summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorweidai <weidai@57ff6487-cd31-0410-9ec3-f628ee90f5f0>2007-04-15 22:54:31 +0000
committerweidai <weidai@57ff6487-cd31-0410-9ec3-f628ee90f5f0>2007-04-15 22:54:31 +0000
commit851f567904d2e6ef236fede79b02d638c71e4e2f (patch)
treed7c8c74edd548369be89d8f6e88d055995ecd95a
parent6da041704487c4c8d90b3caa5112ff1ecbb62fb2 (diff)
downloadcryptopp-851f567904d2e6ef236fede79b02d638c71e4e2f.tar.gz
SSE2 optimizations
git-svn-id: svn://svn.code.sf.net/p/cryptopp/code/trunk/c5@282 57ff6487-cd31-0410-9ec3-f628ee90f5f0
-rw-r--r--panama.cpp384
-rw-r--r--panama.h20
-rwxr-xr-xsalsa.cpp369
-rwxr-xr-xsalsa.h10
-rw-r--r--strciphr.cpp80
-rw-r--r--strciphr.h96
6 files changed, 768 insertions, 191 deletions
diff --git a/panama.cpp b/panama.cpp
index b1f4dfe..89a5aea 100644
--- a/panama.cpp
+++ b/panama.cpp
@@ -3,37 +3,296 @@
#include "pch.h"
#include "panama.h"
#include "misc.h"
+#include "cpu.h"
NAMESPACE_BEGIN(CryptoPP)
template <class B>
void Panama<B>::Reset()
{
- m_bstart = 0;
- memset(m_state, 0, m_state.size()*4);
+ memset(m_state, 0, m_state.SizeInBytes());
+#if CRYPTOPP_BOOL_SSSE3_ASM_AVAILABLE
+ m_state[17] = HasSSSE3();
+#endif
}
+#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
+
+#pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code
+
+void Panama_SSE2_Pull(size_t count, word32 *state, word32 *z, const word32 *y)
+{
+#ifdef __GNUC__
+ __asm__ __volatile__
+ (
+ ".intel_syntax noprefix;"
+ AS1( push ebx)
+#else
+ AS2( mov ecx, count)
+ AS2( mov esi, state)
+ AS2( mov edi, z)
+ AS2( mov edx, y)
+#endif
+ AS2( shl ecx, 5)
+ ASJ( jz, 5, f)
+ AS2( mov ebx, [esi+4*17])
+ AS2( add ecx, ebx)
+
+ AS1( push ebp)
+ AS1( push ecx)
+
+ AS2( movdqa xmm0, [esi+0*16])
+ AS2( movdqa xmm1, [esi+1*16])
+ AS2( movdqa xmm2, [esi+2*16])
+ AS2( movdqa xmm3, [esi+3*16])
+ AS2( mov eax, [esi+4*16])
+
+ ASL(4)
+ // gamma and pi
+#if CRYPTOPP_BOOL_SSSE3_ASM_AVAILABLE
+ AS2( test ebx, 1)
+ ASJ( jnz, 6, f)
+#endif
+ AS2( movdqa xmm6, xmm2)
+ AS2( movss xmm6, xmm3)
+ ASS( pshufd xmm5, xmm6, 0, 3, 2, 1)
+ AS2( movd xmm6, eax)
+ AS2( movdqa xmm7, xmm3)
+ AS2( movss xmm7, xmm6)
+ ASS( pshufd xmm6, xmm7, 0, 3, 2, 1)
+#if CRYPTOPP_BOOL_SSSE3_ASM_AVAILABLE
+ ASJ( jmp, 7, f)
+ ASL(6)
+ AS2( movdqa xmm5, xmm3)
+ AS3( palignr xmm5, xmm2, 4)
+ AS2( movd xmm6, eax)
+ AS3( palignr xmm6, xmm3, 4)
+ ASL(7)
+#endif
+
+ AS2( movd ecx, xmm2)
+ AS1( not ecx)
+ AS2( movd ebp, xmm3)
+ AS2( or ecx, ebp)
+ AS2( xor eax, ecx)
+
+#define SSE2_Index(i) ASM_MOD(((i)*13+16), 17)
+
+#define pi(i) \
+ AS2( movd ecx, xmm7)\
+ AS2( rol ecx, ASM_MOD((ASM_MOD(5*i,17)*(ASM_MOD(5*i,17)+1)/2), 32))\
+ AS2( mov [esi+SSE2_Index(ASM_MOD(5*(i), 17))*4], ecx)
+
+#define pi4(x, y, z, a, b, c, d) \
+ AS2( pcmpeqb xmm7, xmm7)\
+ AS2( pxor xmm7, x)\
+ AS2( por xmm7, y)\
+ AS2( pxor xmm7, z)\
+ pi(a)\
+ ASS( pshuflw xmm7, xmm7, 1, 0, 3, 2)\
+ pi(b)\
+ AS2( punpckhqdq xmm7, xmm7)\
+ pi(c)\
+ ASS( pshuflw xmm7, xmm7, 1, 0, 3, 2)\
+ pi(d)
+
+ pi4(xmm1, xmm2, xmm3, 1, 5, 9, 13)
+ pi4(xmm0, xmm1, xmm2, 2, 6, 10, 14)
+ pi4(xmm6, xmm0, xmm1, 3, 7, 11, 15)
+ pi4(xmm5, xmm6, xmm0, 4, 8, 12, 16)
+
+ // output keystream and update buffer here to hide partial memory stalls between pi and theta
+ AS2( movdqa xmm4, xmm3)
+ AS2( punpcklqdq xmm3, xmm2) // 1 5 2 6
+ AS2( punpckhdq xmm4, xmm2) // 9 10 13 14
+ AS2( movdqa xmm2, xmm1)
+ AS2( punpcklqdq xmm1, xmm0) // 3 7 4 8
+ AS2( punpckhdq xmm2, xmm0) // 11 12 15 16
+
+ // keystream
+ AS2( test edi, edi)
+ ASJ( jz, 0, f)
+ AS2( movdqa xmm6, xmm4)
+ AS2( punpcklqdq xmm4, xmm2)
+ AS2( punpckhqdq xmm6, xmm2)
+ AS2( test edx, 0xf)
+ ASJ( jnz, 2, f)
+ AS2( test edx, edx)
+ ASJ( jz, 1, f)
+ AS2( pxor xmm4, [edx])
+ AS2( pxor xmm6, [edx+16])
+ AS2( add edx, 32)
+ ASJ( jmp, 1, f)
+ ASL(2)
+ AS2( movdqu xmm0, [edx])
+ AS2( movdqu xmm2, [edx+16])
+ AS2( pxor xmm4, xmm0)
+ AS2( pxor xmm6, xmm2)
+ AS2( add edx, 32)
+ ASL(1)
+ AS2( test edi, 0xf)
+ ASJ( jnz, 3, f)
+ AS2( movdqa [edi], xmm4)
+ AS2( movdqa [edi+16], xmm6)
+ AS2( add edi, 32)
+ ASJ( jmp, 0, f)
+ ASL(3)
+ AS2( movdqu [edi], xmm4)
+ AS2( movdqu [edi+16], xmm6)
+ AS2( add edi, 32)
+ ASL(0)
+
+ // buffer update
+ AS2( lea ecx, [ebx + 32])
+ AS2( and ecx, 31*32)
+ AS2( lea ebp, [ebx + (32-24)*32])
+ AS2( and ebp, 31*32)
+
+ AS2( movdqa xmm0, [esi+20*4+ecx+0*8])
+ AS2( pxor xmm3, xmm0)
+ ASS( pshufd xmm0, xmm0, 2, 3, 0, 1)
+ AS2( movdqa [esi+20*4+ecx+0*8], xmm3)
+ AS2( pxor xmm0, [esi+20*4+ebp+2*8])
+ AS2( movdqa [esi+20*4+ebp+2*8], xmm0)
+
+ AS2( movdqa xmm4, [esi+20*4+ecx+2*8])
+ AS2( pxor xmm1, xmm4)
+ AS2( movdqa [esi+20*4+ecx+2*8], xmm1)
+ AS2( pxor xmm4, [esi+20*4+ebp+0*8])
+ AS2( movdqa [esi+20*4+ebp+0*8], xmm4)
+
+ // theta
+ AS2( movdqa xmm3, [esi+3*16])
+ AS2( movdqa xmm2, [esi+2*16])
+ AS2( movdqa xmm1, [esi+1*16])
+ AS2( movdqa xmm0, [esi+0*16])
+
+#if CRYPTOPP_BOOL_SSSE3_ASM_AVAILABLE
+ AS2( test ebx, 1)
+ ASJ( jnz, 8, f)
+#endif
+ AS2( movd xmm6, eax)
+ AS2( movdqa xmm7, xmm3)
+ AS2( movss xmm7, xmm6)
+ AS2( movdqa xmm6, xmm2)
+ AS2( movss xmm6, xmm3)
+ AS2( movdqa xmm5, xmm1)
+ AS2( movss xmm5, xmm2)
+ AS2( movdqa xmm4, xmm0)
+ AS2( movss xmm4, xmm1)
+ ASS( pshufd xmm7, xmm7, 0, 3, 2, 1)
+ ASS( pshufd xmm6, xmm6, 0, 3, 2, 1)
+ ASS( pshufd xmm5, xmm5, 0, 3, 2, 1)
+ ASS( pshufd xmm4, xmm4, 0, 3, 2, 1)
+#if CRYPTOPP_BOOL_SSSE3_ASM_AVAILABLE
+ ASJ( jmp, 9, f)
+ ASL(8)
+ AS2( movd xmm7, eax)
+ AS3( palignr xmm7, xmm3, 4)
+ AS2( movq xmm6, xmm3)
+ AS3( palignr xmm6, xmm2, 4)
+ AS2( movq xmm5, xmm2)
+ AS3( palignr xmm5, xmm1, 4)
+ AS2( movq xmm4, xmm1)
+ AS3( palignr xmm4, xmm0, 4)
+ ASL(9)
+#endif
+
+ AS2( xor eax, 1)
+ AS2( movd ecx, xmm0)
+ AS2( xor eax, ecx)
+ AS2( movd ecx, xmm3)
+ AS2( xor eax, ecx)
+
+ AS2( pxor xmm3, xmm2)
+ AS2( pxor xmm2, xmm1)
+ AS2( pxor xmm1, xmm0)
+ AS2( pxor xmm0, xmm7)
+ AS2( pxor xmm3, xmm7)
+ AS2( pxor xmm2, xmm6)
+ AS2( pxor xmm1, xmm5)
+ AS2( pxor xmm0, xmm4)
+
+ // sigma
+ AS2( lea ecx, [ebx + (32-4)*32])
+ AS2( and ecx, 31*32)
+ AS2( lea ebp, [ebx + 16*32])
+ AS2( and ebp, 31*32)
+
+ AS2( movdqa xmm4, [esi+20*4+ecx+0*16])
+ AS2( movdqa xmm5, [esi+20*4+ebp+0*16])
+ AS2( movdqa xmm6, xmm4)
+ AS2( punpcklqdq xmm4, xmm5)
+ AS2( punpckhqdq xmm6, xmm5)
+ AS2( pxor xmm3, xmm4)
+ AS2( pxor xmm2, xmm6)
+
+ AS2( movdqa xmm4, [esi+20*4+ecx+1*16])
+ AS2( movdqa xmm5, [esi+20*4+ebp+1*16])
+ AS2( movdqa xmm6, xmm4)
+ AS2( punpcklqdq xmm4, xmm5)
+ AS2( punpckhqdq xmm6, xmm5)
+ AS2( pxor xmm1, xmm4)
+ AS2( pxor xmm0, xmm6)
+
+ // loop
+ AS2( add ebx, 32)
+ AS2( cmp ebx, [esp])
+ ASJ( jne, 4, b)
+
+ // save state
+ AS2( mov ebp, [esp+4])
+ AS2( add esp, 8)
+ AS2( mov [esi+4*17], ebx)
+ AS2( mov [esi+4*16], eax)
+ AS2( movdqa [esi+3*16], xmm3)
+ AS2( movdqa [esi+2*16], xmm2)
+ AS2( movdqa [esi+1*16], xmm1)
+ AS2( movdqa [esi+0*16], xmm0)
+ ASL(5)
+
+#ifdef __GNUC__
+ AS1( pop ebx)
+ ".att_syntax prefix;"
+ :
+ : "c" (count), "S" (state), "D" (z), "d" (y)
+ : "%eax", "memory", "cc"
+ );
+#endif
+}
+
+#endif
+
template <class B>
void Panama<B>::Iterate(size_t count, const word32 *p, word32 *z, const word32 *y)
{
- unsigned int bstart = m_bstart;
- word32 *const a = m_state;
-#define c (a+17)
-#define b ((Stage *)(a+34))
+ word32 bstart = m_state[17];
+ word32 *const aPtr = m_state;
+ word32 cPtr[17];
+
+#define bPtr ((byte *)(aPtr+20))
+
+// reorder the state for SSE2
+// a and c: 4 8 12 16 | 3 7 11 15 | 2 6 10 14 | 1 5 9 13 | 0
+// xmm0 xmm1 xmm2 xmm3 eax
+#define a(i) aPtr[((i)*13+16) % 17] // 13 is inverse of 4 mod 17
+#define c(i) cPtr[((i)*13+16) % 17]
+// b: 0 4 | 1 5 | 2 6 | 3 7
+#define b(i, j) b##i[(j)*2%8 + (j)/4]
// output
-#define OA(i) z[i] = ConditionalByteReverse(B::ToEnum(), a[i+9])
-#define OX(i) z[i] = y[i] ^ ConditionalByteReverse(B::ToEnum(), a[i+9])
+#define OA(i) z[i] = ConditionalByteReverse(B::ToEnum(), a(i+9))
+#define OX(i) z[i] = y[i] ^ ConditionalByteReverse(B::ToEnum(), a(i+9))
// buffer update
-#define US(i) {word32 t=b0[i]; b0[i]=ConditionalByteReverse(B::ToEnum(), p[i])^t; b25[(i+6)%8]^=t;}
-#define UL(i) {word32 t=b0[i]; b0[i]=a[i+1]^t; b25[(i+6)%8]^=t;}
+#define US(i) {word32 t=b(0,i); b(0,i)=ConditionalByteReverse(B::ToEnum(), p[i])^t; b(25,(i+6)%8)^=t;}
+#define UL(i) {word32 t=b(0,i); b(0,i)=a(i+1)^t; b(25,(i+6)%8)^=t;}
// gamma and pi
-#define GP(i) c[5*i%17] = rotlFixed(a[i] ^ (a[(i+1)%17] | ~a[(i+2)%17]), ((5*i%17)*((5*i%17)+1)/2)%32)
+#define GP(i) c(5*i%17) = rotlFixed(a(i) ^ (a((i+1)%17) | ~a((i+2)%17)), ((5*i%17)*((5*i%17)+1)/2)%32)
// theta and sigma
-#define T(i,x) a[i] = c[i] ^ c[(i+1)%17] ^ c[(i+4)%17] ^ x
+#define T(i,x) a(i) = c(i) ^ c((i+1)%17) ^ c((i+4)%17) ^ x
#define TS1S(i) T(i+1, ConditionalByteReverse(B::ToEnum(), p[i]))
-#define TS1L(i) T(i+1, b4[i])
-#define TS2(i) T(i+9, b16[i])
+#define TS1L(i) T(i+1, b(4,i))
+#define TS2(i) T(i+9, b(16,i))
while (count--)
{
@@ -51,12 +310,11 @@ void Panama<B>::Iterate(size_t count, const word32 *p, word32 *z, const word32 *
z += 8;
}
- word32 *const b16 = b[(bstart+16) % STAGES];
- word32 *const b4 = b[(bstart+4) % STAGES];
- bstart = (bstart + STAGES - 1) % STAGES;
- word32 *const b0 = b[bstart];
- word32 *const b25 = b[(bstart+25) % STAGES];
-
+ word32 *const b16 = (word32 *)(bPtr+((bstart+16*32) & 31*32));
+ word32 *const b4 = (word32 *)(bPtr+((bstart+(32-4)*32) & 31*32));
+ bstart += 32;
+ word32 *const b0 = (word32 *)(bPtr+((bstart) & 31*32));
+ word32 *const b25 = (word32 *)(bPtr+((bstart+(32-25)*32) & 31*32));
if (p)
{
@@ -67,8 +325,23 @@ void Panama<B>::Iterate(size_t count, const word32 *p, word32 *z, const word32 *
UL(0); UL(1); UL(2); UL(3); UL(4); UL(5); UL(6); UL(7);
}
- GP(0); GP(1); GP(2); GP(3); GP(4); GP(5); GP(6); GP(7);
- GP(8); GP(9); GP(10); GP(11); GP(12); GP(13); GP(14); GP(15); GP(16);
+ GP(0);
+ GP(1);
+ GP(2);
+ GP(3);
+ GP(4);
+ GP(5);
+ GP(6);
+ GP(7);
+ GP(8);
+ GP(9);
+ GP(10);
+ GP(11);
+ GP(12);
+ GP(13);
+ GP(14);
+ GP(15);
+ GP(16);
T(0,1);
@@ -84,18 +357,18 @@ void Panama<B>::Iterate(size_t count, const word32 *p, word32 *z, const word32 *
TS2(0); TS2(1); TS2(2); TS2(3); TS2(4); TS2(5); TS2(6); TS2(7);
}
- m_bstart = bstart;
+ m_state[17] = bstart;
}
template <class B>
-size_t PanamaHash<B>::HashMultipleBlocks(const word32 *input, size_t length)
+size_t Weak::PanamaHash<B>::HashMultipleBlocks(const word32 *input, size_t length)
{
this->Iterate(length / this->BLOCKSIZE, input);
return length % this->BLOCKSIZE;
}
template <class B>
-void PanamaHash<B>::TruncatedFinal(byte *hash, size_t size)
+void Weak::PanamaHash<B>::TruncatedFinal(byte *hash, size_t size)
{
this->ThrowIfInvalidTruncatedSize(size);
@@ -105,8 +378,10 @@ void PanamaHash<B>::TruncatedFinal(byte *hash, size_t size)
this->Iterate(32); // pull
- ConditionalByteReverse(B::ToEnum(), this->m_state+9, this->m_state+9, DIGESTSIZE);
- memcpy(hash, this->m_state+9, size);
+ FixedSizeSecBlock<word32, 8> buf;
+ this->Iterate(1, NULL, buf, NULL);
+
+ memcpy(hash, buf, size);
this->Restart(); // reinit for next use
}
@@ -114,31 +389,64 @@ void PanamaHash<B>::TruncatedFinal(byte *hash, size_t size)
template <class B>
void PanamaCipherPolicy<B>::CipherSetKey(const NameValuePairs &params, const byte *key, size_t length)
{
- FixedSizeSecBlock<word32, 8> buf;
+ assert(length==32);
+ memcpy(m_key, key, 32);
+}
+template <class B>
+void PanamaCipherPolicy<B>::CipherResynchronize(byte *keystreamBuffer, const byte *iv)
+{
this->Reset();
- memcpy(buf, key, 32);
- this->Iterate(1, buf);
- if (length == 64)
- memcpy(buf, key+32, 32);
+ this->Iterate(1, m_key);
+ if (iv && IsAligned<word32>(iv))
+ this->Iterate(1, (const word32 *)iv);
+ else
+ {
+ FixedSizeSecBlock<word32, 8> buf;
+ if (iv)
+ memcpy(buf, iv, 32);
+ else
+ memset(buf, 0, 32);
+ this->Iterate(1, buf);
+ }
+
+#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
+ if (B::ToEnum() == LITTLE_ENDIAN_ORDER && HasSSE2())
+ Panama_SSE2_Pull(32, this->m_state, NULL, NULL);
else
- memset(buf, 0, 32);
- this->Iterate(1, buf);
+#endif
+ this->Iterate(32);
+}
- this->Iterate(32);
+#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X64
+template <class B>
+unsigned int PanamaCipherPolicy<B>::GetAlignment() const
+{
+#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
+ if (B::ToEnum() == LITTLE_ENDIAN_ORDER && HasSSE2())
+ return 16;
+ else
+#endif
+ return 1;
}
+#endif
template <class B>
void PanamaCipherPolicy<B>::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{
- this->Iterate(iterationCount, NULL, (word32 *)output, (const word32 *)input);
+#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
+ if (B::ToEnum() == LITTLE_ENDIAN_ORDER && HasSSE2())
+ Panama_SSE2_Pull(iterationCount, this->m_state, (word32 *)output, (const word32 *)input);
+ else
+#endif
+ this->Iterate(iterationCount, NULL, (word32 *)output, (const word32 *)input);
}
template class Panama<BigEndian>;
template class Panama<LittleEndian>;
-template class PanamaHash<BigEndian>;
-template class PanamaHash<LittleEndian>;
+template class Weak::PanamaHash<BigEndian>;
+template class Weak::PanamaHash<LittleEndian>;
template class PanamaCipherPolicy<BigEndian>;
template class PanamaCipherPolicy<LittleEndian>;
diff --git a/panama.h b/panama.h
index bb0ed3b..672076d 100644
--- a/panama.h
+++ b/panama.h
@@ -1,8 +1,6 @@
#ifndef CRYPTOPP_PANAMA_H
#define CRYPTOPP_PANAMA_H
-#include "seckey.h"
-#include "secblock.h"
#include "strciphr.h"
#include "iterhash.h"
@@ -20,10 +18,10 @@ protected:
typedef word32 Stage[8];
CRYPTOPP_CONSTANT(STAGES = 32)
- FixedSizeSecBlock<word32, 17*2 + 32*sizeof(Stage)> m_state;
- unsigned int m_bstart;
+ FixedSizeAlignedSecBlock<word32, 20 + 8*32> m_state;
};
+namespace Weak {
/// <a href="http://www.weidai.com/scan-mirror/md.html#Panama">Panama Hash</a>
template <class B = LittleEndian>
class PanamaHash : protected Panama<B>, public AlgorithmImpl<IteratedHash<word32, NativeByteOrder, 32>, PanamaHash<B> >
@@ -39,7 +37,9 @@ protected:
void Init() {Panama<B>::Reset();}
void HashEndianCorrectedBlock(const word32 *data) {this->Iterate(1, data);} // push
size_t HashMultipleBlocks(const word32 *input, size_t length);
+ word32* StateBuf() {return NULL;}
};
+}
//! MAC construction using a hermetic hash function
template <class T_Hash, class T_Info = T_Hash>
@@ -94,6 +94,7 @@ protected:
SecByteBlock m_key;
};
+namespace Weak {
/// Panama MAC
template <class B = LittleEndian>
class PanamaMAC : public HermeticHashFunctionMAC<PanamaHash<B> >
@@ -103,10 +104,11 @@ public:
PanamaMAC(const byte *key, unsigned int length)
{this->SetKey(key, length);}
};
+}
//! algorithm info
template <class B>
-struct PanamaCipherInfo : public VariableKeyLength<32, 32, 64, 32, SimpleKeyingInterface::NOT_RESYNCHRONIZABLE>
+struct PanamaCipherInfo : public FixedKeyLength<32, SimpleKeyingInterface::UNIQUE_IV, 32>
{
static const char * StaticAlgorithmName() {return B::ToEnum() == BIG_ENDIAN_ORDER ? "Panama-BE" : "Panama-LE";}
};
@@ -121,9 +123,15 @@ protected:
void CipherSetKey(const NameValuePairs &params, const byte *key, size_t length);
void OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount);
bool IsRandomAccess() const {return false;}
+ void CipherResynchronize(byte *keystreamBuffer, const byte *iv);
+#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X64
+ unsigned int GetAlignment() const;
+#endif
+
+ FixedSizeSecBlock<word32, 8> m_key;
};
-//! <a href="http://www.weidai.com/scan-mirror/cs.html#Panama">Panama Stream Cipher</a>
+//! <a href="http://www.cryptolounge.org/wiki/PANAMA">Panama Stream Cipher</a>
template <class B = LittleEndian>
struct PanamaCipher : public PanamaCipherInfo<B>, public SymmetricCipherDocumentation
{
diff --git a/salsa.cpp b/salsa.cpp
index 5a84b73..40fffc4 100755
--- a/salsa.cpp
+++ b/salsa.cpp
@@ -4,6 +4,9 @@
#include "salsa.h"
#include "misc.h"
#include "argnames.h"
+#include "cpu.h"
+
+#include <emmintrin.h>
NAMESPACE_BEGIN(CryptoPP)
@@ -14,11 +17,13 @@ void Salsa20_TestInstantiations()
void Salsa20_Policy::CipherGetNextIV(byte *IV)
{
- word32 j6 = m_state[6] + 1;
- word32 j7 = m_state[7] + (j6 == 0);
+ word32 j6, j7;
+
+ j6 = m_state[14] + 1;
+ j7 = m_state[11] + (j6 == 0);
- UnalignedPutWord(LITTLE_ENDIAN_ORDER, IV, j6);
- UnalignedPutWord(LITTLE_ENDIAN_ORDER, IV+4, j7);
+ PutWord(false, LITTLE_ENDIAN_ORDER, IV, j6);
+ PutWord(false, LITTLE_ENDIAN_ORDER, IV+4, j7);
}
void Salsa20_Policy::CipherSetKey(const NameValuePairs &params, const byte *key, size_t length)
@@ -28,112 +33,304 @@ void Salsa20_Policy::CipherSetKey(const NameValuePairs &params, const byte *key,
if (!(m_rounds == 8 || m_rounds == 12 || m_rounds == 20))
throw InvalidRounds(StaticAlgorithmName(), m_rounds);
- GetUserKey(LITTLE_ENDIAN_ORDER, m_state+1, 4, key, 16);
- GetUserKey(LITTLE_ENDIAN_ORDER, m_state+11, 4, key + length - 16, 16);
+ // m_state is reordered for SSE2
+ GetBlock<word32, LittleEndian, false> get1(key);
+ get1(m_state[13])(m_state[10])(m_state[7])(m_state[4]);
+ GetBlock<word32, LittleEndian, false> get2(key + length - 16);
+ get2(m_state[15])(m_state[12])(m_state[9])(m_state[6]);
- // m_state[0,5,10,15] forms "expand 16-byte k" or "expand 32-byte k"
+ // "expand 16-byte k" or "expand 32-byte k"
m_state[0] = 0x61707865;
- m_state[5] = (length == 16) ? 0x3120646e : 0x3320646e;
- m_state[10] = (length == 16) ? 0x79622d36 : 0x79622d32;
- m_state[15] = 0x6b206574;
+ m_state[1] = (length == 16) ? 0x3120646e : 0x3320646e;
+ m_state[2] = (length == 16) ? 0x79622d36 : 0x79622d32;
+ m_state[3] = 0x6b206574;
}
void Salsa20_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *IV)
{
- GetUserKey(LITTLE_ENDIAN_ORDER, m_state+6, 4, IV, 8);
+ GetBlock<word32, LittleEndian, false> get(IV);
+ get(m_state[14])(m_state[11]);
+ m_state[8] = m_state[5] = 0;
}
void Salsa20_Policy::SeekToIteration(lword iterationCount)
{
m_state[8] = (word32)iterationCount;
- m_state[9] = (word32)SafeRightShift<32>(iterationCount);
+ m_state[5] = (word32)SafeRightShift<32>(iterationCount);
+}
+
+#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X64
+unsigned int Salsa20_Policy::GetAlignment() const
+{
+#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
+ if (HasSSE2())
+ return 16;
+ else
+#endif
+ return 1;
+}
+
+unsigned int Salsa20_Policy::GetOptimalBlockSize() const
+{
+#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
+ if (HasSSE2())
+ return 4*BYTES_PER_ITERATION;
+ else
+#endif
+ return BYTES_PER_ITERATION;
}
+#endif
void Salsa20_Policy::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{
- KeystreamOutput<LittleEndian> keystreamOutput(operation, output, input);
+ int i;
+#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
+ if (HasSSE2())
+ {
+ __m128i *s = (__m128i *)m_state.data();
+
+ if (iterationCount >= 4)
+ {
+ __m128i ss[16];
+ ss[0] = _mm_shuffle_epi32(s[0], _MM_SHUFFLE(0, 0, 0, 0));
+ ss[1] = _mm_shuffle_epi32(s[0], _MM_SHUFFLE(1, 1, 1, 1));
+ ss[2] = _mm_shuffle_epi32(s[0], _MM_SHUFFLE(2, 2, 2, 2));
+ ss[3] = _mm_shuffle_epi32(s[0], _MM_SHUFFLE(3, 3, 3, 3));
+ ss[4] = _mm_shuffle_epi32(s[1], _MM_SHUFFLE(0, 0, 0, 0));
+ ss[6] = _mm_shuffle_epi32(s[1], _MM_SHUFFLE(2, 2, 2, 2));
+ ss[7] = _mm_shuffle_epi32(s[1], _MM_SHUFFLE(3, 3, 3, 3));
+ ss[9] = _mm_shuffle_epi32(s[2], _MM_SHUFFLE(1, 1, 1, 1));
+ ss[10] = _mm_shuffle_epi32(s[2], _MM_SHUFFLE(2, 2, 2, 2));
+ ss[11] = _mm_shuffle_epi32(s[2], _MM_SHUFFLE(3, 3, 3, 3));
+ ss[12] = _mm_shuffle_epi32(s[3], _MM_SHUFFLE(0, 0, 0, 0));
+ ss[13] = _mm_shuffle_epi32(s[3], _MM_SHUFFLE(1, 1, 1, 1));
+ ss[14] = _mm_shuffle_epi32(s[3], _MM_SHUFFLE(2, 2, 2, 2));
+ ss[15] = _mm_shuffle_epi32(s[3], _MM_SHUFFLE(3, 3, 3, 3));
+
+ do
+ {
+ word32 *countersLo = (word32*)&(ss[8]), *countersHi = (word32*)&(ss[5]);
+ for (i=0; i<4; i++)
+ {
+ countersLo[i] = m_state[8];
+ countersHi[i] = m_state[5];
+ if (++m_state[8] == 0)
+ ++m_state[5];
+ }
+
+ __m128i x0 = ss[0];
+ __m128i x1 = ss[1];
+ __m128i x2 = ss[2];
+ __m128i x3 = ss[3];
+ __m128i x4 = ss[4];
+ __m128i x5 = ss[5];
+ __m128i x6 = ss[6];
+ __m128i x7 = ss[7];
+ __m128i x8 = ss[8];
+ __m128i x9 = ss[9];
+ __m128i x10 = ss[10];
+ __m128i x11 = ss[11];
+ __m128i x12 = ss[12];
+ __m128i x13 = ss[13];
+ __m128i x14 = ss[14];
+ __m128i x15 = ss[15];
+
+ for (i=m_rounds; i>0; i-=2)
+ {
+ #define SSE2_QUARTER_ROUND(a, b, d, i) {\
+ __m128i t = _mm_add_epi32(a, d); \
+ b = _mm_xor_si128(b, _mm_slli_epi32(t, i)); \
+ b = _mm_xor_si128(b, _mm_srli_epi32(t, 32-i));}
+
+ #define QUARTER_ROUND(a, b, c, d) \
+ SSE2_QUARTER_ROUND(a, b, d, 7) \
+ SSE2_QUARTER_ROUND(b, c, a, 9) \
+ SSE2_QUARTER_ROUND(c, d, b, 13) \
+ SSE2_QUARTER_ROUND(d, a, c, 18)
+
+ QUARTER_ROUND(x0, x4, x8, x12)
+ QUARTER_ROUND(x1, x5, x9, x13)
+ QUARTER_ROUND(x2, x6, x10, x14)
+ QUARTER_ROUND(x3, x7, x11, x15)
+
+ QUARTER_ROUND(x0, x13, x10, x7)
+ QUARTER_ROUND(x1, x14, x11, x4)
+ QUARTER_ROUND(x2, x15, x8, x5)
+ QUARTER_ROUND(x3, x12, x9, x6)
+
+ #undef QUARTER_ROUND
+ }
+
+ x0 = _mm_add_epi32(x0, ss[0]);
+ x1 = _mm_add_epi32(x1, ss[1]);
+ x2 = _mm_add_epi32(x2, ss[2]);
+ x3 = _mm_add_epi32(x3, ss[3]);
+ x4 = _mm_add_epi32(x4, ss[4]);
+ x5 = _mm_add_epi32(x5, ss[5]);
+ x6 = _mm_add_epi32(x6, ss[6]);
+ x7 = _mm_add_epi32(x7, ss[7]);
+ x8 = _mm_add_epi32(x8, ss[8]);
+ x9 = _mm_add_epi32(x9, ss[9]);
+ x10 = _mm_add_epi32(x10, ss[10]);
+ x11 = _mm_add_epi32(x11, ss[11]);
+ x12 = _mm_add_epi32(x12, ss[12]);
+ x13 = _mm_add_epi32(x13, ss[13]);
+ x14 = _mm_add_epi32(x14, ss[14]);
+ x15 = _mm_add_epi32(x15, ss[15]);
+
+ #define OUTPUT_4(x, a, b, c, d, e, f, g, h) {\
+ __m128i t0 = _mm_unpacklo_epi32(a, b);\
+ __m128i t1 = _mm_unpacklo_epi32(c, d);\
+ __m128i t2 = _mm_unpacklo_epi64(t0, t1);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, e, t2)\
+ t2 = _mm_unpackhi_epi64(t0, t1);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, f, t2)\
+ t0 = _mm_unpackhi_epi32(a, b);\
+ t1 = _mm_unpackhi_epi32(c, d);\
+ t2 = _mm_unpacklo_epi64(t0, t1);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, g, t2)\
+ t2 = _mm_unpackhi_epi64(t0, t1);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, h, t2)}
+
+ #define SALSA_OUTPUT(x) \
+ OUTPUT_4(x, x0, x13, x10, x7, 0, 4, 8, 12)\
+ OUTPUT_4(x, x4, x1, x14, x11, 1, 5, 9, 13)\
+ OUTPUT_4(x, x8, x5, x2, x15, 2, 6, 10, 14)\
+ OUTPUT_4(x, x12, x9, x6, x3, 3, 7, 11, 15)
+
+ CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(SALSA_OUTPUT, 4*BYTES_PER_ITERATION)
+
+ #undef SALSA_OUTPUT
+ } while ((iterationCount-=4) >= 4);
+ }
+
+ if (!IsP4()) while (iterationCount)
+ {
+ --iterationCount;
+ __m128i x0 = s[0];
+ __m128i x1 = s[1];
+ __m128i x2 = s[2];
+ __m128i x3 = s[3];
+
+ for (i=m_rounds; i>0; i-=2)
+ {
+ SSE2_QUARTER_ROUND(x0, x1, x3, 7)
+ SSE2_QUARTER_ROUND(x1, x2, x0, 9)
+ SSE2_QUARTER_ROUND(x2, x3, x1, 13)
+ SSE2_QUARTER_ROUND(x3, x0, x2, 18)
+
+ x1 = _mm_shuffle_epi32(x1, _MM_SHUFFLE(2, 1, 0, 3));
+ x2 = _mm_shuffle_epi32(x2, _MM_SHUFFLE(1, 0, 3, 2));
+ x3 = _mm_shuffle_epi32(x3, _MM_SHUFFLE(0, 3, 2, 1));
+
+ SSE2_QUARTER_ROUND(x0, x3, x1, 7)
+ SSE2_QUARTER_ROUND(x3, x2, x0, 9)
+ SSE2_QUARTER_ROUND(x2, x1, x3, 13)
+ SSE2_QUARTER_ROUND(x1, x0, x2, 18)
+
+ x1 = _mm_shuffle_epi32(x1, _MM_SHUFFLE(0, 3, 2, 1));
+ x2 = _mm_shuffle_epi32(x2, _MM_SHUFFLE(1, 0, 3, 2));
+ x3 = _mm_shuffle_epi32(x3, _MM_SHUFFLE(2, 1, 0, 3));
+ }
+
+ x0 = _mm_add_epi32(x0, s[0]);
+ x1 = _mm_add_epi32(x1, s[1]);
+ x2 = _mm_add_epi32(x2, s[2]);
+ x3 = _mm_add_epi32(x3, s[3]);
+
+ if (++m_state[8] == 0)
+ ++m_state[5];
+
+ CRYPTOPP_ALIGN_DATA(16) static const word32 masks[8] CRYPTOPP_SECTION_ALIGN16 =
+ {0, 0xffffffff, 0, 0xffffffff, 0xffffffff, 0, 0xffffffff, 0};
+
+ __m128i k02 = _mm_or_si128(_mm_slli_epi64(x0, 32), _mm_srli_epi64(x3, 32));
+ k02 = _mm_shuffle_epi32(k02, _MM_SHUFFLE(0, 1, 2, 3));
+ __m128i k13 = _mm_or_si128(_mm_slli_epi64(x1, 32), _mm_srli_epi64(x0, 32));
+ k13 = _mm_shuffle_epi32(k13, _MM_SHUFFLE(0, 1, 2, 3));
+ __m128i maskLo32 = ((__m128i*)masks)[1], maskHi32 = ((__m128i*)masks)[0];
+ __m128i k20 = _mm_or_si128(_mm_and_si128(x2, maskLo32), _mm_and_si128(x1, maskHi32));
+ __m128i k31 = _mm_or_si128(_mm_and_si128(x3, maskLo32), _mm_and_si128(x2, maskHi32));
+
+ __m128i k0 = _mm_unpackhi_epi64(k02, k20);
+ __m128i k1 = _mm_unpackhi_epi64(k13, k31);
+ __m128i k2 = _mm_unpacklo_epi64(k20, k02);
+ __m128i k3 = _mm_unpacklo_epi64(k31, k13);
+
+ #define SSE2_OUTPUT(x) {\
+ CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, 0, k0)\
+ CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, 1, k1)\
+ CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, 2, k2)\
+ CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, 3, k3)}
+
+ CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(SSE2_OUTPUT, BYTES_PER_ITERATION);
+ }
+ }
+#endif
word32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
- word32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
-
- j0 = m_state[0];
- j1 = m_state[1];
- j2 = m_state[2];
- j3 = m_state[3];
- j4 = m_state[4];
- j5 = m_state[5];
- j6 = m_state[6];
- j7 = m_state[7];
- j8 = m_state[8];
- j9 = m_state[9];
- j10 = m_state[10];
- j11 = m_state[11];
- j12 = m_state[12];
- j13 = m_state[13];
- j14 = m_state[14];
- j15 = m_state[15];
-
- for (size_t iteration = 0; iteration < iterationCount; ++iteration)
+
+ while (iterationCount--)
{
- x0 = j0;
- x1 = j1;
- x2 = j2;
- x3 = j3;
- x4 = j4;
- x5 = j5;
- x6 = j6;
- x7 = j7;
- x8 = j8;
- x9 = j9;
- x10 = j10;
- x11 = j11;
- x12 = j12;
- x13 = j13;
- x14 = j14;
- x15 = j15;
-
- for (int i=m_rounds; i>0; i-=2)
+ x0 = m_state[0];
+ x1 = m_state[1];
+ x2 = m_state[2];
+ x3 = m_state[3];
+ x4 = m_state[4];
+ x5 = m_state[5];
+ x6 = m_state[6];
+ x7 = m_state[7];
+ x8 = m_state[8];
+ x9 = m_state[9];
+ x10 = m_state[10];
+ x11 = m_state[11];
+ x12 = m_state[12];
+ x13 = m_state[13];
+ x14 = m_state[14];
+ x15 = m_state[15];
+
+ for (i=m_rounds; i>0; i-=2)
{
-#define QUARTER_ROUND(a, b, c, d) \
- b = b ^ rotlFixed(a + d, 7); \
- c = c ^ rotlFixed(b + a, 9); \
- d = d ^ rotlFixed(c + b, 13); \
- a = a ^ rotlFixed(d + c, 18);
+ #define QUARTER_ROUND(a, b, c, d) \
+ b = b ^ rotlFixed(a + d, 7); \
+ c = c ^ rotlFixed(b + a, 9); \
+ d = d ^ rotlFixed(c + b, 13); \
+ a = a ^ rotlFixed(d + c, 18);
QUARTER_ROUND(x0, x4, x8, x12)
- QUARTER_ROUND(x5, x9, x13, x1)
- QUARTER_ROUND(x10, x14, x2, x6)
- QUARTER_ROUND(x15, x3, x7, x11)
-
- QUARTER_ROUND(x0, x1, x2, x3)
- QUARTER_ROUND(x5, x6, x7, x4)
- QUARTER_ROUND(x10, x11, x8, x9)
- QUARTER_ROUND(x15, x12, x13, x14)
+ QUARTER_ROUND(x1, x5, x9, x13)
+ QUARTER_ROUND(x2, x6, x10, x14)
+ QUARTER_ROUND(x3, x7, x11, x15)
+
+ QUARTER_ROUND(x0, x13, x10, x7)
+ QUARTER_ROUND(x1, x14, x11, x4)
+ QUARTER_ROUND(x2, x15, x8, x5)
+ QUARTER_ROUND(x3, x12, x9, x6)
}
- keystreamOutput (x0 + j0)
- (x1 + j1)
- (x2 + j2)
- (x3 + j3)
- (x4 + j4)
- (x5 + j5)
- (x6 + j6)
- (x7 + j7)
- (x8 + j8)
- (x9 + j9)
- (x10 + j10)
- (x11 + j11)
- (x12 + j12)
- (x13 + j13)
- (x14 + j14)
- (x15 + j15);
-
- if (++j8 == 0)
- ++j9;
- }
+ #define SALSA_OUTPUT(x) {\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 0, x0 + m_state[0]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 1, x13 + m_state[13]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 2, x10 + m_state[10]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 3, x7 + m_state[7]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 4, x4 + m_state[4]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 5, x1 + m_state[1]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 6, x14 + m_state[14]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 7, x11 + m_state[11]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 8, x8 + m_state[8]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 9, x5 + m_state[5]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 10, x2 + m_state[2]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 11, x15 + m_state[15]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 12, x12 + m_state[12]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 13, x9 + m_state[9]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 14, x6 + m_state[6]);\
+ CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 15, x3 + m_state[3]);}
- m_state[8] = j8;
- m_state[9] = j9;
+ CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(SALSA_OUTPUT, BYTES_PER_ITERATION);
+
+ if (++m_state[8] == 0)
+ ++m_state[5];
+ }
}
NAMESPACE_END
diff --git a/salsa.h b/salsa.h
index 8d6bedf..176a1a3 100755
--- a/salsa.h
+++ b/salsa.h
@@ -8,7 +8,7 @@
NAMESPACE_BEGIN(CryptoPP)
//! _
-struct Salsa20_Info : public VariableKeyLength<32, 16, 32, 16, SimpleKeyingInterface::STRUCTURED_IV, 8>
+struct Salsa20_Info : public VariableKeyLength<32, 16, 32, 16, SimpleKeyingInterface::UNIQUE_IV, 8>
{
static const char *StaticAlgorithmName() {return "Salsa20";}
};
@@ -22,13 +22,17 @@ protected:
void CipherResynchronize(byte *keystreamBuffer, const byte *IV);
bool IsRandomAccess() const {return true;}
void SeekToIteration(lword iterationCount);
+#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X64
+ unsigned int GetAlignment() const;
+ unsigned int GetOptimalBlockSize() const;
+#endif
private:
+ FixedSizeAlignedSecBlock<word32, 16> m_state;
int m_rounds;
- FixedSizeSecBlock<word32, 16> m_state;
};
-//! Salsa20, variable rounds: 8, 12 or 20 (default 20)
+/// <a href="http://www.cryptolounge.org/wiki/Salsa20">Salsa20</a>, variable rounds: 8, 12 or 20 (default 20)
struct Salsa20 : public Salsa20_Info, public SymmetricCipherDocumentation
{
typedef SymmetricCipherFinal<ConcretePolicyHolder<Salsa20_Policy, AdditiveCipherTemplate<> >, Salsa20_Info> Encryption;
diff --git a/strciphr.cpp b/strciphr.cpp
index b25017e..6294785 100644
--- a/strciphr.cpp
+++ b/strciphr.cpp
@@ -38,6 +38,57 @@ byte AdditiveCipherTemplate<S>::GenerateByte()
}
template <class S>
+void AdditiveCipherTemplate<S>::GenerateBlock(byte *outString, size_t length)
+{
+ if (m_leftOver > 0)
+ {
+ size_t len = STDMIN(m_leftOver, length);
+ memcpy(outString, KeystreamBufferEnd()-m_leftOver, len);
+ length -= len;
+ m_leftOver -= len;
+ outString += len;
+
+ if (!length)
+ return;
+ }
+ assert(m_leftOver == 0);
+
+ PolicyInterface &policy = this->AccessPolicy();
+ unsigned int bytesPerIteration = policy.GetBytesPerIteration();
+
+ if (length >= bytesPerIteration)
+ {
+ size_t iterations = length / bytesPerIteration;
+
+ policy.WriteKeystream(outString, iterations);
+
+ outString += iterations * bytesPerIteration;
+ length -= iterations * bytesPerIteration;
+
+ if (!length)
+ return;
+ }
+
+ unsigned int bufferByteSize = GetBufferByteSize(policy);
+ unsigned int bufferIterations = policy.GetIterationsToBuffer();
+
+ while (length >= bufferByteSize)
+ {
+ policy.WriteKeystream(m_buffer, bufferIterations);
+ memcpy(outString, KeystreamBufferBegin(), bufferByteSize);
+ length -= bufferByteSize;
+ outString += bufferByteSize;
+ }
+
+ if (length > 0)
+ {
+ policy.WriteKeystream(m_buffer, bufferIterations);
+ memcpy(outString, KeystreamBufferBegin(), length);
+ m_leftOver = bytesPerIteration - length;
+ }
+}
+
+template <class S>
void AdditiveCipherTemplate<S>::ProcessData(byte *outString, const byte *inString, size_t length)
{
if (m_leftOver > 0)
@@ -48,29 +99,26 @@ void AdditiveCipherTemplate<S>::ProcessData(byte *outString, const byte *inStrin
m_leftOver -= len;
inString += len;
outString += len;
- }
-
- if (!length)
- return;
+ if (!length)
+ return;
+ }
assert(m_leftOver == 0);
PolicyInterface &policy = this->AccessPolicy();
unsigned int bytesPerIteration = policy.GetBytesPerIteration();
- unsigned int alignment = policy.GetAlignment();
- if (policy.CanOperateKeystream() && length >= bytesPerIteration && IsAlignedOn(outString, alignment))
+ if (policy.CanOperateKeystream() && length >= bytesPerIteration)
{
- if (IsAlignedOn(inString, alignment))
- policy.OperateKeystream(XOR_KEYSTREAM, outString, inString, length / bytesPerIteration);
- else
- {
- memcpy(outString, inString, length);
- policy.OperateKeystream(XOR_KEYSTREAM_INPLACE, outString, outString, length / bytesPerIteration);
- }
- inString += length - length % bytesPerIteration;
- outString += length - length % bytesPerIteration;
- length %= bytesPerIteration;
+ size_t iterations = length / bytesPerIteration;
+ unsigned int alignment = policy.GetAlignment();
+ KeystreamOperation operation = KeystreamOperation((IsAlignedOn(inString, alignment) * 2) | (int)IsAlignedOn(outString, alignment));
+
+ policy.OperateKeystream(operation, outString, inString, iterations);
+
+ inString += iterations * bytesPerIteration;
+ outString += iterations * bytesPerIteration;
+ length -= iterations * bytesPerIteration;
if (!length)
return;
diff --git a/strciphr.h b/strciphr.h
index d46f9eb..e9bcf2e 100644
--- a/strciphr.h
+++ b/strciphr.h
@@ -53,14 +53,23 @@ protected:
POLICY_INTERFACE & AccessPolicy() {return *this;}
};
-enum KeystreamOperation {WRITE_KEYSTREAM, XOR_KEYSTREAM, XOR_KEYSTREAM_INPLACE};
+enum KeystreamOperationFlags {OUTPUT_ALIGNED=1, INPUT_ALIGNED=2, INPUT_NULL = 4};
+enum KeystreamOperation {
+ WRITE_KEYSTREAM = INPUT_NULL,
+ WRITE_KEYSTREAM_ALIGNED = INPUT_NULL | OUTPUT_ALIGNED,
+ XOR_KEYSTREAM = 0,
+ XOR_KEYSTREAM_INPUT_ALIGNED = INPUT_ALIGNED,
+ XOR_KEYSTREAM_OUTPUT_ALIGNED= OUTPUT_ALIGNED,
+ XOR_KEYSTREAM_BOTH_ALIGNED = OUTPUT_ALIGNED | INPUT_ALIGNED};
struct CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AdditiveCipherAbstractPolicy
{
- virtual unsigned int GetAlignment() const =0;
+ virtual unsigned int GetAlignment() const {return 1;}
virtual unsigned int GetBytesPerIteration() const =0;
+ virtual unsigned int GetOptimalBlockSize() const {return GetBytesPerIteration();}
virtual unsigned int GetIterationsToBuffer() const =0;
- virtual void WriteKeystream(byte *keystreamBuffer, size_t iterationCount) =0;
+ virtual void WriteKeystream(byte *keystream, size_t iterationCount)
+ {OperateKeystream(KeystreamOperation(INPUT_NULL | (KeystreamOperationFlags)IsAlignedOn(keystream, GetAlignment())), keystream, NULL, iterationCount);}
virtual bool CanOperateKeystream() const {return false;}
virtual void OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount) {assert(false);}
virtual void CipherSetKey(const NameValuePairs &params, const byte *key, size_t length) =0;
@@ -74,59 +83,62 @@ template <typename WT, unsigned int W, unsigned int X = 1, class BASE = Additive
struct CRYPTOPP_NO_VTABLE AdditiveCipherConcretePolicy : public BASE
{
typedef WT WordType;
+ CRYPTOPP_CONSTANT(BYTES_PER_ITERATION = sizeof(WordType) * W);
- unsigned int GetAlignment() const {return sizeof(WordType);}
- unsigned int GetBytesPerIteration() const {return sizeof(WordType) * W;}
+#if !(CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X64)
+ unsigned int GetAlignment() const {return GetAlignmentOf<WordType>();}
+#endif
+ unsigned int GetBytesPerIteration() const {return BYTES_PER_ITERATION;}
unsigned int GetIterationsToBuffer() const {return X;}
- void WriteKeystream(byte *buffer, size_t iterationCount)
- {OperateKeystream(WRITE_KEYSTREAM, buffer, NULL, iterationCount);}
bool CanOperateKeystream() const {return true;}
virtual void OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount) =0;
-
- template <class B>
- struct KeystreamOutput
- {
- KeystreamOutput(KeystreamOperation operation, byte *output, const byte *input)
- : m_operation(operation), m_output(output), m_input(input) {}
-
- inline KeystreamOutput & operator()(WordType keystreamWord)
- {
- assert(IsAligned<WordType>(m_input));
- assert(IsAligned<WordType>(m_output));
-
- if (!NativeByteOrderIs(B::ToEnum()))
- keystreamWord = ByteReverse(keystreamWord);
-
- if (m_operation == WRITE_KEYSTREAM)
- *(WordType*)m_output = keystreamWord;
- else if (m_operation == XOR_KEYSTREAM)
- {
- *(WordType*)m_output = keystreamWord ^ *(WordType*)m_input;
- m_input += sizeof(WordType);
- }
- else if (m_operation == XOR_KEYSTREAM_INPLACE)
- *(WordType*)m_output ^= keystreamWord;
-
- m_output += sizeof(WordType);
-
- return *this;
- }
-
- KeystreamOperation m_operation;
- byte *m_output;
- const byte *m_input;
- };
};
+// use these to implement OperateKeystream
+#define CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, b, i, a) \
+ PutWord(bool(x & OUTPUT_ALIGNED), b, output+i*sizeof(WordType), (x & INPUT_NULL) ? a : a ^ GetWord<WordType>(bool(x & INPUT_ALIGNED), b, input+i*sizeof(WordType)));
+#define CRYPTOPP_KEYSTREAM_OUTPUT_XMM(x, i, a) {\
+ __m128i t = (x & INPUT_NULL) ? a : _mm_xor_si128(a, (x & INPUT_ALIGNED) ? _mm_load_si128((__m128i *)input+i) : _mm_loadu_si128((__m128i *)input+i));\
+ if (x & OUTPUT_ALIGNED) _mm_store_si128((__m128i *)output+i, t);\
+ else _mm_storeu_si128((__m128i *)output+i, t);}
+#define CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(x, y) \
+ switch (operation) \
+ { \
+ case WRITE_KEYSTREAM: \
+ x(WRITE_KEYSTREAM) \
+ break; \
+ case XOR_KEYSTREAM: \
+ x(XOR_KEYSTREAM) \
+ input += y; \
+ break; \
+ case XOR_KEYSTREAM_INPUT_ALIGNED: \
+ x(XOR_KEYSTREAM_INPUT_ALIGNED) \
+ input += y; \
+ break; \
+ case XOR_KEYSTREAM_OUTPUT_ALIGNED: \
+ x(XOR_KEYSTREAM_OUTPUT_ALIGNED) \
+ input += y; \
+ break; \
+ case WRITE_KEYSTREAM_ALIGNED: \
+ x(WRITE_KEYSTREAM_ALIGNED) \
+ break; \
+ case XOR_KEYSTREAM_BOTH_ALIGNED: \
+ x(XOR_KEYSTREAM_BOTH_ALIGNED) \
+ input += y; \
+ break; \
+ } \
+ output += y;
+
template <class BASE = AbstractPolicyHolder<AdditiveCipherAbstractPolicy, TwoBases<SymmetricCipher, RandomNumberGenerator> > >
class CRYPTOPP_NO_VTABLE AdditiveCipherTemplate : public BASE
{
public:
byte GenerateByte();
+ void GenerateBlock(byte *output, size_t size);
void ProcessData(byte *outString, const byte *inString, size_t length);
void GetNextIV(byte *iv) {this->AccessPolicy().CipherGetNextIV(iv);}
void Resynchronize(const byte *iv);
- unsigned int OptimalBlockSize() const {return this->GetPolicy().GetBytesPerIteration();}
+ unsigned int OptimalBlockSize() const {return this->GetPolicy().GetOptimalBlockSize();}
unsigned int GetOptimalNextBlockSize() const {return (unsigned int)this->m_leftOver;}
unsigned int OptimalDataAlignment() const {return this->GetPolicy().GetAlignment();}
bool IsSelfInverting() const {return true;}