summaryrefslogtreecommitdiff
path: root/nbtheory.h
diff options
context:
space:
mode:
authorweidai <weidai@57ff6487-cd31-0410-9ec3-f628ee90f5f0>2003-07-04 00:17:37 +0000
committerweidai <weidai@57ff6487-cd31-0410-9ec3-f628ee90f5f0>2003-07-04 00:17:37 +0000
commit572fe07633123ce38abf28c6426356e37aef3a99 (patch)
tree0536d87e504a82920156c239bc5ae6aa43e70ebc /nbtheory.h
parent3e8c979ddc194e043567c036321e67c89f847362 (diff)
downloadcryptopp-572fe07633123ce38abf28c6426356e37aef3a99.tar.gz
create DLL version, fix GetNextIV() bug in CTR and OFB modes
git-svn-id: svn://svn.code.sf.net/p/cryptopp/code/trunk/c5@87 57ff6487-cd31-0410-9ec3-f628ee90f5f0
Diffstat (limited to 'nbtheory.h')
-rw-r--r--nbtheory.h58
1 files changed, 29 insertions, 29 deletions
diff --git a/nbtheory.h b/nbtheory.h
index 685dc41..3ef517d 100644
--- a/nbtheory.h
+++ b/nbtheory.h
@@ -15,39 +15,39 @@ extern unsigned int primeTableSize;
extern word primeTable[];
// build up the table to maxPrimeTableSize
-void BuildPrimeTable();
+CRYPTOPP_DLL void BuildPrimeTable();
// ************ primality testing ****************
// generate a provable prime
-Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits);
-Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits);
+CRYPTOPP_DLL Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits);
+CRYPTOPP_DLL Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits);
-bool IsSmallPrime(const Integer &p);
+CRYPTOPP_DLL bool IsSmallPrime(const Integer &p);
// returns true if p is divisible by some prime less than bound
// bound not be greater than the largest entry in the prime table
-bool TrialDivision(const Integer &p, unsigned bound);
+CRYPTOPP_DLL bool TrialDivision(const Integer &p, unsigned bound);
// returns true if p is NOT divisible by small primes
-bool SmallDivisorsTest(const Integer &p);
+CRYPTOPP_DLL bool SmallDivisorsTest(const Integer &p);
// These is no reason to use these two, use the ones below instead
-bool IsFermatProbablePrime(const Integer &n, const Integer &b);
-bool IsLucasProbablePrime(const Integer &n);
+CRYPTOPP_DLL bool IsFermatProbablePrime(const Integer &n, const Integer &b);
+CRYPTOPP_DLL bool IsLucasProbablePrime(const Integer &n);
-bool IsStrongProbablePrime(const Integer &n, const Integer &b);
-bool IsStrongLucasProbablePrime(const Integer &n);
+CRYPTOPP_DLL bool IsStrongProbablePrime(const Integer &n, const Integer &b);
+CRYPTOPP_DLL bool IsStrongLucasProbablePrime(const Integer &n);
// Rabin-Miller primality test, i.e. repeating the strong probable prime test
// for several rounds with random bases
-bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds);
+CRYPTOPP_DLL bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds);
// primality test, used to generate primes
-bool IsPrime(const Integer &p);
+CRYPTOPP_DLL bool IsPrime(const Integer &p);
// more reliable than IsPrime(), used to verify primes generated by others
-bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1);
+CRYPTOPP_DLL bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1);
class PrimeSelector
{
@@ -58,11 +58,11 @@ public:
// use a fast sieve to find the first probable prime in {x | p<=x<=max and x%mod==equiv}
// returns true iff successful, value of p is undefined if no such prime exists
-bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector);
+CRYPTOPP_DLL bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector);
-unsigned int PrimeSearchInterval(const Integer &max);
+CRYPTOPP_DLL unsigned int PrimeSearchInterval(const Integer &max);
-AlgorithmParameters<AlgorithmParameters<AlgorithmParameters<NullNameValuePairs, Integer::RandomNumberType>, Integer>, Integer>
+CRYPTOPP_DLL AlgorithmParameters<AlgorithmParameters<AlgorithmParameters<NullNameValuePairs, Integer::RandomNumberType>, Integer>, Integer>
MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength);
// ********** other number theoretic functions ************
@@ -77,44 +77,44 @@ inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b
{return a.InverseMod(b);}
// use Chinese Remainder Theorem to calculate x given x mod p and x mod q
-Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q);
+CRYPTOPP_DLL Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q);
// use this one if u = inverse of p mod q has been precalculated
-Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u);
+CRYPTOPP_DLL Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u);
// if b is prime, then Jacobi(a, b) returns 0 if a%b==0, 1 if a is quadratic residue mod b, -1 otherwise
// check a number theory book for what Jacobi symbol means when b is not prime
-int Jacobi(const Integer &a, const Integer &b);
+CRYPTOPP_DLL int Jacobi(const Integer &a, const Integer &b);
// calculates the Lucas function V_e(p, 1) mod n
-Integer Lucas(const Integer &e, const Integer &p, const Integer &n);
+CRYPTOPP_DLL Integer Lucas(const Integer &e, const Integer &p, const Integer &n);
// calculates x such that m==Lucas(e, x, p*q), p q primes
-Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q);
+CRYPTOPP_DLL Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q);
// use this one if u=inverse of p mod q has been precalculated
-Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u);
+CRYPTOPP_DLL Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u);
inline Integer ModularExponentiation(const Integer &a, const Integer &e, const Integer &m)
{return a_exp_b_mod_c(a, e, m);}
// returns x such that x*x%p == a, p prime
-Integer ModularSquareRoot(const Integer &a, const Integer &p);
+CRYPTOPP_DLL Integer ModularSquareRoot(const Integer &a, const Integer &p);
// returns x such that a==ModularExponentiation(x, e, p*q), p q primes,
// and e relatively prime to (p-1)*(q-1)
-Integer ModularRoot(const Integer &a, const Integer &e, const Integer &p, const Integer &q);
+CRYPTOPP_DLL Integer ModularRoot(const Integer &a, const Integer &e, const Integer &p, const Integer &q);
// use this one if dp=d%(p-1), dq=d%(q-1), (d is inverse of e mod (p-1)*(q-1))
// and u=inverse of p mod q have been precalculated
-Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u);
+CRYPTOPP_DLL Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u);
// find r1 and r2 such that ax^2 + bx + c == 0 (mod p) for x in {r1, r2}, p prime
// returns true if solutions exist
-bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p);
+CRYPTOPP_DLL bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p);
// returns log base 2 of estimated number of operations to calculate discrete log or factor a number
-unsigned int DiscreteLogWorkFactor(unsigned int bitlength);
-unsigned int FactoringWorkFactor(unsigned int bitlength);
+CRYPTOPP_DLL unsigned int DiscreteLogWorkFactor(unsigned int bitlength);
+CRYPTOPP_DLL unsigned int FactoringWorkFactor(unsigned int bitlength);
// ********************************************************
//! generator of prime numbers of special forms
-class PrimeAndGenerator
+class CRYPTOPP_DLL PrimeAndGenerator
{
public:
PrimeAndGenerator() {}