1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
// mqv.h - originally written and placed in the public domain by Wei Dai
/// \file mqv.h
/// \brief Classes for Menezes–Qu–Vanstone (MQV) key agreement
#ifndef CRYPTOPP_MQV_H
#define CRYPTOPP_MQV_H
#include "cryptlib.h"
#include "gfpcrypt.h"
#include "modarith.h"
#include "integer.h"
#include "algebra.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
/// \brief MQV domain for performing authenticated key agreement
/// \tparam GROUP_PARAMETERS doamin parameters
/// \tparam COFACTOR_OPTION cofactor option
/// \details GROUP_PARAMETERS parameters include the curve coefcients and the base point.
/// Binary curves use a polynomial to represent its characteristic, while prime curves
/// use a prime number.
/// \sa MQV, HMQV, FHMQV, and AuthenticatedKeyAgreementDomain
template <class GROUP_PARAMETERS, class COFACTOR_OPTION = typename GROUP_PARAMETERS::DefaultCofactorOption>
class MQV_Domain : public AuthenticatedKeyAgreementDomain
{
public:
typedef GROUP_PARAMETERS GroupParameters;
typedef typename GroupParameters::Element Element;
typedef MQV_Domain<GROUP_PARAMETERS, COFACTOR_OPTION> Domain;
/// \brief Construct a MQV domain
MQV_Domain() {}
/// \brief Construct a MQV domain
/// \param params group parameters and options
MQV_Domain(const GroupParameters ¶ms)
: m_groupParameters(params) {}
/// \brief Construct a MQV domain
/// \param bt BufferedTransformation with group parameters and options
MQV_Domain(BufferedTransformation &bt)
{m_groupParameters.BERDecode(bt);}
/// \brief Construct a MQV domain
/// \tparam T1 template parameter used as a constructor parameter
/// \tparam T2 template parameter used as a constructor parameter
/// \param v1 first parameter
/// \param v2 second parameter
/// \details v1 and v2 are passed directly to the GROUP_PARAMETERS object.
template <class T1, class T2>
MQV_Domain(T1 v1, T2 v2)
{m_groupParameters.Initialize(v1, v2);}
/// \brief Construct a MQV domain
/// \tparam T1 template parameter used as a constructor parameter
/// \tparam T2 template parameter used as a constructor parameter
/// \tparam T3 template parameter used as a constructor parameter
/// \param v1 first parameter
/// \param v2 second parameter
/// \param v3 third parameter
/// \details v1, v2 and v3 are passed directly to the GROUP_PARAMETERS object.
template <class T1, class T2, class T3>
MQV_Domain(T1 v1, T2 v2, T3 v3)
{m_groupParameters.Initialize(v1, v2, v3);}
/// \brief Construct a MQV domain
/// \tparam T1 template parameter used as a constructor parameter
/// \tparam T2 template parameter used as a constructor parameter
/// \tparam T3 template parameter used as a constructor parameter
/// \tparam T4 template parameter used as a constructor parameter
/// \param v1 first parameter
/// \param v2 second parameter
/// \param v3 third parameter
/// \param v4 third parameter
/// \details v1, v2, v3 and v4 are passed directly to the GROUP_PARAMETERS object.
template <class T1, class T2, class T3, class T4>
MQV_Domain(T1 v1, T2 v2, T3 v3, T4 v4)
{m_groupParameters.Initialize(v1, v2, v3, v4);}
/// \brief Retrieves the group parameters for this domain
/// \return the group parameters for this domain as a const reference
const GroupParameters & GetGroupParameters() const {return m_groupParameters;}
/// \brief Retrieves the group parameters for this domain
/// \return the group parameters for this domain as a non-const reference
GroupParameters & AccessGroupParameters() {return m_groupParameters;}
/// \brief Retrieves the crypto parameters for this domain
/// \return the crypto parameters for this domain as a non-const reference
CryptoParameters & AccessCryptoParameters() {return AccessAbstractGroupParameters();}
/// \brief Provides the size of the agreed value
/// \return size of agreed value produced in this domain
/// \details The length is calculated using <tt>GetEncodedElementSize(false)</tt>, which means the
/// element is encoded in a non-reversible format. A non-reversible format means its a raw byte array,
/// and it lacks presentation format like an ASN.1 BIT_STRING or OCTET_STRING.
unsigned int AgreedValueLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(false);}
/// \brief Provides the size of the static private key
/// \return size of static private keys in this domain
/// \details The length is calculated using the byte count of the subgroup order.
unsigned int StaticPrivateKeyLength() const {return GetAbstractGroupParameters().GetSubgroupOrder().ByteCount();}
/// \brief Provides the size of the static public key
/// \return size of static public keys in this domain
/// \details The length is calculated using <tt>GetEncodedElementSize(true)</tt>, which means the
/// element is encoded in a reversible format. A reversible format means it has a presentation format,
/// and its an ANS.1 encoded element or point.
unsigned int StaticPublicKeyLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(true);}
/// \brief Generate static private key in this domain
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer for the generated private key in this domain
/// \details The private key is a random scalar used as an exponent in the range <tt>[1,MaxExponent()]</tt>.
/// \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
{
Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
x.Encode(privateKey, StaticPrivateKeyLength());
}
/// \brief Generate a static public key from a private key in this domain
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer with the previously generated private key
/// \param publicKey a byte buffer for the generated public key in this domain
/// \details The public key is an element or point on the curve, and its stored in a revrsible format.
/// A reversible format means it has a presentation format, and its an ANS.1 encoded element or point.
/// \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
{
CRYPTOPP_UNUSED(rng);
const DL_GroupParameters<Element> ¶ms = GetAbstractGroupParameters();
Integer x(privateKey, StaticPrivateKeyLength());
Element y = params.ExponentiateBase(x);
params.EncodeElement(true, y, publicKey);
}
unsigned int EphemeralPrivateKeyLength() const {return StaticPrivateKeyLength() + StaticPublicKeyLength();}
unsigned int EphemeralPublicKeyLength() const {return StaticPublicKeyLength();}
void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
{
const DL_GroupParameters<Element> ¶ms = GetAbstractGroupParameters();
Integer x(rng, Integer::One(), params.GetMaxExponent());
x.Encode(privateKey, StaticPrivateKeyLength());
Element y = params.ExponentiateBase(x);
params.EncodeElement(true, y, privateKey+StaticPrivateKeyLength());
}
void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
{
CRYPTOPP_UNUSED(rng);
memcpy(publicKey, privateKey+StaticPrivateKeyLength(), EphemeralPublicKeyLength());
}
bool Agree(byte *agreedValue,
const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
bool validateStaticOtherPublicKey=true) const
{
try
{
const DL_GroupParameters<Element> ¶ms = GetAbstractGroupParameters();
Element WW = params.DecodeElement(staticOtherPublicKey, validateStaticOtherPublicKey);
Element VV = params.DecodeElement(ephemeralOtherPublicKey, true);
Integer s(staticPrivateKey, StaticPrivateKeyLength());
Integer u(ephemeralPrivateKey, StaticPrivateKeyLength());
Element V = params.DecodeElement(ephemeralPrivateKey+StaticPrivateKeyLength(), false);
const Integer &r = params.GetSubgroupOrder();
Integer h2 = Integer::Power2((r.BitCount()+1)/2);
Integer e = ((h2+params.ConvertElementToInteger(V)%h2)*s+u) % r;
Integer tt = h2 + params.ConvertElementToInteger(VV) % h2;
if (COFACTOR_OPTION::ToEnum() == NO_COFACTOR_MULTIPLICTION)
{
Element P = params.ExponentiateElement(WW, tt);
P = m_groupParameters.MultiplyElements(P, VV);
Element R[2];
const Integer e2[2] = {r, e};
params.SimultaneousExponentiate(R, P, e2, 2);
if (!params.IsIdentity(R[0]) || params.IsIdentity(R[1]))
return false;
params.EncodeElement(false, R[1], agreedValue);
}
else
{
const Integer &k = params.GetCofactor();
if (COFACTOR_OPTION::ToEnum() == COMPATIBLE_COFACTOR_MULTIPLICTION)
e = ModularArithmetic(r).Divide(e, k);
Element P = m_groupParameters.CascadeExponentiate(VV, k*e, WW, k*(e*tt%r));
if (params.IsIdentity(P))
return false;
params.EncodeElement(false, P, agreedValue);
}
}
catch (DL_BadElement &)
{
return false;
}
return true;
}
private:
DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return m_groupParameters;}
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return m_groupParameters;}
GroupParameters m_groupParameters;
};
/// Menezes-Qu-Vanstone in GF(p) with key validation, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#MQV">MQV</a>
/// \sa MQV, HMQV_Domain, FHMQV_Domain, AuthenticatedKeyAgreementDomain
typedef MQV_Domain<DL_GroupParameters_GFP_DefaultSafePrime> MQV;
NAMESPACE_END
#endif
|