computed independently in the main math_factorial
 * function.  By standard results, its value is:
 *
 *    two_valuation = n//2 + n//4 + n//8 + ....
 *
 * It can be shown (e.g., by complete induction on n) that two_valuation is
 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
 * '1'-bits in the binary expansion of n.
 */

/* factorial_partial_product: Compute product(range(start, stop, 2)) using
 * divide and conquer.  Assumes start and stop are odd and stop > start.
 * max_bits must be >= bit_length(stop - 2). */

static PyObject *
factorial_partial_product(unsigned long start, unsigned long stop,
                          unsigned long max_bits)
{
    unsigned long midpoint, num_operands;
    PyObject *left = NULL, *right = NULL, *result = NULL;

    /* If the return value will fit an unsigned long, then we can
     * multiply in a tight, fast loop where each multiply is O(1).
     * Compute an upper bound on the number of bits required to store
     * the answer.
     *
     * Storing some integer z requires floor(lg(z))+1 bits, which is
     * conveniently the value returned by bit_length(z).  The
     * product x*y will require at most
     * bit_length(x) + bit_length(y) bits to store, based
     * on the idea that lg product = lg x + lg y.
     *
     * We know that stop - 2 is the largest number to be multiplied.  From
     * there, we have: bit_length(answer) <= num_operands *
     * bit_length(stop - 2)
     */

    num_operands = (stop - start) / 2;
    /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
     * unlikely case of an overflow in num_operands * max_bits. */
    if (num_operands <= 8 * SIZEOF_LONG &&
        num_operands * max_bits <= 8 * SIZEOF_LONG) {
        unsigned long j, total;
        for (total = start, j = start + 2; j < stop; j += 2)
            total *= j;
        return PyLong_FromUnsignedLong(total);
    }

    /* find midpoint of range(start, stop), rounded up to next odd number. */
    midpoint = (start + num_operands) | 1;
    left = factorial_partial_product(start, midpoint,
                                     bit_length(midpoint - 2));
    if (left == NULL)
        goto error;
    right = factorial_partial_product(midpoint, stop, max_bits);
    if (right == NULL)
        goto error;
    result = PyNumber_Multiply(left, right);

  error:
    Py_XDECREF(left);
    Py_XDECREF(right);
    return result;
}

/* factorial_odd_part:  compute the odd part of factorial(n). */

static PyObject *
factorial_odd_part(unsigned long n)
{
    long i;
    unsigned long v, lower, upper;
    PyObject *partial, *tmp, *inner, *outer;

    inner = PyLong_FromLong(1);
    if (inner == NULL)
        return NULL;
    outer = inner;
    Py_INCREF(outer);

    upper = 3;
    for (i = bit_length(n) - 2; i >= 0; i--) {
        v = n >> i;
        if (v <= 2)
            continue;
        lower = upper;
        /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
        upper = (v + 1) | 1;
        /* Here inner is the product of all odd integers j in the range (0,
           n/2**(i+1)].  The factorial_partial_product call below gives the
           product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
        partial = factorial_partial_product(lower, upper, bit_length(upper-2));
        /* inner *= partial */
        if (partial == NULL)
            goto error;
        tmp = PyNumber_Multiply(inner, partial);
        Py_DECREF(partial);
        if (tmp == NULL)
            goto error;
        Py_DECREF(inner);
        inner = tmp;
        /* Now inner is the product of all odd integers j in the range (0,
           n/2**i], giving the inner product in the formula above. */

        /* outer *= inner; */
        tmp = PyNumber_Multiply(outer, inner);
        if (tmp == NULL)
            goto error;
        Py_DECREF(outer);
        outer = tmp;
    }
    Py_DECREF(inner);
    return outer;

  error:
    Py_DECREF(outer);
    Py_DECREF(inner);
    return NULL;
}

/* Lookup table for small factorial values */

static const unsigned long SmallFactorials[] = {
    1, 1, 2, 6, 24, 120, 720, 5040, 40320,
    362880, 3628800, 39916800, 479001600,
#if SIZEOF_LONG >= 8
    6227020800, 87178291200, 1307674368000,
    20922789888000, 355687428096000, 6402373705728000,
    121645100408832000, 2432902008176640000
#endif
};

static PyObject *
math_factorial(PyObject *self, PyObject *arg)
{
    long x;
    int overflow;
    PyObject *result, *odd_part, *two_valuation;

    if (PyFloat_Check(arg)) {
        PyObject *lx;
        double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
        if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
            PyErr_SetString(PyExc_ValueError,
                            "factorial() only accepts integral values");
            return NULL;
        }
        lx = PyLong_FromDouble(dx);
        if (lx == NULL)
            return NULL;
        x = PyLong_AsLongAndOverflow(lx, &overflow);
        Py_DECREF(lx);
    }
    else
        x = PyLong_AsLongAndOverflow(arg, &overflow);

    if (x == -1 && PyErr_Occurred()) {
        return NULL;
    }
    else if (overflow == 1) {
        PyErr_Format(PyExc_OverflowError,
                     "factorial() argument should not exceed %ld",
                     LONG_MAX);
        return NULL;
    }
    else if (overflow == -1 || x < 0) {
        PyErr_SetString(PyExc_ValueError,
                        "factorial() not defined for negative values");
        return NULL;
    }

    /* use lookup table if x is small */
    if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
        return PyLong_FromUnsignedLong(SmallFactorials[x]);

    /* else express in the form odd_part * 2**two_valuation, and compute as
       odd_part << two_valuation. */
    odd_part = factorial_odd_part(x);
    if (odd_part == NULL)
        return NULL;
    two_valuation = PyLong_FromLong(x - count_set_bits(x));
    if (two_valuation == NULL) {
        Py_DECREF(odd_part);
        return NULL;
    }
    result = PyNumber_Lshift(odd_part, two_valuation);
    Py_DECREF(two_valuation);
    Py_DECREF(odd_part);
    return result;
}

PyDoc_STRVAR(math_factorial_doc,
"factorial(x) -> Integral\n"
"\n"
"Find x!. Raise a ValueError if x is negative or non-integral.");

static PyObject *
math_trunc(PyObject *self, PyObject *number)
{
    _Py_IDENTIFIER(__trunc__);
    PyObject *trunc, *result;

    if (Py_TYPE(number)->tp_dict == NULL) {
        if (PyType_Ready(Py_TYPE(number)) < 0)
            return NULL;
    }

    trunc = _PyObject_LookupSpecial(number, &PyId___trunc__);
    if (trunc == NULL) {
        if (!PyErr_Occurred())
            PyErr_Format(PyExc_TypeError,
                         "type %.100s doesn't define __trunc__ method",
                         Py_TYPE(number)->tp_name);
        return NULL;
    }
    result = PyObject_CallFunctionObjArgs(trunc, NULL);
    Py_DECREF(trunc);
    return result;
}

PyDoc_STRVAR(math_trunc_doc,
"trunc(x:Real) -> Integral\n"
"\n"
"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");

static PyObject *
math_frexp(PyObject *self, PyObject *arg)
{
    int i;
    double x = PyFloat_AsDouble(arg);
    if (x == -1.0 && PyErr_Occurred())
        return NULL;
    /* deal with special cases directly, to sidestep platform
       differences */
    if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
        i = 0;
    }
    else {
        PyFPE_START_PROTECT("in math_frexp", return 0);
        x = frexp(x, &i);
        PyFPE_END_PROTECT(x);
    }
    return Py_BuildValue("(di)", x, i);
}

PyDoc_STRVAR(math_frexp_doc,
"frexp(x)\n"
"\n"
"Return the mantissa and exponent of x, as pair (m, e).\n"
"m is a float and e is an int, such that x = m * 2.**e.\n"
"If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.");

static PyObject *
math_ldexp(PyObject *self, PyObject *args)
{
    double x, r;
    PyObject *oexp;
    long exp;
    int overflow;
    if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
        return NULL;

    if (PyLong_Check(oexp)) {
        /* on overflow, replace exponent with either LONG_MAX
           or LONG_MIN, depending on the sign. */
        exp = PyLong_AsLongAndOverflow(oexp, &overflow);
        if (exp == -1 && PyErr_Occurred())
            return NULL;
        if (overflow)
            exp = overflow < 0 ? LONG_MIN : LONG_MAX;
    }
    else {
        PyErr_SetString(PyExc_TypeError,
                        "Expected an int as second argument to ldexp.");
        return NULL;
    }

    if (x == 0. || !Py_IS_FINITE(x)) {
        /* NaNs, zeros and infinities are returned unchanged */
        r = x;
        errno = 0;
    } else if (exp > INT_MAX) {
        /* overflow */
        r = copysign(Py_HUGE_VAL, x);
        errno = ERANGE;
    } else if (exp < INT_MIN) {
        /* underflow to +-0 */
        r = copysign(0., x);
        errno = 0;
    } else {
        errno = 0;
        PyFPE_START_PROTECT("in math_ldexp", return 0);
        r = ldexp(x, (int)exp);
        PyFPE_END_PROTECT(r);
        if (Py_IS_INFINITY(r))
            errno = ERANGE;
    }

    if (errno && is_error(r))
        return NULL;
    return PyFloat_FromDouble(r);
}

PyDoc_STRVAR(math_ldexp_doc,
"ldexp(x, i)\n\n\
Return x * (2**i).");

static PyObject *
math_modf(PyObject *self, PyObject *arg)
{
    double y, x = PyFloat_AsDouble(arg);
    if (x == -1.0 && PyErr_Occurred())
        return NULL;
    /* some platforms don't do the right thing for NaNs and
       infinities, so we take care of special cases directly. */
    if (!Py_IS_FINITE(x)) {
        if (Py_IS_INFINITY(x))
            return Py_BuildValue("(dd)", copysign(0., x), x);
        else if (Py_IS_NAN(x))
            return Py_BuildValue("(dd)", x, x);
    }

    errno = 0;
    PyFPE_START_PROTECT("in math_modf", return 0);
    x = modf(x, &y);
    PyFPE_END_PROTECT(x);
    return Py_BuildValue("(dd)", x, y);
}

PyDoc_STRVAR(math_modf_doc,
"modf(x)\n"
"\n"
"Return the fractional and integer parts of x.  Both results carry the sign\n"
"of x and are floats.");

/* A decent logarithm is easy to compute even for huge ints, but libm can't
   do that by itself -- loghelper can.  func is log or log10, and name is
   "log" or "log10".  Note that overflow of the result isn't possible: an int
   can contain no more than INT_MAX * SHIFT bits, so has value certainly less
   than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
   small enough to fit in an IEEE single.  log and log10 are even smaller.
   However, intermediate overflow is possible for an int if the number of bits
   in that int is larger than PY_SSIZE_T_MAX. */

static PyObject*
loghelper(PyObject* arg, double (*func)(double), const char *funcname)
{
    /* If it is int, do it ourselves. */
    if (PyLong_Check(arg)) {
        double x, result;
        Py_ssize_t e;

        /* Negative or zero inputs give a ValueError. */
        if (Py_SIZE(arg) <= 0) {
            PyErr_SetString(PyExc_ValueError,
                            "math domain error");
            return NULL;
        }

        x = PyLong_AsDouble(arg);
        if (x == -1.0 && PyErr_Occurred()) {
            if (!PyErr_ExceptionMatches(PyExc_OverflowError))
                return NULL;
            /* Here the conversion to double overflowed, but it's possible
               to compute the log anyway.  Clear the exception and continue. */
            PyErr_Clear();
            x = _PyLong_Frexp((PyLongObject *)arg, &e);
            if (x == -1.0 && PyErr_Occurred())
                return NULL;
            /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
            result = func(x) + func(2.0) * e;
        }
        else
            /* Successfully converted x to a double. */
            result = func(x);
        return PyFloat_FromDouble(result);
    }

    /* Else let libm handle it by itself. */
    return math_1(arg, func, 0);
}

static PyObject *
math_log(PyObject *self, PyObject *args)
{
    PyObject *arg;
    PyObject *base = NULL;
    PyObject *num, *den;
    PyObject *ans;

    if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
        return NULL;

    num = loghelper(arg, m_log, "log");
    if (num == NULL || base == NULL)
        return num;

    den = loghelper(base, m_log, "log");
    if (den == NULL) {
        Py_DECREF(num);
        return NULL;
    }

    ans = PyNumber_TrueDivide(num, den);
    Py_DECREF(num);
    Py_DECREF(den);
    return ans;
}

PyDoc_STRVAR(math_log_doc,
"log(x[, base])\n\n\
Return the logarithm of x to the given base.\n\
If the base not specified, returns the natural logarithm (base e) of x.");

static PyObject *
math_log2(PyObject *self, PyObject *arg)
{
    return loghelper(arg, m_log2, "log2");
}

PyDoc_STRVAR(math_log2_doc,
"log2(x)\n\nReturn the base 2 logarithm of x.");

static PyObject *
math_log10(PyObject *self, PyObject *arg)
{
    return loghelper(arg, m_log10, "log10");
}

PyDoc_STRVAR(math_log10_doc,
"log10(x)\n\nReturn the base 10 logarithm of x.");

static PyObject *
math_fmod(PyObject *self, PyObject *args)
{
    PyObject *ox, *oy;
    double r, x, y;
    if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
        return NULL;
    x = PyFloat_AsDouble(ox);
    y = PyFloat_AsDouble(oy);
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
        return NULL;
    /* fmod(x, +/-Inf) returns x for finite x. */
    if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
        return PyFloat_FromDouble(x);
    errno = 0;
    PyFPE_START_PROTECT("in math_fmod", return 0);
    r = fmod(x, y);
    PyFPE_END_PROTECT(r);
    if (Py_IS_NAN(r)) {
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
            errno = EDOM;
        else
            errno = 0;
    }
    if (errno && is_error(r))
        return NULL;
    else
        return PyFloat_FromDouble(r);
}

PyDoc_STRVAR(math_fmod_doc,
"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
"  x % y may differ.");

static PyObject *
math_hypot(PyObject *self, PyObject *args)
{
    PyObject *ox, *oy;
    double r, x, y;
    if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
        return NULL;
    x = PyFloat_AsDouble(ox);
    y = PyFloat_AsDouble(oy);
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
        return NULL;
    /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
    if (Py_IS_INFINITY(x))
        return PyFloat_FromDouble(fabs(x));
    if (Py_IS_INFINITY(y))
        return PyFloat_FromDouble(fabs(y));
    errno = 0;
    PyFPE_START_PROTECT("in math_hypot", return 0);
    r = hypot(x, y);
    PyFPE_END_PROTECT(r);
    if (Py_IS_NAN(r)) {
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
            errno = EDOM;
        else
            errno = 0;
    }
    else if (Py_IS_INFINITY(r)) {
        if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
            errno = ERANGE;
        else
            errno = 0;
    }
    if (errno && is_error(r))
        return NULL;
    else
        return PyFloat_FromDouble(r);
}

PyDoc_STRVAR(math_hypot_doc,
"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");

/* pow can't use math_2, but needs its own wrapper: the problem is
   that an infinite result can arise either as a result of overflow
   (in which case OverflowError should be raised) or as a result of
   e.g. 0.**-5. (for which ValueError needs to be raised.)
*/

static PyObject *
math_pow(PyObject *self, PyObject *args)
{
    PyObject *ox, *oy;
    double r, x, y;
    int odd_y;

    if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
        return NULL;
    x = PyFloat_AsDouble(ox);
    y = PyFloat_AsDouble(oy);
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
        return NULL;

    /* deal directly with IEEE specials, to cope with problems on various
       platforms whose semantics don't exactly match C99 */
    r = 0.; /* silence compiler warning */
    if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
        errno = 0;
        if (Py_IS_NAN(x))
            r = y == 0. ? 1. : x; /* NaN**0 = 1 */
        else if (Py_IS_NAN(y))
            r = x == 1. ? 1. : y; /* 1**NaN = 1 */
        else if (Py_IS_INFINITY(x)) {
            odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
            if (y > 0.)
                r = odd_y ? x : fabs(x);
            else if (y == 0.)
                r = 1.;
            else /* y < 0. */
                r = odd_y ? copysign(0., x) : 0.;
        }
        else if (Py_IS_INFINITY(y)) {
            if (fabs(x) == 1.0)
                r = 1.;
            else if (y > 0. && fabs(x) > 1.0)
                r = y;
            else if (y < 0. && fabs(x) < 1.0) {
                r = -y; /* result is +inf */
                if (x == 0.) /* 0**-inf: divide-by-zero */
                    errno = EDOM;
            }
            else
                r = 0.;
        }
    }
    else {
        /* let libm handle finite**finite */
        errno = 0;
        PyFPE_START_PROTECT("in math_pow", return 0);
        r = pow(x, y);
        PyFPE_END_PROTECT(r);
        /* a NaN result should arise only from (-ve)**(finite
           non-integer); in this case we want to raise ValueError. */
        if (!Py_IS_FINITE(r)) {
            if (Py_IS_NAN(r)) {
                errno = EDOM;
            }
            /*
               an infinite result here arises either from:
               (A) (+/-0.)**negative (-> divide-by-zero)
               (B) overflow of x**y with x and y finite
            */
            else if (Py_IS_INFINITY(r)) {
                if (x == 0.)
                    errno = EDOM;
                else
                    errno = ERANGE;
            }
        }
    }

    if (errno && is_error(r))
        return NULL;
    else
        return PyFloat_FromDouble(r);
}

PyDoc_STRVAR(math_pow_doc,
"pow(x, y)\n\nReturn x**y (x to the power of y).");

static const double degToRad = Py_MATH_PI / 180.0;
static const double radToDeg = 180.0 / Py_MATH_PI;

static PyObject *
math_degrees(PyObject *self, PyObject *arg)
{
    double x = PyFloat_AsDouble(arg);
    if (x == -1.0 && PyErr_Occurred())
        return NULL;
    return PyFloat_FromDouble(x * radToDeg);
}

PyDoc_STRVAR(math_degrees_doc,
"degrees(x)\n\n\
Convert angle x from radians to degrees.");

static PyObject *
math_radians(PyObject *self, PyObject *arg)
{
    double x = PyFloat_AsDouble(arg);
    if (x == -1.0 && PyErr_Occurred())
        return NULL;
    return PyFloat_FromDouble(x * degToRad);
}

PyDoc_STRVAR(math_radians_doc,
"radians(x)\n\n\
Convert angle x from degrees to radians.");

static PyObject *
math_isfinite(PyObject *self, PyObject *arg)
{
    double x = PyFloat_AsDouble(arg);
    if (x == -1.0 && PyErr_Occurred())
        return NULL;
    return PyBool_FromLong((long)Py_IS_FINITE(x));
}

PyDoc_STRVAR(math_isfinite_doc,
"isfinite(x) -> bool\n\n\
Return True if x is neither an infinity nor a NaN, and False otherwise.");

static PyObject *
math_isnan(PyObject *self, PyObject *arg)
{
    double x = PyFloat_AsDouble(arg);
    if (x == -1.0 && PyErr_Occurred())
        return NULL;
    return PyBool_FromLong((long)Py_IS_NAN(x));
}

PyDoc_STRVAR(math_isnan_doc,
"isnan(x) -> bool\n\n\
Return True if x is a NaN (not a number), and False otherwise.");

static PyObject *
math_isinf(PyObject *self, PyObject *arg)
{
    double x = PyFloat_AsDouble(arg);
    if (x == -1.0 && PyErr_Occurred())
        return NULL;
    return PyBool_FromLong((long)Py_IS_INFINITY(x));
}

PyDoc_STRVAR(math_isinf_doc,
"isinf(x) -> bool\n\n\
Return True if x is a positive or negative infinity, and False otherwise.");

static PyObject *
math_isclose(PyObject *self, PyObject *args, PyObject *kwargs)
{
    double a, b;
    double rel_tol = 1e-9;
    double abs_tol = 0.0;
    double diff = 0.0;
    long result = 0;

    static char *keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL};


    if (!PyArg_ParseTupleAndKeywords(args, kwargs, "dd|$dd:isclose",
                                     keywords,
                                     &a, &b, &rel_tol, &abs_tol
                                     ))
        return NULL;

    /* sanity check on the inputs */
    if (rel_tol < 0.0 || abs_tol < 0.0 ) {
        PyErr_SetString(PyExc_ValueError,
                        "tolerances must be non-negative");
        return NULL;
    }

    if ( a == b ) {
        /* short circuit exact equality -- needed to catch two infinities of
           the same sign. And perhaps speeds things up a bit sometimes.
        */
        Py_RETURN_TRUE;
    }

    /* This catches the case of two infinities of opposite sign, or
       one infinity and one finite number. Two infinities of opposite
       sign would otherwise have an infinite relative tolerance.
       Two infinities of the same sign are caught by the equality check
       above.
    */

    if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
        Py_RETURN_FALSE;
    }

    /* now do the regular computation
       this is essentially the "weak" test from the Boost library
    */

    diff = fabs(b - a);

    result = (((diff <= fabs(rel_tol * b)) ||
               (diff <= fabs(rel_tol * a))) ||
              (diff <= abs_tol));

    return PyBool_FromLong(result);
}

PyDoc_STRVAR(math_isclose_doc,
"isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool\n"
"\n"
"Determine whether two floating point numbers are close in value.\n"
"\n"
"   rel_tol\n"
"       maximum difference for being considered \"close\", relative to the\n"
"       magnitude of the input values\n"
"    abs_tol\n"
"       maximum difference for being considered \"close\", regardless of the\n"
"       magnitude of the input values\n"
"\n"
"Return True if a is close in value to b, and False otherwise.\n"
"\n"
"For the values to be considered close, the difference between them\n"
"must be smaller than at least one of the tolerances.\n"
"\n"
"-inf, inf and NaN behave similarly to the IEEE 754 Standard.  That\n"
"is, NaN is not close to anything, even itself.  inf and -inf are\n"
"only close to themselves.");

static PyMethodDef math_methods[] = {
    {"acos",            math_acos,      METH_O,         math_acos_doc},
    {"acosh",           math_acosh,     METH_O,         math_acosh_doc},
    {"asin",            math_asin,      METH_O,         math_asin_doc},
    {"asinh",           math_asinh,     METH_O,         math_asinh_doc},
    {"atan",            math_atan,      METH_O,         math_atan_doc},
    {"atan2",           math_atan2,     METH_VARARGS,   math_atan2_doc},
    {"atanh",           math_atanh,     METH_O,         math_atanh_doc},
    {"ceil",            math_ceil,      METH_O,         math_ceil_doc},
    {"copysign",        math_copysign,  METH_VARARGS,   math_copysign_doc},
    {"cos",             math_cos,       METH_O,         math_cos_doc},
    {"cosh",            math_cosh,      METH_O,         math_cosh_doc},
    {"degrees",         math_degrees,   METH_O,         math_degrees_doc},
    {"erf",             math_erf,       METH_O,         math_erf_doc},
    {"erfc",            math_erfc,      METH_O,         math_erfc_doc},
    {"exp",             math_exp,       METH_O,         math_exp_doc},
    {"expm1",           math_expm1,     METH_O,         math_expm1_doc},
    {"fabs",            math_fabs,      METH_O,         math_fabs_doc},
    {"factorial",       math_factorial, METH_O,         math_factorial_doc},
    {"floor",           math_floor,     METH_O,         math_floor_doc},
    {"fmod",            math_fmod,      METH_VARARGS,   math_fmod_doc},
    {"frexp",           math_frexp,     METH_O,         math_frexp_doc},
    {"fsum",            math_fsum,      METH_O,         math_fsum_doc},
    {"gamma",           math_gamma,     METH_O,         math_gamma_doc},
    {"gcd",             math_gcd,       METH_VARARGS,   math_gcd_doc},
    {"hypot",           math_hypot,     METH_VARARGS,   math_hypot_doc},
    {"isclose", (PyCFunction) math_isclose, METH_VARARGS | METH_KEYWORDS,
    math_isclose_doc},
    {"isfinite",        math_isfinite,  METH_O,         math_isfinite_doc},
    {"isinf",           math_isinf,     METH_O,         math_isinf_doc},
    {"isnan",           math_isnan,     METH_O,         math_isnan_doc},
    {"ldexp",           math_ldexp,     METH_VARARGS,   math_ldexp_doc},
    {"lgamma",          math_lgamma,    METH_O,         math_lgamma_doc},
    {"log",             math_log,       METH_VARARGS,   math_log_doc},
    {"log1p",           math_log1p,     METH_O,         math_log1p_doc},
    {"log10",           math_log10,     METH_O,         math_log10_doc},
    {"log2",            math_log2,      METH_O,         math_log2_doc},
    {"modf",            math_modf,      METH_O,         math_modf_doc},
    {"pow",             math_pow,       METH_VARARGS,   math_pow_doc},
    {"radians",         math_radians,   METH_O,         math_radians_doc},
    {"sin",             math_sin,       METH_O,         math_sin_doc},
    {"sinh",            math_sinh,      METH_O,         math_sinh_doc},
    {"sqrt",            math_sqrt,      METH_O,         math_sqrt_doc},
    {"tan",             math_tan,       METH_O,         math_tan_doc},
    {"tanh",            math_tanh,      METH_O,         math_tanh_doc},
    {"trunc",           math_trunc,     METH_O,         math_trunc_doc},
    {NULL,              NULL}           /* sentinel */
};


PyDoc_STRVAR(module_doc,
"This module is always available.  It provides access to the\n"
"mathematical functions defined by the C standard.");


static struct PyModuleDef mathmodule = {
    PyModuleDef_HEAD_INIT,
    "math",
    module_doc,
    -1,
    math_methods,
    NULL,
    NULL,
    NULL,
    NULL
};

PyMODINIT_FUNC
PyInit_math(void)
{
    PyObject *m;

    m = PyModule_Create(&mathmodule);
    if (m == NULL)
        goto finally;

    PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
    PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
    PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU));  /* 2pi */
    PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf()));
#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
    PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan()));
#endif

  finally:
    return m;
}