summaryrefslogtreecommitdiff
path: root/Cython/Compiler/PyrexTypes.py
blob: 741f0af667d11d3d12d3e3dfa0999bf2fc2e2d7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
#
#   Cython/Python language types
#

from __future__ import absolute_import

import copy
import hashlib
import re

try:
    reduce
except NameError:
    from functools import reduce
from functools import partial
from itertools import product

from Cython.Utils import cached_function
from .Code import UtilityCode, LazyUtilityCode, TempitaUtilityCode
from . import StringEncoding
from . import Naming

from .Errors import error, CannotSpecialize


class BaseType(object):
    #
    #  Base class for all Cython types including pseudo-types.

    # List of attribute names of any subtypes
    subtypes = []
    _empty_declaration = None
    _specialization_name = None
    default_format_spec = None

    def can_coerce_to_pyobject(self, env):
        return False

    def can_coerce_from_pyobject(self, env):
        return False

    def can_coerce_to_pystring(self, env, format_spec=None):
        return False

    def convert_to_pystring(self, cvalue, code, format_spec=None):
        raise NotImplementedError("C types that support string formatting must override this method")

    def cast_code(self, expr_code):
        return "((%s)%s)" % (self.empty_declaration_code(), expr_code)

    def empty_declaration_code(self, pyrex=False):
        if pyrex:
            return self.declaration_code('', pyrex=True)
        if self._empty_declaration is None:
            self._empty_declaration = self.declaration_code('')
        return self._empty_declaration

    def specialization_name(self):
        if self._specialization_name is None:
            # This is not entirely robust.
            common_subs = (self.empty_declaration_code()
                           .replace("unsigned ", "unsigned_")
                           .replace("long long", "long_long")
                           .replace(" ", "__"))
            self._specialization_name = re.sub(
                '[^a-zA-Z0-9_]', lambda x: '_%x_' % ord(x.group(0)), common_subs)
        return self._specialization_name

    def base_declaration_code(self, base_code, entity_code):
        if entity_code:
            return "%s %s" % (base_code, entity_code)
        else:
            return base_code

    def __deepcopy__(self, memo):
        """
        Types never need to be copied, if we do copy, Unfortunate Things
        Will Happen!
        """
        return self

    def get_fused_types(self, result=None, seen=None, subtypes=None, include_function_return_type=False):
        subtypes = subtypes or self.subtypes
        if not subtypes:
            return None

        if result is None:
            result = []
            seen = set()

        for attr in subtypes:
            list_or_subtype = getattr(self, attr)
            if list_or_subtype:
                if isinstance(list_or_subtype, BaseType):
                    list_or_subtype.get_fused_types(result, seen, include_function_return_type=include_function_return_type)
                else:
                    for subtype in list_or_subtype:
                        subtype.get_fused_types(result, seen, include_function_return_type=include_function_return_type)

        return result

    def specialize_fused(self, env):
        if env.fused_to_specific:
            return self.specialize(env.fused_to_specific)

        return self

    @property
    def is_fused(self):
        """
        Whether this type or any of its subtypes is a fused type
        """
        # Add this indirection for the is_fused property to allow overriding
        # get_fused_types in subclasses.
        return self.get_fused_types()

    def deduce_template_params(self, actual):
        """
        Deduce any template params in this (argument) type given the actual
        argument type.

        https://en.cppreference.com/w/cpp/language/function_template#Template_argument_deduction
        """
        return {}

    def __lt__(self, other):
        """
        For sorting. The sorting order should correspond to the preference of
        conversion from Python types.

        Override to provide something sensible. This is only implemented so that
        python 3 doesn't trip
        """
        return id(type(self)) < id(type(other))

    def py_type_name(self):
        """
        Return the name of the Python type that can coerce to this type.
        """

    def typeof_name(self):
        """
        Return the string with which fused python functions can be indexed.
        """
        if self.is_builtin_type or self.py_type_name() == 'object':
            index_name = self.py_type_name()
        else:
            index_name = str(self)

        return index_name

    def check_for_null_code(self, cname):
        """
        Return the code for a NULL-check in case an UnboundLocalError should
        be raised if an entry of this type is referenced before assignment.
        Returns None if no check should be performed.
        """
        return None

    def invalid_value(self):
        """
        Returns the most invalid value an object of this type can assume as a
        C expression string. Returns None if no such value exists.
        """


class PyrexType(BaseType):
    #
    #  Base class for all Cython types
    #
    #  is_pyobject           boolean     Is a Python object type
    #  is_extension_type     boolean     Is a Python extension type
    #  is_final_type         boolean     Is a final extension type
    #  is_numeric            boolean     Is a C numeric type
    #  is_int                boolean     Is a C integer type
    #  is_float              boolean     Is a C floating point type
    #  is_complex            boolean     Is a C complex type
    #  is_void               boolean     Is the C void type
    #  is_array              boolean     Is a C array type
    #  is_ptr                boolean     Is a C pointer type
    #  is_null_ptr           boolean     Is the type of NULL
    #  is_reference          boolean     Is a C reference type
    #  is_rvalue_reference   boolean     Is a C++ rvalue reference type
    #  is_const              boolean     Is a C const type
    #  is_volatile           boolean     Is a C volatile type
    #  is_cv_qualified       boolean     Is a C const or volatile type
    #  is_cfunction          boolean     Is a C function type
    #  is_struct_or_union    boolean     Is a C struct or union type
    #  is_struct             boolean     Is a C struct type
    #  is_cpp_class          boolean     Is a C++ class
    #  is_optional_cpp_class boolean     Is a C++ class with variable lifetime handled with std::optional
    #  is_enum               boolean     Is a C enum type
    #  is_cpp_enum           boolean     Is a C++ scoped enum type
    #  is_typedef            boolean     Is a typedef type
    #  is_string             boolean     Is a C char * type
    #  is_pyunicode_ptr      boolean     Is a C PyUNICODE * type
    #  is_cpp_string         boolean     Is a C++ std::string type
    #  python_type_constructor_name     string or None     non-None if it is a Python type constructor that can be indexed/"templated"
    #  is_unicode_char       boolean     Is either Py_UCS4 or Py_UNICODE
    #  is_returncode         boolean     Is used only to signal exceptions
    #  is_error              boolean     Is the dummy error type
    #  is_buffer             boolean     Is buffer access type
    #  is_pythran_expr       boolean     Is Pythran expr
    #  is_numpy_buffer       boolean     Is Numpy array buffer
    #  has_attributes        boolean     Has C dot-selectable attributes
    #  needs_cpp_construction  boolean     Needs C++ constructor and destructor when used in a cdef class
    #  needs_refcounting     boolean     Needs code to be generated similar to incref/gotref/decref.
    #                                    Largely used internally.
    #  equivalent_type       type        A C or Python type that is equivalent to this Python or C type.
    #  default_value         string      Initial value that can be assigned before first user assignment.
    #  declaration_value     string      The value statically assigned on declaration (if any).
    #  entry                 Entry       The Entry for this type
    #
    #  declaration_code(entity_code,
    #      for_display = 0, dll_linkage = None, pyrex = 0)
    #    Returns a code fragment for the declaration of an entity
    #    of this type, given a code fragment for the entity.
    #    * If for_display, this is for reading by a human in an error
    #      message; otherwise it must be valid C code.
    #    * If dll_linkage is not None, it must be 'DL_EXPORT' or
    #      'DL_IMPORT', and will be added to the base type part of
    #      the declaration.
    #    * If pyrex = 1, this is for use in a 'cdef extern'
    #      statement of a Cython include file.
    #
    #  assignable_from(src_type)
    #    Tests whether a variable of this type can be
    #    assigned a value of type src_type.
    #
    #  same_as(other_type)
    #    Tests whether this type represents the same type
    #    as other_type.
    #
    #  as_argument_type():
    #    Coerces array and C function types into pointer type for use as
    #    a formal argument type.
    #

    is_pyobject = 0
    is_unspecified = 0
    is_extension_type = 0
    is_final_type = 0
    is_builtin_type = 0
    is_cython_builtin_type = 0
    is_numeric = 0
    is_int = 0
    is_float = 0
    is_complex = 0
    is_void = 0
    is_array = 0
    is_ptr = 0
    is_null_ptr = 0
    is_reference = 0
    is_fake_reference = 0
    is_rvalue_reference = 0
    is_const = 0
    is_volatile = 0
    is_cv_qualified = 0
    is_cfunction = 0
    is_struct_or_union = 0
    is_cpp_class = 0
    is_optional_cpp_class = 0
    python_type_constructor_name = None
    is_cpp_string = 0
    is_struct = 0
    is_enum = 0
    is_cpp_enum = False
    is_typedef = 0
    is_string = 0
    is_pyunicode_ptr = 0
    is_unicode_char = 0
    is_returncode = 0
    is_error = 0
    is_buffer = 0
    is_ctuple = 0
    is_memoryviewslice = 0
    is_pythran_expr = 0
    is_numpy_buffer = 0
    has_attributes = 0
    needs_cpp_construction = 0
    needs_refcounting = 0
    equivalent_type = None
    default_value = ""
    declaration_value = ""

    def resolve(self):
        # If a typedef, returns the base type.
        return self

    def specialize(self, values):
        # Returns the concrete type if this is a fused type, or otherwise the type itself.
        # May raise Errors.CannotSpecialize on failure
        return self

    def literal_code(self, value):
        # Returns a C code fragment representing a literal
        # value of this type.
        return str(value)

    def __str__(self):
        return self.declaration_code("", for_display = 1).strip()

    def same_as(self, other_type, **kwds):
        return self.same_as_resolved_type(other_type.resolve(), **kwds)

    def same_as_resolved_type(self, other_type):
        return self == other_type or other_type is error_type

    def subtype_of(self, other_type):
        return self.subtype_of_resolved_type(other_type.resolve())

    def subtype_of_resolved_type(self, other_type):
        return self.same_as(other_type)

    def assignable_from(self, src_type):
        return self.assignable_from_resolved_type(src_type.resolve())

    def assignable_from_resolved_type(self, src_type):
        return self.same_as(src_type)

    def as_argument_type(self):
        return self

    def is_complete(self):
        # A type is incomplete if it is an unsized array,
        # a struct whose attributes are not defined, etc.
        return 1

    def is_simple_buffer_dtype(self):
        return (self.is_int or self.is_float or self.is_complex or self.is_pyobject or
                self.is_extension_type or self.is_ptr)

    def struct_nesting_depth(self):
        # Returns the number levels of nested structs. This is
        # used for constructing a stack for walking the run-time
        # type information of the struct.
        return 1

    def global_init_code(self, entry, code):
        # abstract
        pass

    def needs_nonecheck(self):
        return 0

    def _assign_from_py_code(self, source_code, result_code, error_pos, code,
                             from_py_function=None, error_condition=None, extra_args=None,
                             special_none_cvalue=None):
        args = ', ' + ', '.join('%s' % arg for arg in extra_args) if extra_args else ''
        convert_call = "%s(%s%s)" % (
            from_py_function or self.from_py_function,
            source_code,
            args,
        )
        if self.is_enum:
            convert_call = typecast(self, c_long_type, convert_call)
        if special_none_cvalue:
            # NOTE: requires 'source_code' to be simple!
            convert_call = "(__Pyx_Py_IsNone(%s) ? (%s) : (%s))" % (
                source_code, special_none_cvalue, convert_call)
        return '%s = %s; %s' % (
            result_code,
            convert_call,
            code.error_goto_if(error_condition or self.error_condition(result_code), error_pos))

    def _generate_dummy_refcounting(self, code, *ignored_args, **ignored_kwds):
        if self.needs_refcounting:
            raise NotImplementedError("Ref-counting operation not yet implemented for type %s" %
                                      self)

    def _generate_dummy_refcounting_assignment(self, code, cname, rhs_cname, *ignored_args, **ignored_kwds):
        if self.needs_refcounting:
            raise NotImplementedError("Ref-counting operation not yet implemented for type %s" %
                                      self)
        code.putln("%s = %s" % (cname, rhs_cname))

    generate_incref = generate_xincref = generate_decref = generate_xdecref \
        = generate_decref_clear = generate_xdecref_clear \
        = generate_gotref = generate_xgotref = generate_giveref = generate_xgiveref \
            = _generate_dummy_refcounting

    generate_decref_set = generate_xdecref_set = _generate_dummy_refcounting_assignment

    def nullcheck_string(self, code, cname):
        if self.needs_refcounting:
            raise NotImplementedError("Ref-counting operation not yet implemented for type %s" %
                                      self)
        code.putln("1")

    def cpp_optional_declaration_code(self, entity_code, dll_linkage=None):
        # declares an std::optional c++ variable
        raise NotImplementedError(
            "cpp_optional_declaration_code only implemented for c++ classes and not type %s" % self)


def public_decl(base_code, dll_linkage):
    if dll_linkage:
        return "%s(%s)" % (dll_linkage, base_code.replace(',', ' __PYX_COMMA '))
    else:
        return base_code


def create_typedef_type(name, base_type, cname, is_external=0, namespace=None):
    if is_external:
        if base_type.is_complex or base_type.is_fused:
            raise ValueError("%s external typedefs not supported" % (
                "Fused" if base_type.is_fused else "Complex"))
    if base_type.is_complex or base_type.is_fused:
        return base_type
    return CTypedefType(name, base_type, cname, is_external, namespace)


class CTypedefType(BaseType):
    #
    #  Pseudo-type defined with a ctypedef statement in a
    #  'cdef extern from' block.
    #  Delegates most attribute lookups to the base type.
    #  (Anything not defined here or in the BaseType is delegated.)
    #
    #  qualified_name      string
    #  typedef_name        string
    #  typedef_cname       string
    #  typedef_base_type   PyrexType
    #  typedef_is_external bool

    is_typedef = 1
    typedef_is_external = 0

    to_py_utility_code = None
    from_py_utility_code = None

    subtypes = ['typedef_base_type']

    def __init__(self, name, base_type, cname, is_external=0, namespace=None):
        assert not base_type.is_complex
        self.typedef_name = name
        self.typedef_cname = cname
        self.typedef_base_type = base_type
        self.typedef_is_external = is_external
        self.typedef_namespace = namespace

    def invalid_value(self):
        return self.typedef_base_type.invalid_value()

    def resolve(self):
        return self.typedef_base_type.resolve()

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = self.typedef_name
        else:
            base_code = public_decl(self.typedef_cname, dll_linkage)
        if self.typedef_namespace is not None and not pyrex:
            base_code = "%s::%s" % (self.typedef_namespace.empty_declaration_code(), base_code)
        return self.base_declaration_code(base_code, entity_code)

    def as_argument_type(self):
        return self

    def cast_code(self, expr_code):
        # If self is really an array (rather than pointer), we can't cast.
        # For example, the gmp mpz_t.
        if self.typedef_base_type.is_array:
            base_type = self.typedef_base_type.base_type
            return CPtrType(base_type).cast_code(expr_code)
        else:
            return BaseType.cast_code(self, expr_code)

    def specialize(self, values):
        base_type = self.typedef_base_type.specialize(values)
        namespace = self.typedef_namespace.specialize(values) if self.typedef_namespace else None
        if base_type is self.typedef_base_type and namespace is self.typedef_namespace:
            return self
        else:
            return create_typedef_type(self.typedef_name, base_type, self.typedef_cname,
                                0, namespace)

    def __repr__(self):
        return "<CTypedefType %s>" % self.typedef_cname

    def __str__(self):
        return self.typedef_name

    def _create_utility_code(self, template_utility_code,
                             template_function_name):
        type_name = type_identifier(self.typedef_cname)
        utility_code = template_utility_code.specialize(
            type     = self.typedef_cname,
            TypeName = type_name)
        function_name = template_function_name % type_name
        return utility_code, function_name

    def create_to_py_utility_code(self, env):
        if self.typedef_is_external:
            if not self.to_py_utility_code:
                base_type = self.typedef_base_type
                if type(base_type) is CIntType:
                    self.to_py_function = "__Pyx_PyInt_From_" + self.specialization_name()
                    env.use_utility_code(TempitaUtilityCode.load_cached(
                        "CIntToPy", "TypeConversion.c",
                        context={"TYPE": self.empty_declaration_code(),
                                 "TO_PY_FUNCTION": self.to_py_function}))
                    return True
                elif base_type.is_float:
                    pass  # XXX implement!
                elif base_type.is_complex:
                    pass  # XXX implement!
                    pass
                elif base_type.is_cpp_string:
                    cname = "__pyx_convert_PyObject_string_to_py_%s" % type_identifier(self)
                    context = {
                        'cname': cname,
                        'type': self.typedef_cname,
                    }
                    from .UtilityCode import CythonUtilityCode
                    env.use_utility_code(CythonUtilityCode.load(
                        "string.to_py", "CppConvert.pyx", context=context))
                    self.to_py_function = cname
                    return True
            if self.to_py_utility_code:
                env.use_utility_code(self.to_py_utility_code)
                return True
        # delegation
        return self.typedef_base_type.create_to_py_utility_code(env)

    def create_from_py_utility_code(self, env):
        if self.typedef_is_external:
            if not self.from_py_utility_code:
                base_type = self.typedef_base_type
                if type(base_type) is CIntType:
                    self.from_py_function = "__Pyx_PyInt_As_" + self.specialization_name()
                    env.use_utility_code(TempitaUtilityCode.load_cached(
                        "CIntFromPy", "TypeConversion.c",
                        context={"TYPE": self.empty_declaration_code(),
                                 "FROM_PY_FUNCTION": self.from_py_function}))
                    return True
                elif base_type.is_float:
                    pass  # XXX implement!
                elif base_type.is_complex:
                    pass  # XXX implement!
                elif base_type.is_cpp_string:
                    cname = '__pyx_convert_string_from_py_%s' % type_identifier(self)
                    context = {
                        'cname': cname,
                        'type': self.typedef_cname,
                    }
                    from .UtilityCode import CythonUtilityCode
                    env.use_utility_code(CythonUtilityCode.load(
                        "string.from_py", "CppConvert.pyx", context=context))
                    self.from_py_function = cname
                    return True
            if self.from_py_utility_code:
                env.use_utility_code(self.from_py_utility_code)
                return True
        # delegation
        return self.typedef_base_type.create_from_py_utility_code(env)

    def to_py_call_code(self, source_code, result_code, result_type, to_py_function=None):
        if to_py_function is None:
            to_py_function = self.to_py_function
        return self.typedef_base_type.to_py_call_code(
            source_code, result_code, result_type, to_py_function)

    def from_py_call_code(self, source_code, result_code, error_pos, code,
                          from_py_function=None, error_condition=None,
                          special_none_cvalue=None):
        return self.typedef_base_type.from_py_call_code(
            source_code, result_code, error_pos, code,
            from_py_function or self.from_py_function,
            error_condition or self.error_condition(result_code),
            special_none_cvalue=special_none_cvalue,
        )

    def overflow_check_binop(self, binop, env, const_rhs=False):
        env.use_utility_code(UtilityCode.load("Common", "Overflow.c"))
        type = self.empty_declaration_code()
        name = self.specialization_name()
        if binop == "lshift":
            env.use_utility_code(TempitaUtilityCode.load_cached(
                "LeftShift", "Overflow.c",
                context={'TYPE': type, 'NAME': name, 'SIGNED': self.signed}))
        else:
            if const_rhs:
                binop += "_const"
            _load_overflow_base(env)
            env.use_utility_code(TempitaUtilityCode.load_cached(
                "SizeCheck", "Overflow.c",
                context={'TYPE': type, 'NAME': name}))
            env.use_utility_code(TempitaUtilityCode.load_cached(
                "Binop", "Overflow.c",
                context={'TYPE': type, 'NAME': name, 'BINOP': binop}))
        return "__Pyx_%s_%s_checking_overflow" % (binop, name)

    def error_condition(self, result_code):
        if self.typedef_is_external:
            if self.exception_value:
                condition = "(%s == %s)" % (
                    result_code, self.cast_code(self.exception_value))
                if self.exception_check:
                    condition += " && PyErr_Occurred()"
                return condition
        # delegation
        return self.typedef_base_type.error_condition(result_code)

    def __getattr__(self, name):
        return getattr(self.typedef_base_type, name)

    def py_type_name(self):
        return self.typedef_base_type.py_type_name()

    def can_coerce_to_pyobject(self, env):
        return self.typedef_base_type.can_coerce_to_pyobject(env)

    def can_coerce_from_pyobject(self, env):
        return self.typedef_base_type.can_coerce_from_pyobject(env)


class MemoryViewSliceType(PyrexType):

    is_memoryviewslice = 1
    default_value = "{ 0, 0, { 0 }, { 0 }, { 0 } }"

    has_attributes = 1
    needs_refcounting = 1  # Ideally this would be true and reference counting for
        # memoryview and pyobject code could be generated in the same way.
        # However, memoryviews are sufficiently specialized that this doesn't
        # seem practical. Implement a limited version of it for now
    scope = None

    # These are special cased in Defnode
    from_py_function = None
    to_py_function = None

    exception_value = None
    exception_check = True

    subtypes = ['dtype']

    def __init__(self, base_dtype, axes):
        """
        MemoryViewSliceType(base, axes)

        Base is the C base type; axes is a list of (access, packing) strings,
        where access is one of 'full', 'direct' or 'ptr' and packing is one of
        'contig', 'strided' or 'follow'.  There is one (access, packing) tuple
        for each dimension.

        the access specifiers determine whether the array data contains
        pointers that need to be dereferenced along that axis when
        retrieving/setting:

        'direct' -- No pointers stored in this dimension.
        'ptr' -- Pointer stored in this dimension.
        'full' -- Check along this dimension, don't assume either.

        the packing specifiers specify how the array elements are laid-out
        in memory.

        'contig' -- The data is contiguous in memory along this dimension.
                At most one dimension may be specified as 'contig'.
        'strided' -- The data isn't contiguous along this dimension.
        'follow' -- Used for C/Fortran contiguous arrays, a 'follow' dimension
            has its stride automatically computed from extents of the other
            dimensions to ensure C or Fortran memory layout.

        C-contiguous memory has 'direct' as the access spec, 'contig' as the
        *last* axis' packing spec and 'follow' for all other packing specs.

        Fortran-contiguous memory has 'direct' as the access spec, 'contig' as
        the *first* axis' packing spec and 'follow' for all other packing
        specs.
        """
        from . import Buffer, MemoryView

        self.dtype = base_dtype
        self.axes = axes
        self.ndim = len(axes)
        self.flags = MemoryView.get_buf_flags(self.axes)

        self.is_c_contig, self.is_f_contig = MemoryView.is_cf_contig(self.axes)
        assert not (self.is_c_contig and self.is_f_contig)

        self.mode = MemoryView.get_mode(axes)
        self.writable_needed = False

        if not self.dtype.is_fused:
            self.dtype_name = Buffer.mangle_dtype_name(self.dtype)

    def __hash__(self):
        return hash(self.__class__) ^ hash(self.dtype) ^ hash(tuple(self.axes))

    def __eq__(self, other):
        if isinstance(other, BaseType):
            return self.same_as_resolved_type(other)
        else:
            return False

    def __ne__(self, other):
        # TODO drop when Python2 is dropped
        return not (self == other)

    def same_as_resolved_type(self, other_type):
        return ((other_type.is_memoryviewslice and
            #self.writable_needed == other_type.writable_needed and  # FIXME: should be only uni-directional
            self.dtype.same_as(other_type.dtype) and
            self.axes == other_type.axes) or
            other_type is error_type)

    def needs_nonecheck(self):
        return True

    def is_complete(self):
        # incomplete since the underlying struct doesn't have a cython.memoryview object.
        return 0

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        # XXX: we put these guards in for now...
        assert not dll_linkage
        from . import MemoryView
        base_code = StringEncoding.EncodedString(
            str(self) if pyrex or for_display else MemoryView.memviewslice_cname)
        return self.base_declaration_code(
                base_code,
                entity_code)

    def attributes_known(self):
        if self.scope is None:
            from . import Symtab

            self.scope = scope = Symtab.CClassScope(
                    'mvs_class_'+self.specialization_suffix(),
                    None,
                    visibility='extern')

            scope.parent_type = self
            scope.directives = {}

            scope.declare_var('_data', c_char_ptr_type, None,
                              cname='data', is_cdef=1)

        return True

    def declare_attribute(self, attribute, env, pos):
        from . import MemoryView, Options

        scope = self.scope

        if attribute == 'shape':
            scope.declare_var('shape',
                    c_array_type(c_py_ssize_t_type,
                                 Options.buffer_max_dims),
                    pos,
                    cname='shape',
                    is_cdef=1)

        elif attribute == 'strides':
            scope.declare_var('strides',
                    c_array_type(c_py_ssize_t_type,
                                 Options.buffer_max_dims),
                    pos,
                    cname='strides',
                    is_cdef=1)

        elif attribute == 'suboffsets':
            scope.declare_var('suboffsets',
                    c_array_type(c_py_ssize_t_type,
                                 Options.buffer_max_dims),
                    pos,
                    cname='suboffsets',
                    is_cdef=1)

        elif attribute in ("copy", "copy_fortran"):
            ndim = len(self.axes)

            follow_dim = [('direct', 'follow')]
            contig_dim = [('direct', 'contig')]
            to_axes_c = follow_dim * (ndim - 1) + contig_dim
            to_axes_f = contig_dim + follow_dim * (ndim -1)

            dtype = self.dtype
            if dtype.is_cv_qualified:
                dtype = dtype.cv_base_type

            to_memview_c = MemoryViewSliceType(dtype, to_axes_c)
            to_memview_f = MemoryViewSliceType(dtype, to_axes_f)

            for to_memview, cython_name in [(to_memview_c, "copy"),
                                            (to_memview_f, "copy_fortran")]:
                copy_func_type = CFuncType(
                    to_memview,
                    [CFuncTypeArg("memviewslice", self, None)])
                copy_cname = MemoryView.copy_c_or_fortran_cname(to_memview)

                entry = scope.declare_cfunction(
                    cython_name,
                    copy_func_type, pos=pos, defining=1,
                    cname=copy_cname)

                utility = MemoryView.get_copy_new_utility(pos, self, to_memview)
                env.use_utility_code(utility)

            MemoryView.use_cython_array_utility_code(env)

        elif attribute in ("is_c_contig", "is_f_contig"):
            # is_c_contig and is_f_contig functions
            for (c_or_f, cython_name) in (('C', 'is_c_contig'), ('F', 'is_f_contig')):

                is_contig_name = MemoryView.get_is_contig_func_name(c_or_f, self.ndim)

                cfunctype = CFuncType(
                        return_type=c_bint_type,
                        args=[CFuncTypeArg("memviewslice", self, None)],
                        exception_value="-1",
                )

                entry = scope.declare_cfunction(cython_name,
                            cfunctype,
                            pos=pos,
                            defining=1,
                            cname=is_contig_name)

                entry.utility_code_definition = MemoryView.get_is_contig_utility(c_or_f, self.ndim)

        return True

    def get_entry(self, node, cname=None, type=None):
        from . import MemoryView, Symtab

        if cname is None:
            assert node.is_simple() or node.is_temp or node.is_elemental
            cname = node.result()

        if type is None:
            type = node.type

        entry = Symtab.Entry(cname, cname, type, node.pos)
        return MemoryView.MemoryViewSliceBufferEntry(entry)

    def conforms_to(self, dst, broadcast=False, copying=False):
        """
        Returns True if src conforms to dst, False otherwise.

        If conformable, the types are the same, the ndims are equal, and each axis spec is conformable.

        Any packing/access spec is conformable to itself.

        'direct' and 'ptr' are conformable to 'full'.
        'contig' and 'follow' are conformable to 'strided'.
        Any other combo is not conformable.
        """
        from . import MemoryView

        src = self

        #if not copying and self.writable_needed and not dst.writable_needed:
        #    return False

        src_dtype, dst_dtype = src.dtype, dst.dtype
        # We can add but not remove const/volatile modifiers
        # (except if we are copying by value, then anything is fine)
        if not copying:
            if src_dtype.is_const and not dst_dtype.is_const:
                return False
            if src_dtype.is_volatile and not dst_dtype.is_volatile:
                return False
        # const/volatile checks are done, remove those qualifiers
        if src_dtype.is_cv_qualified:
            src_dtype = src_dtype.cv_base_type
        if dst_dtype.is_cv_qualified:
            dst_dtype = dst_dtype.cv_base_type

        if not src_dtype.same_as(dst_dtype):
            return False

        if src.ndim != dst.ndim:
            if broadcast:
                src, dst = MemoryView.broadcast_types(src, dst)
            else:
                return False

        for src_spec, dst_spec in zip(src.axes, dst.axes):
            src_access, src_packing = src_spec
            dst_access, dst_packing = dst_spec
            if src_access != dst_access and dst_access != 'full':
                return False
            if src_packing != dst_packing and dst_packing != 'strided' and not copying:
                return False

        return True

    def valid_dtype(self, dtype, i=0):
        """
        Return whether type dtype can be used as the base type of a
        memoryview slice.

        We support structs, numeric types and objects
        """
        if dtype.is_complex and dtype.real_type.is_int:
            return False

        if dtype.is_struct and dtype.kind == 'struct':
            for member in dtype.scope.var_entries:
                if not self.valid_dtype(member.type):
                    return False

            return True

        return (
            dtype.is_error or
            # Pointers are not valid (yet)
            # (dtype.is_ptr and valid_memslice_dtype(dtype.base_type)) or
            (dtype.is_array and i < 8 and self.valid_dtype(dtype.base_type, i + 1)) or
            dtype.is_numeric or
            dtype.is_pyobject or
            dtype.is_fused or  # accept this as it will be replaced by specializations later
            (dtype.is_typedef and self.valid_dtype(dtype.typedef_base_type))
        )

    def validate_memslice_dtype(self, pos):
        if not self.valid_dtype(self.dtype):
            error(pos, "Invalid base type for memoryview slice: %s" % self.dtype)

    def assert_direct_dims(self, pos):
        for access, packing in self.axes:
            if access != 'direct':
                error(pos, "All dimensions must be direct")
                return False
        return True

    def transpose(self, pos):
        if not self.assert_direct_dims(pos):
            return error_type
        return MemoryViewSliceType(self.dtype, self.axes[::-1])

    def specialization_name(self):
        return '%s_%s' % (
            super(MemoryViewSliceType,self).specialization_name(),
            self.specialization_suffix())

    def specialization_suffix(self):
        return "%s_%s" % (self.axes_to_name(), self.dtype_name)

    def can_coerce_to_pyobject(self, env):
        return True

    def can_coerce_from_pyobject(self, env):
        return True

    def check_for_null_code(self, cname):
        return cname + '.memview'

    def create_from_py_utility_code(self, env):
        from . import MemoryView, Buffer

        # We don't have 'code', so use a LazyUtilityCode with a callback.
        def lazy_utility_callback(code):
            context['dtype_typeinfo'] = Buffer.get_type_information_cname(code, self.dtype)
            return TempitaUtilityCode.load(
                "ObjectToMemviewSlice", "MemoryView_C.c", context=context)

        env.use_utility_code(MemoryView.memviewslice_init_code)
        env.use_utility_code(LazyUtilityCode(lazy_utility_callback))

        if self.is_c_contig:
            c_or_f_flag = "__Pyx_IS_C_CONTIG"
        elif self.is_f_contig:
            c_or_f_flag = "__Pyx_IS_F_CONTIG"
        else:
            c_or_f_flag = "0"

        suffix = self.specialization_suffix()
        funcname = "__Pyx_PyObject_to_MemoryviewSlice_" + suffix

        context = dict(
            MemoryView.context,
            buf_flag = self.flags,
            ndim = self.ndim,
            axes_specs = ', '.join(self.axes_to_code()),
            dtype_typedecl = self.dtype.empty_declaration_code(),
            struct_nesting_depth = self.dtype.struct_nesting_depth(),
            c_or_f_flag = c_or_f_flag,
            funcname = funcname,
        )

        self.from_py_function = funcname
        return True

    def from_py_call_code(self, source_code, result_code, error_pos, code,
                          from_py_function=None, error_condition=None,
                          special_none_cvalue=None):
        # NOTE: auto-detection of readonly buffers is disabled:
        # writable = self.writable_needed or not self.dtype.is_const
        writable = not self.dtype.is_const
        return self._assign_from_py_code(
            source_code, result_code, error_pos, code, from_py_function, error_condition,
            extra_args=['PyBUF_WRITABLE' if writable else '0'],
            special_none_cvalue=special_none_cvalue,
        )

    def create_to_py_utility_code(self, env):
        self._dtype_to_py_func, self._dtype_from_py_func = self.dtype_object_conversion_funcs(env)
        return True

    def to_py_call_code(self, source_code, result_code, result_type, to_py_function=None):
        assert self._dtype_to_py_func
        assert self._dtype_from_py_func

        to_py_func = "(PyObject *(*)(char *)) " + self._dtype_to_py_func
        from_py_func = "(int (*)(char *, PyObject *)) " + self._dtype_from_py_func

        tup = (result_code, source_code, self.ndim, to_py_func, from_py_func, self.dtype.is_pyobject)
        return "%s = __pyx_memoryview_fromslice(%s, %s, %s, %s, %d);" % tup

    def dtype_object_conversion_funcs(self, env):
        get_function = "__pyx_memview_get_%s" % self.dtype_name
        set_function = "__pyx_memview_set_%s" % self.dtype_name

        context = dict(
            get_function = get_function,
            set_function = set_function,
        )

        if self.dtype.is_pyobject:
            utility_name = "MemviewObjectToObject"
        else:
            self.dtype.create_to_py_utility_code(env)
            to_py_function = self.dtype.to_py_function

            from_py_function = None
            if not self.dtype.is_const:
                self.dtype.create_from_py_utility_code(env)
                from_py_function = self.dtype.from_py_function

            if not (to_py_function or from_py_function):
                return "NULL", "NULL"
            if not to_py_function:
                get_function = "NULL"
            if not from_py_function:
                set_function = "NULL"

            utility_name = "MemviewDtypeToObject"
            error_condition = (self.dtype.error_condition('value') or
                               'PyErr_Occurred()')
            context.update(
                to_py_function=to_py_function,
                from_py_function=from_py_function,
                dtype=self.dtype.empty_declaration_code(),
                error_condition=error_condition,
            )

        utility = TempitaUtilityCode.load_cached(
            utility_name, "MemoryView_C.c", context=context)
        env.use_utility_code(utility)
        return get_function, set_function

    def axes_to_code(self):
        """Return a list of code constants for each axis"""
        from . import MemoryView
        d = MemoryView._spec_to_const
        return ["(%s | %s)" % (d[a], d[p]) for a, p in self.axes]

    def axes_to_name(self):
        """Return an abbreviated name for our axes"""
        from . import MemoryView
        d = MemoryView._spec_to_abbrev
        return "".join(["%s%s" % (d[a], d[p]) for a, p in self.axes])

    def error_condition(self, result_code):
        return "!%s.memview" % result_code

    def __str__(self):
        from . import MemoryView

        axes_code_list = []
        for idx, (access, packing) in enumerate(self.axes):
            flag = MemoryView.get_memoryview_flag(access, packing)
            if flag == "strided":
                axes_code_list.append(":")
            else:
                if flag == 'contiguous':
                    have_follow = [p for a, p in self.axes[idx - 1:idx + 2]
                                         if p == 'follow']
                    if have_follow or self.ndim == 1:
                        flag = '1'

                axes_code_list.append("::" + flag)

        if self.dtype.is_pyobject:
            dtype_name = self.dtype.name
        else:
            dtype_name = self.dtype

        return "%s[%s]" % (dtype_name, ", ".join(axes_code_list))

    def specialize(self, values):
        """This does not validate the base type!!"""
        dtype = self.dtype.specialize(values)
        if dtype is not self.dtype:
            return MemoryViewSliceType(dtype, self.axes)

        return self

    def cast_code(self, expr_code):
        return expr_code

    # When memoryviews are increfed currently seems heavily special-cased.
    # Therefore, use our own function for now
    def generate_incref(self, code, name, **kwds):
        pass

    def generate_incref_memoryviewslice(self, code, slice_cname, have_gil):
        # TODO ideally would be done separately
        code.putln("__PYX_INC_MEMVIEW(&%s, %d);" % (slice_cname, int(have_gil)))

    # decref however did look to always apply for memoryview slices
    # with "have_gil" set to True by default
    def generate_xdecref(self, code, cname, nanny, have_gil):
        code.putln("__PYX_XCLEAR_MEMVIEW(&%s, %d);" % (cname, int(have_gil)))

    def generate_decref(self, code, cname, nanny, have_gil):
        # Fall back to xdecref since we don't care to have a separate decref version for this.
        self.generate_xdecref(code, cname, nanny, have_gil)

    def generate_xdecref_clear(self, code, cname, clear_before_decref, **kwds):
        self.generate_xdecref(code, cname, **kwds)
        code.putln("%s.memview = NULL; %s.data = NULL;" % (cname, cname))

    def generate_decref_clear(self, code, cname, **kwds):
        # memoryviews don't currently distinguish between xdecref and decref
        self.generate_xdecref_clear(code, cname, **kwds)

    # memoryviews don't participate in giveref/gotref
    generate_gotref = generate_xgotref = generate_xgiveref = generate_giveref = lambda *args: None



class BufferType(BaseType):
    #
    #  Delegates most attribute lookups to the base type.
    #  (Anything not defined here or in the BaseType is delegated.)
    #
    # dtype            PyrexType
    # ndim             int
    # mode             str
    # negative_indices bool
    # cast             bool
    # is_buffer        bool
    # writable         bool

    is_buffer = 1
    writable = True

    subtypes = ['dtype']

    def __init__(self, base, dtype, ndim, mode, negative_indices, cast):
        self.base = base
        self.dtype = dtype
        self.ndim = ndim
        self.buffer_ptr_type = CPtrType(dtype)
        self.mode = mode
        self.negative_indices = negative_indices
        self.cast = cast
        self.is_numpy_buffer = self.base.name == "ndarray"

    def can_coerce_to_pyobject(self,env):
        return True

    def can_coerce_from_pyobject(self,env):
        return True

    def as_argument_type(self):
        return self

    def specialize(self, values):
        dtype = self.dtype.specialize(values)
        if dtype is not self.dtype:
            return BufferType(self.base, dtype, self.ndim, self.mode,
                              self.negative_indices, self.cast)
        return self

    def get_entry(self, node):
        from . import Buffer
        assert node.is_name
        return Buffer.BufferEntry(node.entry)

    def __getattr__(self, name):
        return getattr(self.base, name)

    def __repr__(self):
        return "<BufferType %r>" % self.base

    def __str__(self):
        # avoid ', ', as fused functions split the signature string on ', '
        cast_str = ''
        if self.cast:
            cast_str = ',cast=True'

        return "%s[%s,ndim=%d%s]" % (self.base, self.dtype, self.ndim,
                                      cast_str)

    def assignable_from(self, other_type):
        if other_type.is_buffer:
            return (self.same_as(other_type, compare_base=False) and
                    self.base.assignable_from(other_type.base))

        return self.base.assignable_from(other_type)

    def same_as(self, other_type, compare_base=True):
        if not other_type.is_buffer:
            return other_type.same_as(self.base)

        return (self.dtype.same_as(other_type.dtype) and
                self.ndim == other_type.ndim and
                self.mode == other_type.mode and
                self.cast == other_type.cast and
                (not compare_base or self.base.same_as(other_type.base)))


class PyObjectType(PyrexType):
    #
    #  Base class for all Python object types (reference-counted).
    #
    #  buffer_defaults  dict or None     Default options for bu

    name = "object"
    is_pyobject = 1
    default_value = "0"
    declaration_value = "0"
    buffer_defaults = None
    is_extern = False
    is_subclassed = False
    is_gc_simple = False
    builtin_trashcan = False  # builtin type using trashcan
    needs_refcounting = True

    def __str__(self):
        return "Python object"

    def __repr__(self):
        return "<PyObjectType>"

    def can_coerce_to_pyobject(self, env):
        return True

    def can_coerce_from_pyobject(self, env):
        return True

    def default_coerced_ctype(self):
        """The default C type that this Python type coerces to, or None."""
        return None

    def assignable_from(self, src_type):
        # except for pointers, conversion will be attempted
        return not src_type.is_ptr or src_type.is_string or src_type.is_pyunicode_ptr

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = "object"
        else:
            base_code = public_decl("PyObject", dll_linkage)
            entity_code = "*%s" % entity_code
        return self.base_declaration_code(base_code, entity_code)

    def as_pyobject(self, cname):
        if (not self.is_complete()) or self.is_extension_type:
            return "(PyObject *)" + cname
        else:
            return cname

    def py_type_name(self):
        return "object"

    def __lt__(self, other):
        """
        Make sure we sort highest, as instance checking on py_type_name
        ('object') is always true
        """
        return False

    def global_init_code(self, entry, code):
        code.put_init_var_to_py_none(entry, nanny=False)

    def check_for_null_code(self, cname):
        return cname

    def generate_incref(self, code, cname, nanny):
        if nanny:
            code.putln("__Pyx_INCREF(%s);" % self.as_pyobject(cname))
        else:
            code.putln("Py_INCREF(%s);" % self.as_pyobject(cname))

    def generate_xincref(self, code, cname, nanny):
        if nanny:
            code.putln("__Pyx_XINCREF(%s);" % self.as_pyobject(cname))
        else:
            code.putln("Py_XINCREF(%s);" % self.as_pyobject(cname))

    def generate_decref(self, code, cname, nanny, have_gil):
        # have_gil is for the benefit of memoryviewslice - it's ignored here
        assert have_gil
        self._generate_decref(code, cname, nanny, null_check=False, clear=False)

    def generate_xdecref(self, code, cname, nanny, have_gil):
        # in this (and other) PyObjectType functions, have_gil is being
        # passed to provide a common interface with MemoryviewSlice.
        # It's ignored here
        self._generate_decref(code, cname, nanny, null_check=True,
                         clear=False)

    def generate_decref_clear(self, code, cname, clear_before_decref, nanny, have_gil):
        self._generate_decref(code, cname, nanny, null_check=False,
                         clear=True, clear_before_decref=clear_before_decref)

    def generate_xdecref_clear(self, code, cname, clear_before_decref=False, nanny=True, have_gil=None):
        self._generate_decref(code, cname, nanny, null_check=True,
                         clear=True, clear_before_decref=clear_before_decref)

    def generate_gotref(self, code, cname):
        code.putln("__Pyx_GOTREF(%s);" % self.as_pyobject(cname))

    def generate_xgotref(self, code, cname):
        code.putln("__Pyx_XGOTREF(%s);" % self.as_pyobject(cname))

    def generate_giveref(self, code, cname):
        code.putln("__Pyx_GIVEREF(%s);" % self.as_pyobject(cname))

    def generate_xgiveref(self, code, cname):
        code.putln("__Pyx_XGIVEREF(%s);" % self.as_pyobject(cname))

    def generate_decref_set(self, code, cname, rhs_cname):
        code.putln("__Pyx_DECREF_SET(%s, %s);" % (cname, rhs_cname))

    def generate_xdecref_set(self, code, cname, rhs_cname):
        code.putln("__Pyx_XDECREF_SET(%s, %s);" % (cname, rhs_cname))

    def _generate_decref(self, code, cname, nanny, null_check=False,
                    clear=False, clear_before_decref=False):
        prefix = '__Pyx' if nanny else 'Py'
        X = 'X' if null_check else ''

        if clear:
            if clear_before_decref:
                if not nanny:
                    X = ''  # CPython doesn't have a Py_XCLEAR()
                code.putln("%s_%sCLEAR(%s);" % (prefix, X, cname))
            else:
                code.putln("%s_%sDECREF(%s); %s = 0;" % (
                    prefix, X, self.as_pyobject(cname), cname))
        else:
            code.putln("%s_%sDECREF(%s);" % (
                prefix, X, self.as_pyobject(cname)))

    def nullcheck_string(self, cname):
        return cname


builtin_types_that_cannot_create_refcycles = frozenset({
    'object', 'bool', 'int', 'long', 'float', 'complex',
    'bytearray', 'bytes', 'unicode', 'str', 'basestring',
})

builtin_types_with_trashcan = frozenset({
    'dict', 'list', 'set', 'frozenset', 'tuple', 'type',
})


class BuiltinObjectType(PyObjectType):
    #  objstruct_cname  string           Name of PyObject struct

    is_builtin_type = 1
    has_attributes = 1
    base_type = None
    module_name = '__builtin__'
    require_exact = 1

    # fields that let it look like an extension type
    vtabslot_cname = None
    vtabstruct_cname = None
    vtabptr_cname = None
    typedef_flag = True
    is_external = True
    decl_type = 'PyObject'

    def __init__(self, name, cname, objstruct_cname=None):
        self.name = name
        self.cname = cname
        self.typeptr_cname = "(&%s)" % cname
        self.objstruct_cname = objstruct_cname
        self.is_gc_simple = name in builtin_types_that_cannot_create_refcycles
        self.builtin_trashcan = name in builtin_types_with_trashcan
        if name == 'type':
            # Special case the type type, as many C API calls (and other
            # libraries) actually expect a PyTypeObject* for type arguments.
            self.decl_type = objstruct_cname
        if name == 'Exception':
            self.require_exact = 0

    def set_scope(self, scope):
        self.scope = scope
        if scope:
            scope.parent_type = self

    def __str__(self):
        return "%s object" % self.name

    def __repr__(self):
        return "<%s>"% self.cname

    def default_coerced_ctype(self):
        if self.name in ('bytes', 'bytearray'):
            return c_char_ptr_type
        elif self.name == 'bool':
            return c_bint_type
        elif self.name == 'float':
            return c_double_type
        return None

    def assignable_from(self, src_type):
        if isinstance(src_type, BuiltinObjectType):
            if self.name == 'basestring':
                return src_type.name in ('str', 'unicode', 'basestring')
            else:
                return src_type.name == self.name
        elif src_type.is_extension_type:
            # FIXME: This is an ugly special case that we currently
            # keep supporting.  It allows users to specify builtin
            # types as external extension types, while keeping them
            # compatible with the real builtin types.  We already
            # generate a warning for it.  Big TODO: remove!
            return (src_type.module_name == '__builtin__' and
                    src_type.name == self.name)
        else:
            return True

    def typeobj_is_available(self):
        return True

    def attributes_known(self):
        return True

    def subtype_of(self, type):
        return type.is_pyobject and type.assignable_from(self)

    def type_check_function(self, exact=True):
        type_name = self.name
        if type_name == 'str':
            type_check = 'PyString_Check'
        elif type_name == 'basestring':
            type_check = '__Pyx_PyBaseString_Check'
        elif type_name == 'Exception':
            type_check = '__Pyx_PyException_Check'
        elif type_name == 'bytearray':
            type_check = 'PyByteArray_Check'
        elif type_name == 'frozenset':
            type_check = 'PyFrozenSet_Check'
        elif type_name == 'int':
            # For backwards compatibility of (Py3) 'x: int' annotations in Py2, we also allow 'long' there.
            type_check = '__Pyx_Py3Int_Check'
        elif type_name == "memoryview":
            # captialize doesn't catch the 'V'
            type_check = "PyMemoryView_Check"
        else:
            type_check = 'Py%s_Check' % type_name.capitalize()
        if exact and type_name not in ('bool', 'slice', 'Exception'):
            type_check += 'Exact'
        return type_check

    def isinstance_code(self, arg):
        return '%s(%s)' % (self.type_check_function(exact=False), arg)

    def type_test_code(self, arg, notnone=False, exact=True):
        type_check = self.type_check_function(exact=exact)
        check = 'likely(%s(%s))' % (type_check, arg)
        if not notnone:
            check += '||((%s) == Py_None)' % arg
        if self.name == 'basestring':
            name = '(PY_MAJOR_VERSION < 3 ? "basestring" : "str")'
        else:
            name = '"%s"' % self.name
        return check + ' || __Pyx_RaiseUnexpectedTypeError(%s, %s)' % (name, arg)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = self.name
        else:
            base_code = public_decl(self.decl_type, dll_linkage)
            entity_code = "*%s" % entity_code
        return self.base_declaration_code(base_code, entity_code)

    def as_pyobject(self, cname):
        if self.decl_type == 'PyObject':
            return cname
        else:
            return "(PyObject *)" + cname

    def cast_code(self, expr_code, to_object_struct = False):
        return "((%s*)%s)" % (
            to_object_struct and self.objstruct_cname or self.decl_type,  # self.objstruct_cname may be None
            expr_code)

    def py_type_name(self):
        return self.name



class PyExtensionType(PyObjectType):
    #
    #  A Python extension type.
    #
    #  name             string
    #  scope            CClassScope      Attribute namespace
    #  typedef_flag     boolean
    #  base_type        PyExtensionType or None
    #  module_name      string or None   Qualified name of defining module
    #  objstruct_cname  string           Name of PyObject struct
    #  objtypedef_cname string           Name of PyObject struct typedef
    #  typeobj_cname    string or None   C code fragment referring to type object
    #  typeptr_cname    string or None   Name of pointer to external type object
    #  vtabslot_cname   string           Name of C method table member
    #  vtabstruct_cname string           Name of C method table struct
    #  vtabptr_cname    string           Name of pointer to C method table
    #  vtable_cname     string           Name of C method table definition
    #  early_init       boolean          Whether to initialize early (as opposed to during module execution).
    #  defered_declarations [thunk]      Used to declare class hierarchies in order
    #  is_external      boolean          Defined in a extern block
    #  check_size       'warn', 'error', 'ignore'    What to do if tp_basicsize does not match
    #  dataclass_fields  OrderedDict nor None   Used for inheriting from dataclasses
    #  multiple_bases    boolean          Does this class have multiple bases
    #  has_sequence_flag  boolean        Set Py_TPFLAGS_SEQUENCE

    is_extension_type = 1
    has_attributes = 1
    early_init = 1

    objtypedef_cname = None
    dataclass_fields = None
    multiple_bases = False
    has_sequence_flag = False

    def __init__(self, name, typedef_flag, base_type, is_external=0, check_size=None):
        self.name = name
        self.scope = None
        self.typedef_flag = typedef_flag
        if base_type is not None:
            base_type.is_subclassed = True
        self.base_type = base_type
        self.module_name = None
        self.objstruct_cname = None
        self.typeobj_cname = None
        self.typeptr_cname = None
        self.vtabslot_cname = None
        self.vtabstruct_cname = None
        self.vtabptr_cname = None
        self.vtable_cname = None
        self.is_external = is_external
        self.check_size = check_size or 'warn'
        self.defered_declarations = []

    def set_scope(self, scope):
        self.scope = scope
        if scope:
            scope.parent_type = self

    def needs_nonecheck(self):
        return True

    def subtype_of_resolved_type(self, other_type):
        if other_type.is_extension_type or other_type.is_builtin_type:
            return self is other_type or (
                self.base_type and self.base_type.subtype_of(other_type))
        else:
            return other_type is py_object_type

    def typeobj_is_available(self):
        # Do we have a pointer to the type object?
        return self.typeptr_cname

    def typeobj_is_imported(self):
        # If we don't know the C name of the type object but we do
        # know which module it's defined in, it will be imported.
        return self.typeobj_cname is None and self.module_name is not None

    def assignable_from(self, src_type):
        if self == src_type:
            return True
        if isinstance(src_type, PyExtensionType):
            if src_type.base_type is not None:
                return self.assignable_from(src_type.base_type)
        if isinstance(src_type, BuiltinObjectType):
            # FIXME: This is an ugly special case that we currently
            # keep supporting.  It allows users to specify builtin
            # types as external extension types, while keeping them
            # compatible with the real builtin types.  We already
            # generate a warning for it.  Big TODO: remove!
            return (self.module_name == '__builtin__' and
                    self.name == src_type.name)
        return False

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0, deref = 0):
        if pyrex or for_display:
            base_code = self.name
        else:
            if self.typedef_flag:
                objstruct = self.objstruct_cname
            else:
                objstruct = "struct %s" % self.objstruct_cname
            base_code = public_decl(objstruct, dll_linkage)
            if deref:
                assert not entity_code
            else:
                entity_code = "*%s" % entity_code
        return self.base_declaration_code(base_code, entity_code)

    def type_test_code(self, py_arg, notnone=False):

        none_check = "((%s) == Py_None)" % py_arg
        type_check = "likely(__Pyx_TypeTest(%s, %s))" % (
            py_arg, self.typeptr_cname)
        if notnone:
            return type_check
        else:
            return "likely(%s || %s)" % (none_check, type_check)

    def attributes_known(self):
        return self.scope is not None

    def __str__(self):
        return self.name

    def __repr__(self):
        return "<PyExtensionType %s%s>" % (self.scope.class_name,
            ("", " typedef")[self.typedef_flag])

    def py_type_name(self):
        if not self.module_name:
            return self.name

        return "__import__(%r, None, None, ['']).%s" % (self.module_name,
                                                        self.name)

class CType(PyrexType):
    #
    #  Base class for all C types (non-reference-counted).
    #
    #  to_py_function     string     C function for converting to Python object
    #  from_py_function   string     C function for constructing from Python object
    #

    to_py_function = None
    from_py_function = None
    exception_value = None
    exception_check = 1

    def create_to_py_utility_code(self, env):
        return self.to_py_function is not None

    def create_from_py_utility_code(self, env):
        return self.from_py_function is not None

    def can_coerce_to_pyobject(self, env):
        return self.create_to_py_utility_code(env)

    def can_coerce_from_pyobject(self, env):
        return self.create_from_py_utility_code(env)

    def error_condition(self, result_code):
        conds = []
        if self.is_string or self.is_pyunicode_ptr:
            conds.append("(!%s)" % result_code)
        elif self.exception_value is not None:
            conds.append("(%s == (%s)%s)" % (result_code, self.sign_and_name(), self.exception_value))
        if self.exception_check:
            conds.append("PyErr_Occurred()")
        if len(conds) > 0:
            return " && ".join(conds)
        else:
            return 0

    def to_py_call_code(self, source_code, result_code, result_type, to_py_function=None):
        func = self.to_py_function if to_py_function is None else to_py_function
        assert func
        if self.is_string or self.is_cpp_string:
            if result_type.is_builtin_type:
                result_type_name = result_type.name
                if result_type_name in ('bytes', 'str', 'unicode'):
                    func = func.replace("Object", result_type_name.title(), 1)
                elif result_type_name == 'bytearray':
                    func = func.replace("Object", "ByteArray", 1)
        return '%s = %s(%s)' % (
            result_code,
            func,
            source_code or 'NULL')

    def from_py_call_code(self, source_code, result_code, error_pos, code,
                          from_py_function=None, error_condition=None,
                          special_none_cvalue=None):
        return self._assign_from_py_code(
            source_code, result_code, error_pos, code, from_py_function, error_condition,
            special_none_cvalue=special_none_cvalue)



class PythranExpr(CType):
    # Pythran object of a given type

    to_py_function = "__Pyx_pythran_to_python"
    is_pythran_expr = True
    writable = True
    has_attributes = 1

    def __init__(self, pythran_type, org_buffer=None):
        self.org_buffer = org_buffer
        self.pythran_type = pythran_type
        self.name = self.pythran_type
        self.cname = self.pythran_type
        self.from_py_function = "from_python<%s>" % (self.pythran_type)
        self.scope = None

    def declaration_code(self, entity_code, for_display=0, dll_linkage=None, pyrex=0):
        assert not pyrex
        return "%s %s" % (self.cname, entity_code)

    def attributes_known(self):
        if self.scope is None:
            from . import Symtab
            # FIXME: fake C scope, might be better represented by a struct or C++ class scope
            self.scope = scope = Symtab.CClassScope('', None, visibility="extern")
            scope.parent_type = self
            scope.directives = {}

            scope.declare_var("ndim", c_long_type, pos=None, cname="value", is_cdef=True)
            scope.declare_cproperty(
                "shape", c_ptr_type(c_long_type), "__Pyx_PythranShapeAccessor",
                doc="Pythran array shape",
                visibility="extern",
                nogil=True,
            )

        return True

    def __eq__(self, other):
        return isinstance(other, PythranExpr) and self.pythran_type == other.pythran_type

    def __ne__(self, other):
        return not (isinstance(other, PythranExpr) and self.pythran_type == other.pythran_type)

    def __hash__(self):
        return hash(self.pythran_type)


class CConstOrVolatileType(BaseType):
    "A C const or volatile type"

    subtypes = ['cv_base_type']

    is_cv_qualified = 1

    def __init__(self, base_type, is_const=0, is_volatile=0):
        self.cv_base_type = base_type
        self.is_const = is_const
        self.is_volatile = is_volatile
        if base_type.has_attributes and base_type.scope is not None:
            from .Symtab import CConstOrVolatileScope
            self.scope = CConstOrVolatileScope(base_type.scope, is_const, is_volatile)

    def cv_string(self):
        cvstring = ""
        if self.is_const:
            cvstring = "const " + cvstring
        if self.is_volatile:
            cvstring = "volatile " + cvstring
        return cvstring

    def __repr__(self):
        return "<CConstOrVolatileType %s%r>" % (self.cv_string(), self.cv_base_type)

    def __str__(self):
        return self.declaration_code("", for_display=1)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        cv = self.cv_string()
        if for_display or pyrex:
            return cv + self.cv_base_type.declaration_code(entity_code, for_display, dll_linkage, pyrex)
        else:
            return self.cv_base_type.declaration_code(cv + entity_code, for_display, dll_linkage, pyrex)

    def specialize(self, values):
        base_type = self.cv_base_type.specialize(values)
        if base_type == self.cv_base_type:
            return self
        return CConstOrVolatileType(base_type,
                self.is_const, self.is_volatile)

    def deduce_template_params(self, actual):
        return self.cv_base_type.deduce_template_params(actual)

    def can_coerce_to_pyobject(self, env):
        return self.cv_base_type.can_coerce_to_pyobject(env)

    def can_coerce_from_pyobject(self, env):
        return self.cv_base_type.can_coerce_from_pyobject(env)

    def create_to_py_utility_code(self, env):
        if self.cv_base_type.create_to_py_utility_code(env):
            self.to_py_function = self.cv_base_type.to_py_function
            return True

    def same_as_resolved_type(self, other_type):
        if other_type.is_cv_qualified:
            return self.cv_base_type.same_as_resolved_type(other_type.cv_base_type)
        # Accept cv LHS <- non-cv RHS.
        return self.cv_base_type.same_as_resolved_type(other_type)

    def __getattr__(self, name):
        return getattr(self.cv_base_type, name)


def CConstType(base_type):
    return CConstOrVolatileType(base_type, is_const=1)


class FusedType(CType):
    """
    Represents a Fused Type. All it needs to do is keep track of the types
    it aggregates, as it will be replaced with its specific version wherever
    needed.

    See http://wiki.cython.org/enhancements/fusedtypes

    types           [PyrexType]             is the list of types to be fused
    name            str                     the name of the ctypedef
    """

    is_fused = 1
    exception_check = 0

    def __init__(self, types, name=None):
        # Use list rather than set to preserve order (list should be short).
        flattened_types = []
        for t in types:
            if t.is_fused:
                # recursively merge in subtypes
                if isinstance(t, FusedType):
                    t_types = t.types
                else:
                    # handle types that aren't a fused type themselves but contain fused types
                    # for example a C++ template where the template type is fused.
                    t_fused_types = t.get_fused_types()
                    t_types = []
                    for substitution in product(
                        *[fused_type.types for fused_type in t_fused_types]
                    ):
                        t_types.append(
                            t.specialize(
                                {
                                    fused_type: sub
                                    for fused_type, sub in zip(
                                        t_fused_types, substitution
                                    )
                                }
                            )
                        )
                for subtype in t_types:
                    if subtype not in flattened_types:
                        flattened_types.append(subtype)
            elif t not in flattened_types:
                flattened_types.append(t)
        self.types = flattened_types
        self.name = name

    def declaration_code(self, entity_code, for_display = 0,
                         dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            return self.name

        raise Exception("This may never happen, please report a bug")

    def __repr__(self):
        return 'FusedType(name=%r)' % self.name

    def specialize(self, values):
        if self in values:
            return values[self]
        else:
            raise CannotSpecialize()

    def get_fused_types(self, result=None, seen=None, include_function_return_type=False):
        if result is None:
            return [self]

        if self not in seen:
            result.append(self)
            seen.add(self)


class CVoidType(CType):
    #
    #   C "void" type
    #

    is_void = 1
    to_py_function = "__Pyx_void_to_None"

    def __repr__(self):
        return "<CVoidType>"

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = "void"
        else:
            base_code = public_decl("void", dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def is_complete(self):
        return 0

class InvisibleVoidType(CVoidType):
    #
    #   For use with C++ constructors and destructors return types.
    #   Acts like void, but does not print out a declaration.
    #
    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = "[void]"
        else:
            base_code = public_decl("", dll_linkage)
        return self.base_declaration_code(base_code, entity_code)


class CNumericType(CType):
    #
    #   Base class for all C numeric types.
    #
    #   rank      integer     Relative size
    #   signed    integer     0 = unsigned, 1 = unspecified, 2 = explicitly signed
    #

    is_numeric = 1
    default_value = "0"
    has_attributes = True
    scope = None

    sign_words = ("unsigned ", "", "signed ")

    def __init__(self, rank, signed = 1):
        self.rank = rank
        if rank > 0 and signed == SIGNED:
            # Signed is meaningless for anything but char, and complicates
            # type promotion.
            signed = 1
        self.signed = signed

    def sign_and_name(self):
        s = self.sign_words[self.signed]
        n = rank_to_type_name[self.rank]
        return s + n

    def __repr__(self):
        return "<CNumericType %s>" % self.sign_and_name()

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        type_name = self.sign_and_name()
        if pyrex or for_display:
            base_code = type_name.replace('PY_LONG_LONG', 'long long')
        else:
            base_code = public_decl(type_name, dll_linkage)
        base_code = StringEncoding.EncodedString(base_code)
        return self.base_declaration_code(base_code, entity_code)

    def attributes_known(self):
        if self.scope is None:
            from . import Symtab
            self.scope = scope = Symtab.CClassScope(
                    '',
                    None,
                    visibility="extern")
            scope.parent_type = self
            scope.directives = {}
            scope.declare_cfunction(
                    "conjugate",
                    CFuncType(self, [CFuncTypeArg("self", self, None)], nogil=True),
                    pos=None,
                    defining=1,
                    cname=" ")
        return True

    def __lt__(self, other):
        """Sort based on rank, preferring signed over unsigned"""
        if other.is_numeric:
            return self.rank > other.rank and self.signed >= other.signed

        # Prefer numeric types over others
        return True

    def py_type_name(self):
        if self.rank <= 4:
            return "(int, long)"
        return "float"


class ForbidUseClass:
    def __repr__(self):
        raise RuntimeError()
    def __str__(self):
        raise RuntimeError()
ForbidUse = ForbidUseClass()


class CIntLike(object):
    """Mixin for shared behaviour of C integers and enums.
    """
    to_py_function = None
    from_py_function = None
    to_pyunicode_utility = None
    default_format_spec = 'd'

    def can_coerce_to_pyobject(self, env):
        return True

    def can_coerce_from_pyobject(self, env):
        return True

    def create_to_py_utility_code(self, env):
        if type(self).to_py_function is None:
            self.to_py_function = "__Pyx_PyInt_From_" + self.specialization_name()
            env.use_utility_code(TempitaUtilityCode.load_cached(
                "CIntToPy", "TypeConversion.c",
                context={"TYPE": self.empty_declaration_code(),
                         "TO_PY_FUNCTION": self.to_py_function}))
        return True

    def create_from_py_utility_code(self, env):
        if type(self).from_py_function is None:
            self.from_py_function = "__Pyx_PyInt_As_" + self.specialization_name()
            env.use_utility_code(TempitaUtilityCode.load_cached(
                "CIntFromPy", "TypeConversion.c",
                context={"TYPE": self.empty_declaration_code(),
                         "FROM_PY_FUNCTION": self.from_py_function}))
        return True

    @staticmethod
    def _parse_format(format_spec):
        padding = ' '
        if not format_spec:
            return ('d', 0, padding)
        format_type = format_spec[-1]
        if format_type in ('o', 'd', 'x', 'X'):
            prefix = format_spec[:-1]
        elif format_type.isdigit():
            format_type = 'd'
            prefix = format_spec
        else:
            return (None, 0, padding)
        if not prefix:
            return (format_type, 0, padding)
        if prefix[0] == '-':
            prefix = prefix[1:]
        if prefix and prefix[0] == '0':
            padding = '0'
            prefix = prefix.lstrip('0')
        if prefix.isdigit():
            return (format_type, int(prefix), padding)
        return (None, 0, padding)

    def can_coerce_to_pystring(self, env, format_spec=None):
        format_type, width, padding = self._parse_format(format_spec)
        return format_type is not None and width <= 2**30

    def convert_to_pystring(self, cvalue, code, format_spec=None):
        if self.to_pyunicode_utility is None:
            utility_code_name = "__Pyx_PyUnicode_From_" + self.specialization_name()
            to_pyunicode_utility = TempitaUtilityCode.load_cached(
                "CIntToPyUnicode", "TypeConversion.c",
                context={"TYPE": self.empty_declaration_code(),
                         "TO_PY_FUNCTION": utility_code_name})
            self.to_pyunicode_utility = (utility_code_name, to_pyunicode_utility)
        else:
            utility_code_name, to_pyunicode_utility = self.to_pyunicode_utility
        code.globalstate.use_utility_code(to_pyunicode_utility)
        format_type, width, padding_char = self._parse_format(format_spec)
        return "%s(%s, %d, '%s', '%s')" % (utility_code_name, cvalue, width, padding_char, format_type)


class CIntType(CIntLike, CNumericType):

    is_int = 1
    typedef_flag = 0
    exception_value = -1

    def get_to_py_type_conversion(self):
        if self.rank < list(rank_to_type_name).index('int'):
            # This assumes sizeof(short) < sizeof(int)
            return "PyInt_FromLong"
        else:
            # Py{Int|Long}_From[Unsigned]Long[Long]
            Prefix = "Int"
            SignWord = ""
            TypeName = "Long"
            if not self.signed:
                Prefix = "Long"
                SignWord = "Unsigned"
            if self.rank >= list(rank_to_type_name).index('PY_LONG_LONG'):
                Prefix = "Long"
                TypeName = "LongLong"
            return "Py%s_From%s%s" % (Prefix, SignWord, TypeName)

    def assignable_from_resolved_type(self, src_type):
        return src_type.is_int or src_type.is_enum or src_type is error_type

    def invalid_value(self):
        if rank_to_type_name[int(self.rank)] == 'char':
            return "'?'"
        else:
            # We do not really know the size of the type, so return
            # a 32-bit literal and rely on casting to final type. It will
            # be negative for signed ints, which is good.
            return "0xbad0bad0"

    def overflow_check_binop(self, binop, env, const_rhs=False):
        env.use_utility_code(UtilityCode.load("Common", "Overflow.c"))
        type = self.empty_declaration_code()
        name = self.specialization_name()
        if binop == "lshift":
            env.use_utility_code(TempitaUtilityCode.load_cached(
                "LeftShift", "Overflow.c",
                context={'TYPE': type, 'NAME': name, 'SIGNED': self.signed}))
        else:
            if const_rhs:
                binop += "_const"
            if type in ('int', 'long', 'long long'):
                env.use_utility_code(TempitaUtilityCode.load_cached(
                    "BaseCaseSigned", "Overflow.c",
                    context={'INT': type, 'NAME': name}))
            elif type in ('unsigned int', 'unsigned long', 'unsigned long long'):
                env.use_utility_code(TempitaUtilityCode.load_cached(
                    "BaseCaseUnsigned", "Overflow.c",
                    context={'UINT': type, 'NAME': name}))
            elif self.rank <= 1:
                # sizeof(short) < sizeof(int)
                return "__Pyx_%s_%s_no_overflow" % (binop, name)
            else:
                _load_overflow_base(env)
                env.use_utility_code(TempitaUtilityCode.load_cached(
                    "SizeCheck", "Overflow.c",
                    context={'TYPE': type, 'NAME': name}))
                env.use_utility_code(TempitaUtilityCode.load_cached(
                    "Binop", "Overflow.c",
                    context={'TYPE': type, 'NAME': name, 'BINOP': binop}))
        return "__Pyx_%s_%s_checking_overflow" % (binop, name)


def _load_overflow_base(env):
    env.use_utility_code(UtilityCode.load("Common", "Overflow.c"))
    for type in ('int', 'long', 'long long'):
        env.use_utility_code(TempitaUtilityCode.load_cached(
            "BaseCaseSigned", "Overflow.c",
            context={'INT': type, 'NAME': type.replace(' ', '_')}))
    for type in ('unsigned int', 'unsigned long', 'unsigned long long'):
        env.use_utility_code(TempitaUtilityCode.load_cached(
            "BaseCaseUnsigned", "Overflow.c",
            context={'UINT': type, 'NAME': type.replace(' ', '_')}))


class CAnonEnumType(CIntType):

    is_enum = 1

    def sign_and_name(self):
        return 'int'


class CReturnCodeType(CIntType):

    to_py_function = "__Pyx_Owned_Py_None"

    is_returncode = True
    exception_check = False
    default_format_spec = ''

    def can_coerce_to_pystring(self, env, format_spec=None):
        return not format_spec

    def convert_to_pystring(self, cvalue, code, format_spec=None):
        return "__Pyx_NewRef(%s)" % code.globalstate.get_py_string_const(StringEncoding.EncodedString("None")).cname


class CBIntType(CIntType):

    to_py_function = "__Pyx_PyBool_FromLong"
    from_py_function = "__Pyx_PyObject_IsTrue"
    exception_check = 1  # for C++ bool
    default_format_spec = ''

    def can_coerce_to_pystring(self, env, format_spec=None):
        return not format_spec or super(CBIntType, self).can_coerce_to_pystring(env, format_spec)

    def convert_to_pystring(self, cvalue, code, format_spec=None):
        if format_spec:
            return super(CBIntType, self).convert_to_pystring(cvalue, code, format_spec)
        # NOTE: no caching here as the string constant cnames depend on the current module
        utility_code_name = "__Pyx_PyUnicode_FromBInt_" + self.specialization_name()
        to_pyunicode_utility = TempitaUtilityCode.load_cached(
            "CBIntToPyUnicode", "TypeConversion.c", context={
                "TRUE_CONST":  code.globalstate.get_py_string_const(StringEncoding.EncodedString("True")).cname,
                "FALSE_CONST": code.globalstate.get_py_string_const(StringEncoding.EncodedString("False")).cname,
                "TO_PY_FUNCTION": utility_code_name,
            })
        code.globalstate.use_utility_code(to_pyunicode_utility)
        return "%s(%s)" % (utility_code_name, cvalue)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if for_display:
            base_code = 'bool'
        elif pyrex:
            base_code = 'bint'
        else:
            base_code = public_decl('int', dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def __repr__(self):
        return "<CNumericType bint>"

    def __str__(self):
        return 'bint'

    def py_type_name(self):
        return "bool"


class CPyUCS4IntType(CIntType):
    # Py_UCS4

    is_unicode_char = True

    # Py_UCS4 coerces from and to single character unicode strings (or
    # at most two characters on 16bit Unicode builds), but we also
    # allow Python integers as input.  The value range for Py_UCS4
    # is 0..1114111, which is checked when converting from an integer
    # value.

    to_py_function = "__Pyx_PyUnicode_FromOrdinal"
    from_py_function = "__Pyx_PyObject_AsPy_UCS4"

    def can_coerce_to_pystring(self, env, format_spec=None):
        return False  # does the right thing anyway

    def create_from_py_utility_code(self, env):
        env.use_utility_code(UtilityCode.load_cached("ObjectAsUCS4", "TypeConversion.c"))
        return True

    def sign_and_name(self):
        return "Py_UCS4"


class CPyUnicodeIntType(CIntType):
    # Py_UNICODE

    is_unicode_char = True

    # Py_UNICODE coerces from and to single character unicode strings,
    # but we also allow Python integers as input.  The value range for
    # Py_UNICODE is 0..1114111, which is checked when converting from
    # an integer value.

    to_py_function = "__Pyx_PyUnicode_FromOrdinal"
    from_py_function = "__Pyx_PyObject_AsPy_UNICODE"

    def can_coerce_to_pystring(self, env, format_spec=None):
        return False  # does the right thing anyway

    def create_from_py_utility_code(self, env):
        env.use_utility_code(UtilityCode.load_cached("ObjectAsPyUnicode", "TypeConversion.c"))
        return True

    def sign_and_name(self):
        return "Py_UNICODE"


class CPyHashTType(CIntType):

    to_py_function = "__Pyx_PyInt_FromHash_t"
    from_py_function = "__Pyx_PyInt_AsHash_t"

    def sign_and_name(self):
        return "Py_hash_t"

class CPySSizeTType(CIntType):

    to_py_function = "PyInt_FromSsize_t"
    from_py_function = "__Pyx_PyIndex_AsSsize_t"

    def sign_and_name(self):
        return "Py_ssize_t"

class CSSizeTType(CIntType):

    to_py_function = "PyInt_FromSsize_t"
    from_py_function = "PyInt_AsSsize_t"

    def sign_and_name(self):
        return "Py_ssize_t"

class CSizeTType(CIntType):

    to_py_function = "__Pyx_PyInt_FromSize_t"

    def sign_and_name(self):
        return "size_t"

class CPtrdiffTType(CIntType):

    def sign_and_name(self):
        return "ptrdiff_t"


class CFloatType(CNumericType):

    is_float = 1
    to_py_function = "PyFloat_FromDouble"
    from_py_function = "__pyx_PyFloat_AsDouble"

    exception_value = -1

    def __init__(self, rank, math_h_modifier = ''):
        CNumericType.__init__(self, rank, 1)
        self.math_h_modifier = math_h_modifier
        if rank == RANK_FLOAT:
            self.from_py_function = "__pyx_PyFloat_AsFloat"

    def assignable_from_resolved_type(self, src_type):
        return (src_type.is_numeric and not src_type.is_complex) or src_type is error_type

    def invalid_value(self):
        return Naming.PYX_NAN

class CComplexType(CNumericType):

    is_complex = 1
    has_attributes = 1
    scope = None

    @property
    def to_py_function(self):
        return "__pyx_PyComplex_FromComplex%s" % self.implementation_suffix

    def __init__(self, real_type):
        while real_type.is_typedef and not real_type.typedef_is_external:
            real_type = real_type.typedef_base_type
        self.funcsuffix = "_%s" % real_type.specialization_name()
        if not real_type.is_float:
            # neither C nor C++ supports non-floating complex numbers,
            # so fall back the on Cython implementation.
            self.implementation_suffix = "_Cy"
        elif real_type.is_typedef and real_type.typedef_is_external:
            # C can't handle typedefs in complex numbers,
            # so in this case also fall back on the Cython implementation.
            self.implementation_suffix = "_CyTypedef"
        else:
            self.implementation_suffix = ""
        if real_type.is_float:
            self.math_h_modifier = real_type.math_h_modifier
        else:
            self.math_h_modifier = "_UNUSED"

        self.real_type = real_type
        CNumericType.__init__(self, real_type.rank + 0.5, real_type.signed)
        self.binops = {}
        self.from_parts = "%s_from_parts" % self.specialization_name()
        self.default_value = "%s(0, 0)" % self.from_parts

    def __eq__(self, other):
        if isinstance(self, CComplexType) and isinstance(other, CComplexType):
            return self.real_type == other.real_type
        else:
            return False

    def __ne__(self, other):
        if isinstance(self, CComplexType) and isinstance(other, CComplexType):
            return self.real_type != other.real_type
        else:
            return True

    def __lt__(self, other):
        if isinstance(self, CComplexType) and isinstance(other, CComplexType):
            return self.real_type < other.real_type
        else:
            # this is arbitrary, but it makes sure we always have
            # *some* kind of order
            return False

    def __hash__(self):
        return ~hash(self.real_type)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            real_code = self.real_type.declaration_code("", for_display, dll_linkage, pyrex)
            base_code = "%s complex" % real_code
        else:
            base_code = public_decl(self.sign_and_name(), dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def sign_and_name(self):
        real_type_name = self.real_type.specialization_name()
        real_type_name = real_type_name.replace('long__double','long_double')
        real_type_name = real_type_name.replace('PY_LONG_LONG','long_long')
        return Naming.type_prefix + real_type_name + "_complex"

    def assignable_from(self, src_type):
        # Temporary hack/feature disabling, see #441
        if (not src_type.is_complex and src_type.is_numeric and src_type.is_typedef
                and src_type.typedef_is_external):
            return False
        elif src_type.is_pyobject:
            return True
        else:
            return super(CComplexType, self).assignable_from(src_type)

    def assignable_from_resolved_type(self, src_type):
        return (src_type.is_complex and self.real_type.assignable_from_resolved_type(src_type.real_type)
            or src_type.is_numeric and self.real_type.assignable_from_resolved_type(src_type)
            or src_type is error_type)

    def attributes_known(self):
        if self.scope is None:
            from . import Symtab
            self.scope = scope = Symtab.CClassScope(
                    '',
                    None,
                    visibility="extern")
            scope.parent_type = self
            scope.directives = {}
            scope.declare_var("real", self.real_type, None, cname="real", is_cdef=True)
            scope.declare_var("imag", self.real_type, None, cname="imag", is_cdef=True)
            scope.declare_cfunction(
                    "conjugate",
                    CFuncType(self, [CFuncTypeArg("self", self, None)], nogil=True),
                    pos=None,
                    defining=1,
                    cname="__Pyx_c_conj%s" % self.funcsuffix)

        return True

    def _utility_code_context(self):
        return {
            'type': self.empty_declaration_code(),
            'type_name': self.specialization_name(),
            'real_type': self.real_type.empty_declaration_code(),
            'func_suffix': self.funcsuffix,
            'm': self.math_h_modifier,
            'is_float': int(self.real_type.is_float),
            'is_extern_float_typedef': int(
                self.real_type.is_float and self.real_type.is_typedef and self.real_type.typedef_is_external)
        }

    def create_declaration_utility_code(self, env):
        # This must always be run, because a single CComplexType instance can be shared
        # across multiple compilations (the one created in the module scope)
        if self.real_type.is_float:
            env.use_utility_code(UtilityCode.load_cached('Header', 'Complex.c'))
        utility_code_context = self._utility_code_context()
        env.use_utility_code(UtilityCode.load_cached(
            'RealImag' + self.implementation_suffix, 'Complex.c'))
        env.use_utility_code(TempitaUtilityCode.load_cached(
            'Declarations', 'Complex.c', utility_code_context))
        env.use_utility_code(TempitaUtilityCode.load_cached(
            'Arithmetic', 'Complex.c', utility_code_context))
        return True

    def can_coerce_to_pyobject(self, env):
        return True

    def can_coerce_from_pyobject(self, env):
        return True

    def create_to_py_utility_code(self, env):
        env.use_utility_code(TempitaUtilityCode.load_cached(
            'ToPy', 'Complex.c', self._utility_code_context()))
        return True

    def create_from_py_utility_code(self, env):
        env.use_utility_code(TempitaUtilityCode.load_cached(
            'FromPy', 'Complex.c', self._utility_code_context()))
        self.from_py_function = "__Pyx_PyComplex_As_" + self.specialization_name()
        return True

    def lookup_op(self, nargs, op):
        try:
            return self.binops[nargs, op]
        except KeyError:
            pass
        try:
            op_name = complex_ops[nargs, op]
            self.binops[nargs, op] = func_name = "__Pyx_c_%s%s" % (op_name, self.funcsuffix)
            return func_name
        except KeyError:
            return None

    def unary_op(self, op):
        return self.lookup_op(1, op)

    def binary_op(self, op):
        return self.lookup_op(2, op)

    def py_type_name(self):
        return "complex"

    def cast_code(self, expr_code):
        return expr_code

    def real_code(self, expr_code):
        return "__Pyx_CREAL%s(%s)" % (self.implementation_suffix, expr_code)

    def imag_code(self, expr_code):
        return "__Pyx_CIMAG%s(%s)" % (self.implementation_suffix, expr_code)

complex_ops = {
    (1, '-'): 'neg',
    (1, 'zero'): 'is_zero',
    (2, '+'): 'sum',
    (2, '-'): 'diff',
    (2, '*'): 'prod',
    (2, '/'): 'quot',
    (2, '**'): 'pow',
    (2, '=='): 'eq',
}


class SoftCComplexType(CComplexType):
    """
    a**b in Python can return either a complex or a float
    depending on the sign of a. This "soft complex" type is
    stored as a C complex (and so is a little slower than a
    direct C double) but it prints/coerces to a float if
    the imaginary part is 0. Therefore it provides a C
    representation of the Python behaviour.
    """

    to_py_function = "__pyx_Py_FromSoftComplex"

    def __init__(self):
        super(SoftCComplexType, self).__init__(c_double_type)

    def declaration_code(self, entity_code, for_display=0, dll_linkage=None, pyrex=0):
        base_result =  super(SoftCComplexType, self).declaration_code(
            entity_code,
            for_display=for_display,
            dll_linkage=dll_linkage,
            pyrex=pyrex,
        )
        if for_display:
            return "soft %s" % base_result
        else:
            return base_result

    def create_to_py_utility_code(self, env):
        env.use_utility_code(UtilityCode.load_cached('SoftComplexToPy', 'Complex.c'))
        return True

    def __repr__(self):
        result = super(SoftCComplexType, self).__repr__()
        assert result[-1] == ">"
        return "%s (soft)%s" % (result[:-1], result[-1])

class CPyTSSTType(CType):
    #
    #   PEP-539 "Py_tss_t" type
    #

    declaration_value = "Py_tss_NEEDS_INIT"

    def __repr__(self):
        return "<Py_tss_t>"

    def declaration_code(self, entity_code,
                         for_display=0, dll_linkage=None, pyrex=0):
        if pyrex or for_display:
            base_code = "Py_tss_t"
        else:
            base_code = public_decl("Py_tss_t", dll_linkage)
        return self.base_declaration_code(base_code, entity_code)


class CPointerBaseType(CType):
    # common base type for pointer/array types
    #
    #  base_type     CType              Reference type

    subtypes = ['base_type']

    def __init__(self, base_type):
        self.base_type = base_type
        if base_type.is_cv_qualified:
            base_type = base_type.cv_base_type
        for char_type in (c_char_type, c_uchar_type, c_schar_type):
            if base_type.same_as(char_type):
                self.is_string = 1
                break
        else:
            if base_type.same_as(c_py_unicode_type):
                self.is_pyunicode_ptr = 1

        if self.is_string and not base_type.is_error:
            if base_type.signed == 2:
                self.to_py_function = "__Pyx_PyObject_FromCString"
                if self.is_ptr:
                    self.from_py_function = "__Pyx_PyObject_As%sSString"
            elif base_type.signed:
                self.to_py_function = "__Pyx_PyObject_FromString"
                if self.is_ptr:
                    self.from_py_function = "__Pyx_PyObject_As%sString"
            else:
                self.to_py_function = "__Pyx_PyObject_FromCString"
                if self.is_ptr:
                    self.from_py_function = "__Pyx_PyObject_As%sUString"
            if self.is_ptr:
                self.from_py_function %= '' if self.base_type.is_const else 'Writable'
            self.exception_value = "NULL"
        elif self.is_pyunicode_ptr and not base_type.is_error:
            self.to_py_function = "__Pyx_PyUnicode_FromUnicode"
            if self.is_ptr:
                self.from_py_function = "__Pyx_PyUnicode_AsUnicode"
            self.exception_value = "NULL"

    def py_type_name(self):
        if self.is_string:
            return "bytes"
        elif self.is_pyunicode_ptr:
            return "unicode"
        else:
            return super(CPointerBaseType, self).py_type_name()

    def literal_code(self, value):
        if self.is_string:
            assert isinstance(value, str)
            return '"%s"' % StringEncoding.escape_byte_string(value)
        return str(value)


class CArrayType(CPointerBaseType):
    #  base_type     CType              Element type
    #  size          integer or None    Number of elements

    is_array = 1
    to_tuple_function = None

    def __init__(self, base_type, size):
        super(CArrayType, self).__init__(base_type)
        self.size = size

    def __eq__(self, other):
        if isinstance(other, CType) and other.is_array and self.size == other.size:
            return self.base_type.same_as(other.base_type)
        return False

    def __hash__(self):
        return hash(self.base_type) + 28  # arbitrarily chosen offset

    def __repr__(self):
        return "<CArrayType %s %s>" % (self.size, repr(self.base_type))

    def same_as_resolved_type(self, other_type):
        return ((other_type.is_array and
            self.base_type.same_as(other_type.base_type))
                or other_type is error_type)

    def assignable_from_resolved_type(self, src_type):
        # C arrays are assigned by value, either Python containers or C arrays/pointers
        if src_type.is_pyobject:
            return True
        if src_type.is_ptr or src_type.is_array:
            return self.base_type.assignable_from(src_type.base_type)
        return False

    def element_ptr_type(self):
        return c_ptr_type(self.base_type)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if self.size is not None:
            dimension_code = self.size
        else:
            dimension_code = ""
        if entity_code.startswith("*"):
            entity_code = "(%s)" % entity_code
        return self.base_type.declaration_code(
            "%s[%s]" % (entity_code, dimension_code),
            for_display, dll_linkage, pyrex)

    def as_argument_type(self):
        return c_ptr_type(self.base_type)

    def is_complete(self):
        return self.size is not None

    def specialize(self, values):
        base_type = self.base_type.specialize(values)
        if base_type == self.base_type:
            return self
        else:
            return CArrayType(base_type, self.size)

    def deduce_template_params(self, actual):
        if isinstance(actual, CArrayType):
            return self.base_type.deduce_template_params(actual.base_type)
        else:
            return {}

    def can_coerce_to_pyobject(self, env):
        return self.base_type.can_coerce_to_pyobject(env)

    def can_coerce_from_pyobject(self, env):
        return self.base_type.can_coerce_from_pyobject(env)

    def create_to_py_utility_code(self, env):
        if self.to_py_function is not None:
            return self.to_py_function
        if not self.base_type.create_to_py_utility_code(env):
            return False

        safe_typename = self.base_type.specialization_name()
        to_py_function = "__Pyx_carray_to_py_%s" % safe_typename
        to_tuple_function = "__Pyx_carray_to_tuple_%s" % safe_typename

        from .UtilityCode import CythonUtilityCode
        context = {
            'cname': to_py_function,
            'to_tuple_cname': to_tuple_function,
            'base_type': self.base_type,
        }
        env.use_utility_code(CythonUtilityCode.load(
            "carray.to_py", "CConvert.pyx",
            outer_module_scope=env.global_scope(),  # need access to types declared in module
            context=context, compiler_directives=dict(env.global_scope().directives)))
        self.to_tuple_function = to_tuple_function
        self.to_py_function = to_py_function
        return True

    def to_py_call_code(self, source_code, result_code, result_type, to_py_function=None):
        func = self.to_py_function if to_py_function is None else to_py_function
        if self.is_string or self.is_pyunicode_ptr:
            return '%s = %s(%s)' % (
                result_code,
                func,
                source_code)
        target_is_tuple = result_type.is_builtin_type and result_type.name == 'tuple'
        return '%s = %s(%s, %s)' % (
            result_code,
            self.to_tuple_function if target_is_tuple else func,
            source_code,
            self.size)

    def create_from_py_utility_code(self, env):
        if self.from_py_function is not None:
            return self.from_py_function
        if not self.base_type.create_from_py_utility_code(env):
            return False

        from_py_function = "__Pyx_carray_from_py_%s" % self.base_type.specialization_name()

        from .UtilityCode import CythonUtilityCode
        context = {
            'cname': from_py_function,
            'base_type': self.base_type,
        }
        env.use_utility_code(CythonUtilityCode.load(
            "carray.from_py", "CConvert.pyx",
            outer_module_scope=env.global_scope(),  # need access to types declared in module
            context=context, compiler_directives=dict(env.global_scope().directives)))
        self.from_py_function = from_py_function
        return True

    def from_py_call_code(self, source_code, result_code, error_pos, code,
                          from_py_function=None, error_condition=None,
                          special_none_cvalue=None):
        assert not error_condition, '%s: %s' % (error_pos, error_condition)
        assert not special_none_cvalue, '%s: %s' % (error_pos, special_none_cvalue)  # not currently supported
        call_code = "%s(%s, %s, %s)" % (
            from_py_function or self.from_py_function,
            source_code, result_code, self.size)
        return code.error_goto_if_neg(call_code, error_pos)

    def error_condition(self, result_code):
        # It isn't possible to use CArrays as return type so the error_condition
        # is irrelevant. Returning a falsy value does avoid an error when getting
        # from_py_call_code from a typedef.
        return ""


class CPtrType(CPointerBaseType):
    #  base_type     CType              Reference type

    is_ptr = 1
    default_value = "0"

    def __hash__(self):
        return hash(self.base_type) + 27  # arbitrarily chosen offset

    def __eq__(self, other):
        if isinstance(other, CType) and other.is_ptr:
            return self.base_type.same_as(other.base_type)
        return False

    def __ne__(self, other):
        return not (self == other)

    def __repr__(self):
        return "<CPtrType %s>" % repr(self.base_type)

    def same_as_resolved_type(self, other_type):
        return ((other_type.is_ptr and
            self.base_type.same_as(other_type.base_type))
                or other_type is error_type)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        #print "CPtrType.declaration_code: pointer to", self.base_type ###
        return self.base_type.declaration_code(
            "*%s" % entity_code,
            for_display, dll_linkage, pyrex)

    def assignable_from_resolved_type(self, other_type):
        if other_type is error_type:
            return 1
        if other_type.is_null_ptr:
            return 1
        if self.base_type.is_cv_qualified:
            self = CPtrType(self.base_type.cv_base_type)
        if self.base_type.is_cfunction:
            if other_type.is_ptr:
                other_type = other_type.base_type.resolve()
            if other_type.is_cfunction:
                return self.base_type.pointer_assignable_from_resolved_type(other_type)
            else:
                return 0
        if (self.base_type.is_cpp_class and other_type.is_ptr
                and other_type.base_type.is_cpp_class and other_type.base_type.is_subclass(self.base_type)):
            return 1
        if other_type.is_array or other_type.is_ptr:
            return self.base_type.is_void or self.base_type.same_as(other_type.base_type)
        return 0

    def specialize(self, values):
        base_type = self.base_type.specialize(values)
        if base_type == self.base_type:
            return self
        else:
            return CPtrType(base_type)

    def deduce_template_params(self, actual):
        if isinstance(actual, CPtrType):
            return self.base_type.deduce_template_params(actual.base_type)
        else:
            return {}

    def invalid_value(self):
        return "1"

    def find_cpp_operation_type(self, operator, operand_type=None):
        if self.base_type.is_cpp_class:
            return self.base_type.find_cpp_operation_type(operator, operand_type)
        return None

    def get_fused_types(self, result=None, seen=None, include_function_return_type=False):
        # For function pointers, include the return type - unlike for fused functions themselves,
        # where the return type cannot be an independent fused type (i.e. is derived or non-fused).
        return super(CPointerBaseType, self).get_fused_types(result, seen, include_function_return_type=True)


class CNullPtrType(CPtrType):

    is_null_ptr = 1


class CReferenceBaseType(BaseType):

    is_fake_reference = 0

    # Common base type for C reference and C++ rvalue reference types.

    subtypes = ['ref_base_type']

    def __init__(self, base_type):
        self.ref_base_type = base_type

    def __repr__(self):
        return "<%r %s>" % (self.__class__.__name__, self.ref_base_type)

    def specialize(self, values):
        base_type = self.ref_base_type.specialize(values)
        if base_type == self.ref_base_type:
            return self
        else:
            return type(self)(base_type)

    def deduce_template_params(self, actual):
        return self.ref_base_type.deduce_template_params(actual)

    def __getattr__(self, name):
        return getattr(self.ref_base_type, name)


class CReferenceType(CReferenceBaseType):

    is_reference = 1

    def __str__(self):
        return "%s &" % self.ref_base_type

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        #print "CReferenceType.declaration_code: pointer to", self.base_type ###
        return self.ref_base_type.declaration_code(
            "&%s" % entity_code,
            for_display, dll_linkage, pyrex)


class CFakeReferenceType(CReferenceType):

    is_fake_reference = 1

    def __str__(self):
        return "%s [&]" % self.ref_base_type

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        #print "CReferenceType.declaration_code: pointer to", self.base_type ###
        return "__Pyx_FakeReference<%s> %s" % (self.ref_base_type.empty_declaration_code(), entity_code)


class CppRvalueReferenceType(CReferenceBaseType):

    is_rvalue_reference = 1

    def __str__(self):
        return "%s &&" % self.ref_base_type

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        return self.ref_base_type.declaration_code(
            "&&%s" % entity_code,
            for_display, dll_linkage, pyrex)


class CFuncType(CType):
    #  return_type      CType
    #  args             [CFuncTypeArg]
    #  has_varargs      boolean
    #  exception_value  string
    #  exception_check  boolean    True if PyErr_Occurred check needed
    #  calling_convention  string  Function calling convention
    #  nogil            boolean    Can be called without gil
    #  with_gil         boolean    Acquire gil around function body
    #  templates        [string] or None
    #  cached_specialized_types [CFuncType]   cached specialized versions of the CFuncType if defined in a pxd
    #  from_fused       boolean    Indicates whether this is a specialized
    #                              C function
    #  is_strict_signature boolean  function refuses to accept coerced arguments
    #                               (used for optimisation overrides)
    #  is_const_method  boolean
    #  is_static_method boolean
    #  op_arg_struct    CPtrType   Pointer to optional argument struct

    is_cfunction = 1
    original_sig = None
    cached_specialized_types = None
    from_fused = False
    is_const_method = False
    op_arg_struct = None

    subtypes = ['return_type', 'args']

    def __init__(self, return_type, args, has_varargs = 0,
            exception_value = None, exception_check = 0, calling_convention = "",
            nogil = 0, with_gil = 0, is_overridable = 0, optional_arg_count = 0,
            is_const_method = False, is_static_method=False,
            templates = None, is_strict_signature = False):
        self.return_type = return_type
        self.args = args
        self.has_varargs = has_varargs
        self.optional_arg_count = optional_arg_count
        self.exception_value = exception_value
        self.exception_check = exception_check
        self.calling_convention = calling_convention
        self.nogil = nogil
        self.with_gil = with_gil
        self.is_overridable = is_overridable
        self.is_const_method = is_const_method
        self.is_static_method = is_static_method
        self.templates = templates
        self.is_strict_signature = is_strict_signature

    def __repr__(self):
        arg_reprs = list(map(repr, self.args))
        if self.has_varargs:
            arg_reprs.append("...")
        if self.exception_value:
            except_clause = " %r" % self.exception_value
        else:
            except_clause = ""
        if self.exception_check:
            except_clause += "?"
        return "<CFuncType %s %s[%s]%s>" % (
            repr(self.return_type),
            self.calling_convention_prefix(),
            ",".join(arg_reprs),
            except_clause)

    def with_with_gil(self, with_gil):
        if with_gil == self.with_gil:
            return self
        else:
            return CFuncType(
                self.return_type, self.args, self.has_varargs,
                self.exception_value, self.exception_check,
                self.calling_convention, self.nogil,
                with_gil,
                self.is_overridable, self.optional_arg_count,
                self.is_const_method, self.is_static_method,
                self.templates, self.is_strict_signature)

    def calling_convention_prefix(self):
        cc = self.calling_convention
        if cc:
            return cc + " "
        else:
            return ""

    def as_argument_type(self):
        return c_ptr_type(self)

    def same_c_signature_as(self, other_type, as_cmethod = 0):
        return self.same_c_signature_as_resolved_type(
            other_type.resolve(), as_cmethod)

    def same_c_signature_as_resolved_type(self, other_type, as_cmethod=False, as_pxd_definition=False,
                                          exact_semantics=True):
        # If 'exact_semantics' is false, allow any equivalent C signatures
        # if the Cython semantics are compatible, i.e. the same or wider for 'other_type'.

        #print "CFuncType.same_c_signature_as_resolved_type:", \
        #    self, other_type, "as_cmethod =", as_cmethod ###
        if other_type is error_type:
            return 1
        if not other_type.is_cfunction:
            return 0
        if self.is_overridable != other_type.is_overridable:
            return 0
        nargs = len(self.args)
        if nargs != len(other_type.args):
            return 0
        # When comparing C method signatures, the first argument
        # is exempt from compatibility checking (the proper check
        # is performed elsewhere).
        for i in range(as_cmethod, nargs):
            if not self.args[i].type.same_as(other_type.args[i].type):
                return 0
        if self.has_varargs != other_type.has_varargs:
            return 0
        if self.optional_arg_count != other_type.optional_arg_count:
            return 0
        if as_pxd_definition:
            # A narrowing of the return type declared in the pxd is allowed.
            if not self.return_type.subtype_of_resolved_type(other_type.return_type):
                return 0
        else:
            if not self.return_type.same_as(other_type.return_type):
                return 0
        if not self.same_calling_convention_as(other_type):
            return 0
        if exact_semantics:
            if self.exception_check != other_type.exception_check:
                return 0
            if not self._same_exception_value(other_type.exception_value):
                return 0
        elif not self._is_exception_compatible_with(other_type):
            return 0
        return 1

    def _same_exception_value(self, other_exc_value):
        if self.exception_value == other_exc_value:
            return 1
        if self.exception_check != '+':
            return 0
        if not self.exception_value or not other_exc_value:
            return 0
        if self.exception_value.type != other_exc_value.type:
            return 0
        if self.exception_value.entry and other_exc_value.entry:
            if self.exception_value.entry.cname != other_exc_value.entry.cname:
                return 0
        if self.exception_value.name != other_exc_value.name:
            return 0
        return 1

    def compatible_signature_with(self, other_type, as_cmethod = 0):
        return self.compatible_signature_with_resolved_type(other_type.resolve(), as_cmethod)

    def compatible_signature_with_resolved_type(self, other_type, as_cmethod):
        #print "CFuncType.same_c_signature_as_resolved_type:", \
        #    self, other_type, "as_cmethod =", as_cmethod ###
        if other_type is error_type:
            return 1
        if not other_type.is_cfunction:
            return 0
        if not self.is_overridable and other_type.is_overridable:
            return 0
        nargs = len(self.args)
        if nargs - self.optional_arg_count != len(other_type.args) - other_type.optional_arg_count:
            return 0
        if self.optional_arg_count < other_type.optional_arg_count:
            return 0
        # When comparing C method signatures, the first argument
        # is exempt from compatibility checking (the proper check
        # is performed elsewhere).
        for i in range(as_cmethod, len(other_type.args)):
            if not self.args[i].type.same_as(
                    other_type.args[i].type):
                return 0
        if self.has_varargs != other_type.has_varargs:
            return 0
        if not self.return_type.subtype_of_resolved_type(other_type.return_type):
            return 0
        if not self.same_calling_convention_as(other_type):
            return 0
        if self.nogil != other_type.nogil:
            return 0
        if not self._is_exception_compatible_with(other_type):
            return 0
        self.original_sig = other_type.original_sig or other_type
        return 1

    def _is_exception_compatible_with(self, other_type):
        # narrower exception checks are ok, but prevent mismatches
        if self.exception_check == '+' and other_type.exception_check != '+':
            # must catch C++ exceptions if we raise them
            return 0
        if not other_type.exception_check or other_type.exception_value is not None:
            # There's no problem if this type doesn't emit exceptions but the other type checks
            if other_type.exception_check and not (self.exception_check or self.exception_value):
                return 1
            # if other does not *always* check exceptions, self must comply
            if not self._same_exception_value(other_type.exception_value):
                return 0
            if self.exception_check and self.exception_check != other_type.exception_check:
                # a redundant exception check doesn't make functions incompatible, but a missing one does
                return 0
        return 1

    def narrower_c_signature_than(self, other_type, as_cmethod = 0):
        return self.narrower_c_signature_than_resolved_type(other_type.resolve(), as_cmethod)

    def narrower_c_signature_than_resolved_type(self, other_type, as_cmethod):
        if other_type is error_type:
            return 1
        if not other_type.is_cfunction:
            return 0
        nargs = len(self.args)
        if nargs != len(other_type.args):
            return 0
        for i in range(as_cmethod, nargs):
            if not self.args[i].type.subtype_of_resolved_type(other_type.args[i].type):
                return 0
            else:
                self.args[i].needs_type_test = other_type.args[i].needs_type_test \
                        or not self.args[i].type.same_as(other_type.args[i].type)
        if self.has_varargs != other_type.has_varargs:
            return 0
        if self.optional_arg_count != other_type.optional_arg_count:
            return 0
        if not self.return_type.subtype_of_resolved_type(other_type.return_type):
            return 0
        if not self.exception_check and other_type.exception_check:
            # a redundant exception check doesn't make functions incompatible, but a missing one does
            return 0
        if not self._same_exception_value(other_type.exception_value):
            return 0
        return 1

    def same_calling_convention_as(self, other):
        ## XXX Under discussion ...
        ## callspec_words = ("__stdcall", "__cdecl", "__fastcall")
        ## cs1 = self.calling_convention
        ## cs2 = other.calling_convention
        ## if (cs1 in callspec_words or
        ##     cs2 in callspec_words):
        ##     return cs1 == cs2
        ## else:
        ##     return True
        sc1 = self.calling_convention == '__stdcall'
        sc2 = other.calling_convention == '__stdcall'
        return sc1 == sc2

    def same_as_resolved_type(self, other_type, as_cmethod=False):
        return self.same_c_signature_as_resolved_type(other_type, as_cmethod=as_cmethod) \
            and self.nogil == other_type.nogil

    def pointer_assignable_from_resolved_type(self, rhs_type):
        # Accept compatible exception/nogil declarations for the RHS.
        if rhs_type is error_type:
            return 1
        if not rhs_type.is_cfunction:
            return 0
        return rhs_type.same_c_signature_as_resolved_type(self, exact_semantics=False) \
            and not (self.nogil and not rhs_type.nogil)

    def declaration_code(self, entity_code,
                         for_display = 0, dll_linkage = None, pyrex = 0,
                         with_calling_convention = 1):
        arg_decl_list = []
        for arg in self.args[:len(self.args)-self.optional_arg_count]:
            arg_decl_list.append(
                arg.type.declaration_code("", for_display, pyrex = pyrex))
        if self.is_overridable:
            arg_decl_list.append("int %s" % Naming.skip_dispatch_cname)
        if self.optional_arg_count:
            arg_decl_list.append(self.op_arg_struct.declaration_code(Naming.optional_args_cname))
        if self.has_varargs:
            arg_decl_list.append("...")
        arg_decl_code = ", ".join(arg_decl_list)
        if not arg_decl_code and not pyrex:
            arg_decl_code = "void"
        trailer = ""
        if (pyrex or for_display) and not self.return_type.is_pyobject:
            if self.exception_value and self.exception_check:
                trailer = " except? %s" % self.exception_value
            elif self.exception_value and not self.exception_check:
                trailer = " except %s" % self.exception_value
            elif not self.exception_value and not self.exception_check:
                trailer = " noexcept"
            elif self.exception_check == '+':
                trailer = " except +"
            elif self.exception_check and for_display:
                # not spelled out by default, unless for human eyes
                trailer = " except *"
            if self.nogil:
                trailer += " nogil"
        if not with_calling_convention:
            cc = ''
        else:
            cc = self.calling_convention_prefix()
            if (not entity_code and cc) or entity_code.startswith("*"):
                entity_code = "(%s%s)" % (cc, entity_code)
                cc = ""
        if self.is_const_method:
            trailer += " const"
        return self.return_type.declaration_code(
            "%s%s(%s)%s" % (cc, entity_code, arg_decl_code, trailer),
            for_display, dll_linkage, pyrex)

    def function_header_code(self, func_name, arg_code):
        if self.is_const_method:
            trailer = " const"
        else:
            trailer = ""
        return "%s%s(%s)%s" % (self.calling_convention_prefix(),
            func_name, arg_code, trailer)

    def signature_string(self):
        s = self.empty_declaration_code()
        return s

    def signature_cast_string(self):
        s = self.declaration_code("(*)", with_calling_convention=False)
        return '(%s)' % s

    def specialize(self, values):
        result = CFuncType(self.return_type.specialize(values),
                           [arg.specialize(values) for arg in self.args],
                           has_varargs = self.has_varargs,
                           exception_value = self.exception_value,
                           exception_check = self.exception_check,
                           calling_convention = self.calling_convention,
                           nogil = self.nogil,
                           with_gil = self.with_gil,
                           is_overridable = self.is_overridable,
                           optional_arg_count = self.optional_arg_count,
                           is_const_method = self.is_const_method,
                           is_static_method = self.is_static_method,
                           templates = self.templates)

        result.from_fused = self.is_fused
        return result

    def opt_arg_cname(self, arg_name):
        return self.op_arg_struct.base_type.scope.lookup(arg_name).cname

    # Methods that deal with Fused Types
    # All but map_with_specific_entries should be called only on functions
    # with fused types (and not on their corresponding specific versions).

    def get_all_specialized_permutations(self, fused_types=None):
        """
        Permute all the types. For every specific instance of a fused type, we
        want all other specific instances of all other fused types.

        It returns an iterable of two-tuples of the cname that should prefix
        the cname of the function, and a dict mapping any fused types to their
        respective specific types.
        """
        assert self.is_fused

        if fused_types is None:
            fused_types = self.get_fused_types()

        return get_all_specialized_permutations(fused_types)

    def get_all_specialized_function_types(self):
        """
        Get all the specific function types of this one.
        """
        assert self.is_fused

        if self.entry.fused_cfunction:
            return [n.type for n in self.entry.fused_cfunction.nodes]
        elif self.cached_specialized_types is not None:
            return self.cached_specialized_types

        result = []
        permutations = self.get_all_specialized_permutations()

        new_cfunc_entries = []
        for cname, fused_to_specific in permutations:
            new_func_type = self.entry.type.specialize(fused_to_specific)

            if self.optional_arg_count:
                # Remember, this method is set by CFuncDeclaratorNode
                self.declare_opt_arg_struct(new_func_type, cname)

            new_entry = copy.deepcopy(self.entry)
            new_func_type.specialize_entry(new_entry, cname)

            new_entry.type = new_func_type
            new_func_type.entry = new_entry
            result.append(new_func_type)

            new_cfunc_entries.append(new_entry)

        cfunc_entries = self.entry.scope.cfunc_entries
        try:
            cindex = cfunc_entries.index(self.entry)
        except ValueError:
            cfunc_entries.extend(new_cfunc_entries)
        else:
            cfunc_entries[cindex:cindex+1] = new_cfunc_entries

        self.cached_specialized_types = result

        return result

    def get_fused_types(self, result=None, seen=None, subtypes=None, include_function_return_type=False):
        """Return fused types in the order they appear as parameter types"""
        return super(CFuncType, self).get_fused_types(
            result, seen,
            # for function pointer types, we consider the result type; for plain function
            # types we don't (because it must be derivable from the arguments)
            subtypes=self.subtypes if include_function_return_type else ['args'])

    def specialize_entry(self, entry, cname):
        assert not self.is_fused
        specialize_entry(entry, cname)

    def can_coerce_to_pyobject(self, env):
        # duplicating the decisions from create_to_py_utility_code() here avoids writing out unused code
        if self.has_varargs or self.optional_arg_count:
            return False
        if self.to_py_function is not None:
            return self.to_py_function
        for arg in self.args:
            if not arg.type.is_pyobject and not arg.type.can_coerce_to_pyobject(env):
                return False
        if not self.return_type.is_pyobject and not self.return_type.can_coerce_to_pyobject(env):
            return False
        return True

    def create_to_py_utility_code(self, env):
        # FIXME: it seems we're trying to coerce in more cases than we should
        if self.to_py_function is not None:
            return self.to_py_function
        if not self.can_coerce_to_pyobject(env):
            return False
        from .UtilityCode import CythonUtilityCode

        # include argument names into the c function name to ensure cname is unique
        # between functions with identical types but different argument names
        from .Symtab import punycodify_name
        def arg_name_part(arg):
            return "%s%s" % (len(arg.name), punycodify_name(arg.name)) if arg.name else "0"
        arg_names = [ arg_name_part(arg) for arg in self.args ]
        arg_names = "_".join(arg_names)
        safe_typename = type_identifier(self, pyrex=True)
        to_py_function = "__Pyx_CFunc_%s_to_py_%s" % (safe_typename, arg_names)

        for arg in self.args:
            if not arg.type.is_pyobject and not arg.type.create_from_py_utility_code(env):
                return False
        if not self.return_type.is_pyobject and not self.return_type.create_to_py_utility_code(env):
            return False

        def declared_type(ctype):
            type_displayname = str(ctype.declaration_code("", for_display=True))
            if ctype.is_pyobject:
                arg_ctype = type_name = type_displayname
                if ctype.is_builtin_type:
                    arg_ctype = ctype.name
                elif not ctype.is_extension_type:
                    type_name = 'object'
                    type_displayname = None
                else:
                    type_displayname = repr(type_displayname)
            elif ctype is c_bint_type:
                type_name = arg_ctype = 'bint'
            else:
                type_name = arg_ctype = type_displayname
                if ctype is c_double_type:
                    type_displayname = 'float'
                else:
                    type_displayname = repr(type_displayname)
            return type_name, arg_ctype, type_displayname

        class Arg(object):
            def __init__(self, arg_name, arg_type):
                self.name = arg_name
                self.type = arg_type
                self.type_cname, self.ctype, self.type_displayname = declared_type(arg_type)

        if self.return_type.is_void:
            except_clause = 'except *'
        elif self.return_type.is_pyobject:
            except_clause = ''
        elif self.exception_value:
            except_clause = ('except? %s' if self.exception_check else 'except %s') % self.exception_value
        else:
            except_clause = 'except *'

        context = {
            'cname': to_py_function,
            'args': [Arg(arg.name or 'arg%s' % ix, arg.type) for ix, arg in enumerate(self.args)],
            'return_type': Arg('return', self.return_type),
            'except_clause': except_clause,
        }
        # FIXME: directives come from first defining environment and do not adapt for reuse
        env.use_utility_code(CythonUtilityCode.load(
            "cfunc.to_py", "CConvert.pyx",
            outer_module_scope=env.global_scope(),  # need access to types declared in module
            context=context, compiler_directives=dict(env.global_scope().directives)))
        self.to_py_function = to_py_function
        return True


def specialize_entry(entry, cname):
    """
    Specialize an entry of a copied fused function or method
    """
    entry.is_fused_specialized = True
    entry.name = get_fused_cname(cname, entry.name)

    if entry.is_cmethod:
        entry.cname = entry.name
        if entry.is_inherited:
            entry.cname = StringEncoding.EncodedString(
                    "%s.%s" % (Naming.obj_base_cname, entry.cname))
    else:
        entry.cname = get_fused_cname(cname, entry.cname)

    if entry.func_cname:
        entry.func_cname = get_fused_cname(cname, entry.func_cname)

def get_fused_cname(fused_cname, orig_cname):
    """
    Given the fused cname id and an original cname, return a specialized cname
    """
    assert fused_cname and orig_cname
    return StringEncoding.EncodedString('%s%s%s' % (Naming.fused_func_prefix,
                                                    fused_cname, orig_cname))

def unique(somelist):
    seen = set()
    result = []
    for obj in somelist:
        if obj not in seen:
            result.append(obj)
            seen.add(obj)

    return result

def get_all_specialized_permutations(fused_types):
    return _get_all_specialized_permutations(unique(fused_types))

def _get_all_specialized_permutations(fused_types, id="", f2s=()):
    fused_type, = fused_types[0].get_fused_types()
    result = []

    for newid, specific_type in enumerate(fused_type.types):
        # f2s = dict(f2s, **{ fused_type: specific_type })
        f2s = dict(f2s)
        f2s.update({ fused_type: specific_type })

        if id:
            cname = '%s_%s' % (id, newid)
        else:
            cname = str(newid)

        if len(fused_types) > 1:
            result.extend(_get_all_specialized_permutations(
                                            fused_types[1:], cname, f2s))
        else:
            result.append((cname, f2s))

    return result

def specialization_signature_string(fused_compound_type, fused_to_specific):
    """
    Return the signature for a specialization of a fused type. e.g.

        floating[:] ->
            'float' or 'double'

        cdef fused ft:
            float[:]
            double[:]

        ft ->
            'float[:]' or 'double[:]'

        integral func(floating) ->
            'int (*func)(float)' or ...
    """
    fused_types = fused_compound_type.get_fused_types()
    if len(fused_types) == 1:
        fused_type = fused_types[0]
    else:
        fused_type = fused_compound_type

    return fused_type.specialize(fused_to_specific).typeof_name()


def get_specialized_types(type):
    """
    Return a list of specialized types in their declared order.
    """
    assert type.is_fused

    if isinstance(type, FusedType):
        result = list(type.types)
        for specialized_type in result:
            specialized_type.specialization_string = specialized_type.typeof_name()
    else:
        result = []
        for cname, f2s in get_all_specialized_permutations(type.get_fused_types()):
            specialized_type = type.specialize(f2s)
            specialized_type.specialization_string = (
                            specialization_signature_string(type, f2s))
            result.append(specialized_type)

    return result


class CFuncTypeArg(BaseType):
    #  name       string
    #  cname      string
    #  type       PyrexType
    #  pos        source file position

    # FIXME: is this the right setup? should None be allowed here?
    not_none = False
    or_none = False
    accept_none = True
    accept_builtin_subtypes = False
    annotation = None

    subtypes = ['type']

    def __init__(self, name, type, pos, cname=None, annotation=None):
        self.name = name
        if cname is not None:
            self.cname = cname
        else:
            self.cname = Naming.var_prefix + name
        if annotation is not None:
            self.annotation = annotation
        self.type = type
        self.pos = pos
        self.needs_type_test = False  # TODO: should these defaults be set in analyse_types()?

    def __repr__(self):
        return "%s:%s" % (self.name, repr(self.type))

    def declaration_code(self, for_display = 0):
        return self.type.declaration_code(self.cname, for_display)

    def specialize(self, values):
        return CFuncTypeArg(self.name, self.type.specialize(values), self.pos, self.cname)

    def is_forwarding_reference(self):
        if self.type.is_rvalue_reference:
            if (isinstance(self.type.ref_base_type, TemplatePlaceholderType)
                    and not self.type.ref_base_type.is_cv_qualified):
                return True
        return False

class ToPyStructUtilityCode(object):

    requires = None

    def __init__(self, type, forward_decl, env):
        self.type = type
        self.header = "static PyObject* %s(%s)" % (type.to_py_function,
                                                   type.declaration_code('s'))
        self.forward_decl = forward_decl
        self.env = env

    def __eq__(self, other):
        return isinstance(other, ToPyStructUtilityCode) and self.header == other.header

    def __hash__(self):
        return hash(self.header)

    def get_tree(self, **kwargs):
        pass

    def put_code(self, output):
        code = output['utility_code_def']
        proto = output['utility_code_proto']

        code.putln("%s {" % self.header)
        code.putln("PyObject* res;")
        code.putln("PyObject* member;")
        code.putln("res = __Pyx_PyDict_NewPresized(%d); if (unlikely(!res)) return NULL;" %
                   len(self.type.scope.var_entries))
        for member in self.type.scope.var_entries:
            nameconst_cname = code.get_py_string_const(member.name, identifier=True)
            code.putln("%s; if (unlikely(!member)) goto bad;" % (
                member.type.to_py_call_code('s.%s' % member.cname, 'member', member.type)))
            code.putln("if (unlikely(PyDict_SetItem(res, %s, member) < 0)) goto bad;" % nameconst_cname)
            code.putln("Py_DECREF(member);")
        code.putln("return res;")
        code.putln("bad:")
        code.putln("Py_XDECREF(member);")
        code.putln("Py_DECREF(res);")
        code.putln("return NULL;")
        code.putln("}")

        # This is a bit of a hack, we need a forward declaration
        # due to the way things are ordered in the module...
        if self.forward_decl:
            proto.putln(self.type.empty_declaration_code() + ';')
        proto.putln(self.header + ";")

    def inject_tree_and_scope_into(self, module_node):
        pass


class CStructOrUnionType(CType):
    #  name          string
    #  cname         string
    #  kind          string              "struct" or "union"
    #  scope         StructOrUnionScope, or None if incomplete
    #  typedef_flag  boolean
    #  packed        boolean

    # entry          Entry

    is_struct_or_union = 1
    has_attributes = 1
    exception_check = True

    def __init__(self, name, kind, scope, typedef_flag, cname, packed=False, in_cpp=False):
        self.name = name
        self.cname = cname
        self.kind = kind
        self.scope = scope
        self.typedef_flag = typedef_flag
        self.is_struct = kind == 'struct'
        self.to_py_function = "%s_to_py_%s" % (
            Naming.convert_func_prefix, self.specialization_name())
        self.from_py_function = "%s_from_py_%s" % (
            Naming.convert_func_prefix, self.specialization_name())
        self.exception_check = True
        self._convert_to_py_code = None
        self._convert_from_py_code = None
        self.packed = packed
        self.needs_cpp_construction = self.is_struct and in_cpp

    def can_coerce_to_pyobject(self, env):
        if self._convert_to_py_code is False:
            return None  # tri-state-ish

        if env.outer_scope is None:
            return False

        if self._convert_to_py_code is None:
            is_union = not self.is_struct
            unsafe_union_types = set()
            safe_union_types = set()
            for member in self.scope.var_entries:
                member_type = member.type
                if not member_type.can_coerce_to_pyobject(env):
                    self.to_py_function = None
                    self._convert_to_py_code = False
                    return False
                if is_union:
                    if member_type.is_ptr or member_type.is_cpp_class:
                        unsafe_union_types.add(member_type)
                    else:
                        safe_union_types.add(member_type)

            if unsafe_union_types and (safe_union_types or len(unsafe_union_types) > 1):
                # unsafe mix of safe and unsafe to convert types
                self.from_py_function = None
                self._convert_from_py_code = False
                return False

        return True

    def create_to_py_utility_code(self, env):
        if not self.can_coerce_to_pyobject(env):
            return False

        if self._convert_to_py_code is None:
            for member in self.scope.var_entries:
                member.type.create_to_py_utility_code(env)
            forward_decl = self.entry.visibility != 'extern' and not self.typedef_flag
            self._convert_to_py_code = ToPyStructUtilityCode(self, forward_decl, env)

        env.use_utility_code(self._convert_to_py_code)
        return True

    def can_coerce_from_pyobject(self, env):
        if env.outer_scope is None or self._convert_from_py_code is False:
            return False
        for member in self.scope.var_entries:
            if not member.type.can_coerce_from_pyobject(env):
                return False
        return True

    def create_from_py_utility_code(self, env):
        if env.outer_scope is None:
            return False

        if self._convert_from_py_code is False:
            return None  # tri-state-ish

        if self._convert_from_py_code is None:
            if not self.scope.var_entries:
                # There are obviously missing fields; don't allow instantiation
                # where absolutely no content is provided.
                return False

            for member in self.scope.var_entries:
                if not member.type.create_from_py_utility_code(env):
                    self.from_py_function = None
                    self._convert_from_py_code = False
                    return False

            context = dict(
                struct_type=self,
                var_entries=self.scope.var_entries,
                funcname=self.from_py_function,
            )
            env.use_utility_code(UtilityCode.load_cached("RaiseUnexpectedTypeError", "ObjectHandling.c"))
            from .UtilityCode import CythonUtilityCode
            self._convert_from_py_code = CythonUtilityCode.load(
                "FromPyStructUtility" if self.is_struct else "FromPyUnionUtility",
                "CConvert.pyx",
                outer_module_scope=env.global_scope(),  # need access to types declared in module
                context=context)

        env.use_utility_code(self._convert_from_py_code)
        return True

    def __repr__(self):
        return "<CStructOrUnionType %s %s%s>" % (
            self.name, self.cname,
            ("", " typedef")[self.typedef_flag])

    def declaration_code(self, entity_code,
                         for_display=0, dll_linkage=None, pyrex=0):
        if pyrex or for_display:
            base_code = self.name
        else:
            if self.typedef_flag:
                base_code = self.cname
            else:
                base_code = "%s %s" % (self.kind, self.cname)
            base_code = public_decl(base_code, dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def __eq__(self, other):
        try:
            return (isinstance(other, CStructOrUnionType) and
                    self.name == other.name)
        except AttributeError:
            return False

    def __lt__(self, other):
        try:
            return self.name < other.name
        except AttributeError:
            # this is arbitrary, but it makes sure we always have
            # *some* kind of order
            return False

    def __hash__(self):
        return hash(self.cname) ^ hash(self.kind)

    def is_complete(self):
        return self.scope is not None

    def attributes_known(self):
        return self.is_complete()

    def can_be_complex(self):
        # Does the struct consist of exactly two identical floats?
        fields = self.scope.var_entries
        if len(fields) != 2: return False
        a, b = fields
        return (a.type.is_float and b.type.is_float and
                a.type.empty_declaration_code() ==
                b.type.empty_declaration_code())

    def struct_nesting_depth(self):
        child_depths = [x.type.struct_nesting_depth()
                        for x in self.scope.var_entries]
        return max(child_depths) + 1

    def cast_code(self, expr_code):
        if self.is_struct:
            return expr_code
        return super(CStructOrUnionType, self).cast_code(expr_code)

cpp_string_conversions = ("std::string",)

builtin_cpp_conversions = {
    # type                element template params
    "std::pair":          2,
    "std::vector":        1,
    "std::list":          1,
    "std::set":           1,
    "std::unordered_set": 1,
    "std::map":           2,
    "std::unordered_map": 2,
    "std::complex":       1,
}

class CppClassType(CType):
    #  name          string
    #  cname         string
    #  scope         CppClassScope
    #  templates     [string] or None

    is_cpp_class = 1
    has_attributes = 1
    needs_cpp_construction = 1
    exception_check = True
    namespace = None

    # For struct-like declaration.
    kind = "struct"
    packed = False
    typedef_flag = False

    subtypes = ['templates']

    def __init__(self, name, scope, cname, base_classes, templates=None, template_type=None):
        self.name = name
        self.cname = cname
        self.scope = scope
        self.base_classes = base_classes
        self.operators = []
        self.templates = templates
        self.template_type = template_type
        self.num_optional_templates = sum(is_optional_template_param(T) for T in templates or ())
        if templates:
            self.specializations = {tuple(zip(templates, templates)): self}
        else:
            self.specializations = {}
        self.is_cpp_string = cname in cpp_string_conversions

    def use_conversion_utility(self, from_or_to):
        pass

    def maybe_unordered(self):
        if 'unordered' in self.cname:
            return 'unordered_'
        else:
            return ''

    def can_coerce_from_pyobject(self, env):
        if self.cname in builtin_cpp_conversions:
            template_count = builtin_cpp_conversions[self.cname]
            for ix, T in enumerate(self.templates or []):
                if ix >= template_count:
                    break
                if T.is_pyobject or not T.can_coerce_from_pyobject(env):
                    return False
            return True
        elif self.cname in cpp_string_conversions:
            return True
        return False

    def create_from_py_utility_code(self, env):
        if self.from_py_function is not None:
            return True
        if self.cname in builtin_cpp_conversions or self.cname in cpp_string_conversions:
            X = "XYZABC"
            tags = []
            context = {}
            for ix, T in enumerate(self.templates or []):
                if ix >= builtin_cpp_conversions[self.cname]:
                    break
                if T.is_pyobject or not T.create_from_py_utility_code(env):
                    return False
                tags.append(T.specialization_name())
                context[X[ix]] = T

            if self.cname in cpp_string_conversions:
                cls = 'string'
                tags = type_identifier(self),
            else:
                cls = self.cname[5:]
            cname = '__pyx_convert_%s_from_py_%s' % (cls, '__and_'.join(tags))
            context.update({
                'cname': cname,
                'maybe_unordered': self.maybe_unordered(),
                'type': self.cname,
            })
            # Override directives that should not be inherited from user code.
            from .UtilityCode import CythonUtilityCode
            directives = CythonUtilityCode.filter_inherited_directives(env.directives)
            env.use_utility_code(CythonUtilityCode.load(
                cls.replace('unordered_', '') + ".from_py", "CppConvert.pyx",
                context=context, compiler_directives=directives))
            self.from_py_function = cname
            return True

    def can_coerce_to_pyobject(self, env):
        if self.cname in builtin_cpp_conversions or self.cname in cpp_string_conversions:
            for ix, T in enumerate(self.templates or []):
                if ix >= builtin_cpp_conversions[self.cname]:
                    break
                if T.is_pyobject or not T.can_coerce_to_pyobject(env):
                    return False
            return True


    def create_to_py_utility_code(self, env):
        if self.to_py_function is not None:
            return True
        if self.cname in builtin_cpp_conversions or self.cname in cpp_string_conversions:
            X = "XYZABC"
            tags = []
            context = {}
            for ix, T in enumerate(self.templates or []):
                if ix >= builtin_cpp_conversions[self.cname]:
                    break
                if not T.create_to_py_utility_code(env):
                    return False
                tags.append(T.specialization_name())
                context[X[ix]] = T

            if self.cname in cpp_string_conversions:
                cls = 'string'
                prefix = 'PyObject_'  # gets specialised by explicit type casts in CoerceToPyTypeNode
                tags = type_identifier(self),
            else:
                cls = self.cname[5:]
                prefix = ''
            cname = "__pyx_convert_%s%s_to_py_%s" % (prefix, cls, "____".join(tags))
            context.update({
                'cname': cname,
                'maybe_unordered': self.maybe_unordered(),
                'type': self.cname,
            })
            from .UtilityCode import CythonUtilityCode
            # Override directives that should not be inherited from user code.
            directives = CythonUtilityCode.filter_inherited_directives(env.directives)
            env.use_utility_code(CythonUtilityCode.load(
                cls.replace('unordered_', '') + ".to_py", "CppConvert.pyx",
                context=context, compiler_directives=directives))
            self.to_py_function = cname
            return True

    def is_template_type(self):
        return self.templates is not None and self.template_type is None

    def get_fused_types(self, result=None, seen=None, include_function_return_type=False):
        if result is None:
            result = []
            seen = set()
        if self.namespace:
            self.namespace.get_fused_types(result, seen)
        if self.templates:
            for T in self.templates:
                T.get_fused_types(result, seen)
        return result

    def specialize_here(self, pos, env, template_values=None):
        if not self.is_template_type():
            error(pos, "'%s' type is not a template" % self)
            return error_type
        if len(self.templates) - self.num_optional_templates <= len(template_values) < len(self.templates):
            num_defaults = len(self.templates) - len(template_values)
            partial_specialization = self.declaration_code('', template_params=template_values)
            # Most of the time we don't need to declare anything typed to these
            # default template arguments, but when we do there's no way in C++
            # to reference this directly.  However, it is common convention to
            # provide a typedef in the template class that resolves to each
            # template type.  For now, allow the user to specify this name as
            # the template parameter.
            # TODO: Allow typedefs in cpp classes and search for it in this
            # classes scope as a concrete name we could use.
            template_values = template_values + [
                TemplatePlaceholderType(
                    "%s::%s" % (partial_specialization, param.name), True)
                for param in self.templates[-num_defaults:]]
        if len(self.templates) != len(template_values):
            error(pos, "%s templated type receives %d arguments, got %d" %
                  (self.name, len(self.templates), len(template_values)))
            return error_type
        has_object_template_param = False
        for value in template_values:
            if value.is_pyobject or value.needs_refcounting:
                has_object_template_param = True
                type_description = "Python object" if value.is_pyobject else "Reference-counted"
                error(pos,
                      "%s type '%s' cannot be used as a template argument" % (
                          type_description, value))
        if has_object_template_param:
            return error_type
        return self.specialize(dict(zip(self.templates, template_values)))

    def specialize(self, values):
        if not self.templates and not self.namespace:
            return self
        if self.templates is None:
            self.templates = []
        key = tuple(values.items())
        if key in self.specializations:
            return self.specializations[key]
        template_values = [t.specialize(values) for t in self.templates]
        specialized = self.specializations[key] = \
            CppClassType(self.name, None, self.cname, [], template_values, template_type=self)
        # Need to do these *after* self.specializations[key] is set
        # to avoid infinite recursion on circular references.
        specialized.base_classes = [b.specialize(values) for b in self.base_classes]
        if self.namespace is not None:
            specialized.namespace = self.namespace.specialize(values)
        specialized.scope = self.scope.specialize(values, specialized)
        if self.cname == 'std::vector':
            # vector<bool> is special cased in the C++ standard, and its
            # accessors do not necessarily return references to the underlying
            # elements (which may be bit-packed).
            # http://www.cplusplus.com/reference/vector/vector-bool/
            # Here we pretend that the various methods return bool values
            # (as the actual returned values are coercable to such, and
            # we don't support call expressions as lvalues).
            T = values.get(self.templates[0], None)
            if T and not T.is_fused and T.empty_declaration_code() == 'bool':
                for bit_ref_returner in ('at', 'back', 'front'):
                    if bit_ref_returner in specialized.scope.entries:
                        specialized.scope.entries[bit_ref_returner].type.return_type = T
        return specialized

    def deduce_template_params(self, actual):
        if actual.is_cv_qualified:
            actual = actual.cv_base_type
        if actual.is_reference:
            actual = actual.ref_base_type
        if self == actual:
            return {}
        elif actual.is_cpp_class:
            self_template_type = self
            while getattr(self_template_type, 'template_type', None):
                self_template_type = self_template_type.template_type
            def all_bases(cls):
                yield cls
                for parent in cls.base_classes:
                    for base in all_bases(parent):
                        yield base
            for actual_base in all_bases(actual):
                template_type = actual_base
                while getattr(template_type, 'template_type', None):
                    template_type = template_type.template_type
                    if (self_template_type.empty_declaration_code()
                            == template_type.empty_declaration_code()):
                        return reduce(
                            merge_template_deductions,
                            [formal_param.deduce_template_params(actual_param)
                             for (formal_param, actual_param)
                             in zip(self.templates, actual_base.templates)],
                            {})
        else:
            return {}

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0,
            template_params = None):
        if template_params is None:
            template_params = self.templates
        if self.templates:
            template_strings = [param.declaration_code('', for_display, None, pyrex)
                                for param in template_params
                                if not is_optional_template_param(param) and not param.is_fused]
            if for_display:
                brackets = "[%s]"
            else:
                brackets = "<%s> "
            templates = brackets % ",".join(template_strings)
        else:
            templates = ""
        if pyrex or for_display:
            base_code = "%s%s" % (self.name, templates)
        else:
            base_code = "%s%s" % (self.cname, templates)
            if self.namespace is not None:
                base_code = "%s::%s" % (self.namespace.empty_declaration_code(), base_code)
            base_code = public_decl(base_code, dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def cpp_optional_declaration_code(self, entity_code, dll_linkage=None, template_params=None):
        return "__Pyx_Optional_Type<%s> %s" % (
                self.declaration_code("", False, dll_linkage, False,
                                    template_params),
                entity_code)

    def is_subclass(self, other_type):
        if self.same_as_resolved_type(other_type):
            return 1
        for base_class in self.base_classes:
            if base_class.is_subclass(other_type):
                return 1
        return 0

    def subclass_dist(self, super_type):
        if self.same_as_resolved_type(super_type):
            return 0
        elif not self.base_classes:
            return float('inf')
        else:
            return 1 + min(b.subclass_dist(super_type) for b in self.base_classes)

    def same_as_resolved_type(self, other_type):
        if other_type.is_cpp_class:
            if self == other_type:
                return 1
            # This messy logic is needed due to GH Issue #1852.
            elif (self.cname == other_type.cname and
                    (self.template_type and other_type.template_type
                     or self.templates
                     or other_type.templates)):
                if self.templates == other_type.templates:
                    return 1
                for t1, t2 in zip(self.templates, other_type.templates):
                    if is_optional_template_param(t1) and is_optional_template_param(t2):
                        break
                    if not t1.same_as_resolved_type(t2):
                        return 0
                return 1
        return 0

    def assignable_from_resolved_type(self, other_type):
        # TODO: handle operator=(...) here?
        if other_type is error_type:
            return True
        elif other_type.is_cpp_class:
            return other_type.is_subclass(self)
        elif other_type.is_string and self.cname in cpp_string_conversions:
            return True

    def attributes_known(self):
        return self.scope is not None

    def find_cpp_operation_type(self, operator, operand_type=None):
        operands = [self]
        if operand_type is not None:
            operands.append(operand_type)
        # pos == None => no errors
        operator_entry = self.scope.lookup_operator_for_types(None, operator, operands)
        if not operator_entry:
            return None
        func_type = operator_entry.type
        if func_type.is_ptr:
            func_type = func_type.base_type
        return func_type.return_type

    def get_constructor(self, pos):
        constructor = self.scope.lookup('<init>')
        if constructor is not None:
            return constructor

        # Otherwise: automatically declare no-args default constructor.
        # Make it "nogil" if the base classes allow it.
        nogil = True
        for base in self.base_classes:
            base_constructor = base.scope.lookup('<init>')
            if base_constructor and not base_constructor.type.nogil:
                nogil = False
                break

        func_type = CFuncType(self, [], exception_check='+', nogil=nogil)
        return self.scope.declare_cfunction(u'<init>', func_type, pos)

    def check_nullary_constructor(self, pos, msg="stack allocated"):
        constructor = self.scope.lookup(u'<init>')
        if constructor is not None and best_match([], constructor.all_alternatives()) is None:
            error(pos, "C++ class must have a nullary constructor to be %s" % msg)

    def cpp_optional_check_for_null_code(self, cname):
        # only applies to c++ classes that are being declared as std::optional
        return "(%s.has_value())" % cname


class CppScopedEnumType(CType):
    # name    string
    # doc     string or None
    # cname   string

    is_cpp_enum = True

    def __init__(self, name, cname, underlying_type, namespace=None, doc=None):
        self.name = name
        self.doc = doc
        self.cname = cname
        self.values = []
        self.underlying_type = underlying_type
        self.namespace = namespace

    def __str__(self):
        return self.name

    def declaration_code(self, entity_code,
                        for_display=0, dll_linkage=None, pyrex=0):
        if pyrex or for_display:
            type_name = self.name
        else:
            if self.namespace:
                type_name = "%s::%s" % (
                    self.namespace.empty_declaration_code(),
                    self.cname
                )
            else:
                type_name = "__PYX_ENUM_CLASS_DECL %s" % self.cname
            type_name = public_decl(type_name, dll_linkage)
        return self.base_declaration_code(type_name, entity_code)

    def create_from_py_utility_code(self, env):
        if self.from_py_function:
            return True
        if self.underlying_type.create_from_py_utility_code(env):
            self.from_py_function = '(%s)%s' % (
                self.cname, self.underlying_type.from_py_function
            )
        return True

    def create_to_py_utility_code(self, env):
        if self.to_py_function is not None:
            return True
        if self.entry.create_wrapper:
            from .UtilityCode import CythonUtilityCode
            self.to_py_function = "__Pyx_Enum_%s_to_py" % self.name
            if self.entry.scope != env.global_scope():
                module_name = self.entry.scope.qualified_name
            else:
                module_name = None
            env.use_utility_code(CythonUtilityCode.load(
                "EnumTypeToPy", "CpdefEnums.pyx",
                context={"funcname": self.to_py_function,
                        "name": self.name,
                        "items": tuple(self.values),
                        "underlying_type": self.underlying_type.empty_declaration_code(),
                        "module_name": module_name,
                        "is_flag": False,
                        },
                outer_module_scope=self.entry.scope  # ensure that "name" is findable
            ))
            return True
        if self.underlying_type.create_to_py_utility_code(env):
            # Using a C++11 lambda here, which is fine since
            # scoped enums are a C++11 feature
            self.to_py_function = '[](const %s& x){return %s((%s)x);}' % (
                self.cname,
                self.underlying_type.to_py_function,
                self.underlying_type.empty_declaration_code()
            )
        return True

    def create_type_wrapper(self, env):
        from .UtilityCode import CythonUtilityCode
        rst = CythonUtilityCode.load(
            "CppScopedEnumType", "CpdefEnums.pyx",
            context={
                "name": self.name,
                "cname": self.cname.split("::")[-1],
                "items": tuple(self.values),
                "underlying_type": self.underlying_type.empty_declaration_code(),
                "enum_doc": self.doc,
                "static_modname": env.qualified_name,
            },
            outer_module_scope=env.global_scope())

        env.use_utility_code(rst)


class TemplatePlaceholderType(CType):

    def __init__(self, name, optional=False):
        self.name = name
        self.optional = optional

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if entity_code:
            return self.name + " " + entity_code
        else:
            return self.name

    def specialize(self, values):
        if self in values:
            return values[self]
        else:
            return self

    def deduce_template_params(self, actual):
        return {self: actual}

    def same_as_resolved_type(self, other_type):
        if isinstance(other_type, TemplatePlaceholderType):
            return self.name == other_type.name
        else:
            return 0

    def __hash__(self):
        return hash(self.name)

    def __cmp__(self, other):
        if isinstance(other, TemplatePlaceholderType):
            return cmp(self.name, other.name)
        else:
            return cmp(type(self), type(other))

    def __eq__(self, other):
        if isinstance(other, TemplatePlaceholderType):
            return self.name == other.name
        else:
            return False

def is_optional_template_param(type):
    return isinstance(type, TemplatePlaceholderType) and type.optional


class CEnumType(CIntLike, CType):
    #  name           string
    #  doc            string or None
    #  cname          string or None
    #  typedef_flag   boolean
    #  values         [string], populated during declaration analysis

    is_enum = 1
    signed = 1
    rank = -1  # Ranks below any integer type

    def __init__(self, name, cname, typedef_flag, namespace=None, doc=None):
        self.name = name
        self.doc = doc
        self.cname = cname
        self.values = []
        self.typedef_flag = typedef_flag
        self.namespace = namespace
        self.default_value = "(%s) 0" % self.empty_declaration_code()

    def __str__(self):
        return self.name

    def __repr__(self):
        return "<CEnumType %s %s%s>" % (self.name, self.cname,
            ("", " typedef")[self.typedef_flag])

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = self.name
        else:
            if self.namespace:
                base_code = "%s::%s" % (
                    self.namespace.empty_declaration_code(), self.cname)
            elif self.typedef_flag:
                base_code = self.cname
            else:
                base_code = "enum %s" % self.cname
            base_code = public_decl(base_code, dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def specialize(self, values):
        if self.namespace:
            namespace = self.namespace.specialize(values)
            if namespace != self.namespace:
                return CEnumType(
                    self.name, self.cname, self.typedef_flag, namespace)
        return self

    def create_type_wrapper(self, env):
        from .UtilityCode import CythonUtilityCode
        # Generate "int"-like conversion function
        old_to_py_function = self.to_py_function
        self.to_py_function = None
        CIntLike.create_to_py_utility_code(self, env)
        enum_to_pyint_func = self.to_py_function
        self.to_py_function = old_to_py_function  # we don't actually want to overwrite this

        env.use_utility_code(CythonUtilityCode.load(
            "EnumType", "CpdefEnums.pyx",
            context={"name": self.name,
                     "items": tuple(self.values),
                     "enum_doc": self.doc,
                     "enum_to_pyint_func": enum_to_pyint_func,
                     "static_modname": env.qualified_name,
                     },
            outer_module_scope=env.global_scope()))

    def create_to_py_utility_code(self, env):
        if self.to_py_function is not None:
            return self.to_py_function
        if not self.entry.create_wrapper:
            return super(CEnumType, self).create_to_py_utility_code(env)
        from .UtilityCode import CythonUtilityCode
        self.to_py_function = "__Pyx_Enum_%s_to_py" % self.name
        if self.entry.scope != env.global_scope():
            module_name = self.entry.scope.qualified_name
        else:
            module_name = None
        env.use_utility_code(CythonUtilityCode.load(
            "EnumTypeToPy", "CpdefEnums.pyx",
            context={"funcname": self.to_py_function,
                    "name": self.name,
                    "items": tuple(self.values),
                    "underlying_type": "int",
                    "module_name": module_name,
                    "is_flag": True,
                    },
            outer_module_scope=self.entry.scope  # ensure that "name" is findable
        ))
        return True


class CTupleType(CType):
    # components [PyrexType]

    is_ctuple = True

    def __init__(self, cname, components):
        self.cname = cname
        self.components = components
        self.size = len(components)
        self.to_py_function = "%s_to_py_%s" % (Naming.convert_func_prefix, self.cname)
        self.from_py_function = "%s_from_py_%s" % (Naming.convert_func_prefix, self.cname)
        self.exception_check = True
        self._convert_to_py_code = None
        self._convert_from_py_code = None
        # equivalent_type must be set now because it isn't available at import time
        from .Builtin import tuple_type
        self.equivalent_type = tuple_type

    def __str__(self):
        return "(%s)" % ", ".join(str(c) for c in self.components)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            return "%s %s" % (str(self), entity_code)
        else:
            return self.base_declaration_code(self.cname, entity_code)

    def can_coerce_to_pyobject(self, env):
        for component in self.components:
            if not component.can_coerce_to_pyobject(env):
                return False
        return True

    def can_coerce_from_pyobject(self, env):
        for component in self.components:
            if not component.can_coerce_from_pyobject(env):
                return False
        return True

    def create_to_py_utility_code(self, env):
        if self._convert_to_py_code is False:
            return None  # tri-state-ish

        if self._convert_to_py_code is None:
            for component in self.components:
                if not component.create_to_py_utility_code(env):
                    self.to_py_function = None
                    self._convert_to_py_code = False
                    return False

            context = dict(
                struct_type_decl=self.empty_declaration_code(),
                components=self.components,
                funcname=self.to_py_function,
                size=len(self.components)
            )
            self._convert_to_py_code = TempitaUtilityCode.load(
                "ToPyCTupleUtility", "TypeConversion.c", context=context)

        env.use_utility_code(self._convert_to_py_code)
        return True

    def create_from_py_utility_code(self, env):
        if self._convert_from_py_code is False:
            return None  # tri-state-ish

        if self._convert_from_py_code is None:
            for component in self.components:
                if not component.create_from_py_utility_code(env):
                    self.from_py_function = None
                    self._convert_from_py_code = False
                    return False

            context = dict(
                struct_type_decl=self.empty_declaration_code(),
                components=self.components,
                funcname=self.from_py_function,
                size=len(self.components)
            )
            self._convert_from_py_code = TempitaUtilityCode.load(
                "FromPyCTupleUtility", "TypeConversion.c", context=context)

        env.use_utility_code(self._convert_from_py_code)
        return True

    def cast_code(self, expr_code):
        return expr_code


def c_tuple_type(components):
    components = tuple(components)
    cname = Naming.ctuple_type_prefix + type_list_identifier(components)
    tuple_type = CTupleType(cname, components)
    return tuple_type


class UnspecifiedType(PyrexType):
    # Used as a placeholder until the type can be determined.

    is_unspecified = 1

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        return "<unspecified>"

    def same_as_resolved_type(self, other_type):
        return False


class ErrorType(PyrexType):
    # Used to prevent propagation of error messages.

    is_error = 1
    exception_value = "0"
    exception_check    = 0
    to_py_function = "dummy"
    from_py_function = "dummy"

    def create_to_py_utility_code(self, env):
        return True

    def create_from_py_utility_code(self, env):
        return True

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        return "<error>"

    def same_as_resolved_type(self, other_type):
        return 1

    def error_condition(self, result_code):
        return "dummy"


class PythonTypeConstructorMixin(object):
    """Used to help Cython interpret indexed types from the typing module (or similar)
    """
    modifier_name = None

    def set_python_type_constructor_name(self, name):
        self.python_type_constructor_name = name

    def specialize_here(self, pos, env, template_values=None):
        # for a lot of the typing classes it doesn't really matter what the template is
        # (i.e. typing.Dict[int] is really just a dict)
        return self

    def __repr__(self):
        if self.base_type:
            return "%s[%r]" % (self.name, self.base_type)
        else:
            return self.name

    def is_template_type(self):
        return True


class BuiltinTypeConstructorObjectType(BuiltinObjectType, PythonTypeConstructorMixin):
    """
    builtin types like list, dict etc which can be subscripted in annotations
    """
    def __init__(self, name, cname, objstruct_cname=None):
        super(BuiltinTypeConstructorObjectType, self).__init__(
            name, cname, objstruct_cname=objstruct_cname)
        self.set_python_type_constructor_name(name)


class PythonTupleTypeConstructor(BuiltinTypeConstructorObjectType):
    def specialize_here(self, pos, env, template_values=None):
        if (template_values and None not in template_values and
                not any(v.is_pyobject for v in template_values)):
            entry = env.declare_tuple_type(pos, template_values)
            if entry:
                entry.used = True
                return entry.type
        return super(PythonTupleTypeConstructor, self).specialize_here(pos, env, template_values)


class SpecialPythonTypeConstructor(PyObjectType, PythonTypeConstructorMixin):
    """
    For things like ClassVar, Optional, etc, which are not types and disappear during type analysis.
    """

    def __init__(self, name):
        super(SpecialPythonTypeConstructor, self).__init__()
        self.set_python_type_constructor_name(name)
        self.modifier_name = name

    def __repr__(self):
        return self.name

    def resolve(self):
        return self

    def specialize_here(self, pos, env, template_values=None):
        if len(template_values) != 1:
            error(pos, "'%s' takes exactly one template argument." % self.name)
            return error_type
        if template_values[0] is None:
            # FIXME: allowing unknown types for now since we don't recognise all Python types.
            return None
        # Replace this type with the actual 'template' argument.
        return template_values[0].resolve()


rank_to_type_name = (
    "char",          # 0
    "short",         # 1
    "int",           # 2
    "long",          # 3
    "PY_LONG_LONG",  # 4
    "float",         # 5
    "double",        # 6
    "long double",   # 7
)

RANK_INT  = rank_to_type_name.index('int')
RANK_LONG = rank_to_type_name.index('long')
RANK_FLOAT = rank_to_type_name.index('float')
UNSIGNED = 0
SIGNED = 2

error_type =    ErrorType()
unspecified_type = UnspecifiedType()

py_object_type = PyObjectType()

c_void_type =        CVoidType()

c_uchar_type =       CIntType(0, UNSIGNED)
c_ushort_type =      CIntType(1, UNSIGNED)
c_uint_type =        CIntType(2, UNSIGNED)
c_ulong_type =       CIntType(3, UNSIGNED)
c_ulonglong_type =   CIntType(4, UNSIGNED)

c_char_type =        CIntType(0)
c_short_type =       CIntType(1)
c_int_type =         CIntType(2)
c_long_type =        CIntType(3)
c_longlong_type =    CIntType(4)

c_schar_type =       CIntType(0, SIGNED)
c_sshort_type =      CIntType(1, SIGNED)
c_sint_type =        CIntType(2, SIGNED)
c_slong_type =       CIntType(3, SIGNED)
c_slonglong_type =   CIntType(4, SIGNED)

c_float_type =       CFloatType(5, math_h_modifier='f')
c_double_type =      CFloatType(6)
c_longdouble_type =  CFloatType(7, math_h_modifier='l')

c_float_complex_type =      CComplexType(c_float_type)
c_double_complex_type =     CComplexType(c_double_type)
c_longdouble_complex_type = CComplexType(c_longdouble_type)

soft_complex_type = SoftCComplexType()

c_anon_enum_type =   CAnonEnumType(-1)
c_returncode_type =  CReturnCodeType(RANK_INT)
c_bint_type =        CBIntType(RANK_INT)
c_py_unicode_type =  CPyUnicodeIntType(RANK_INT-0.5, UNSIGNED)
c_py_ucs4_type =     CPyUCS4IntType(RANK_LONG-0.5, UNSIGNED)
c_py_hash_t_type =   CPyHashTType(RANK_LONG+0.5, SIGNED)
c_py_ssize_t_type =  CPySSizeTType(RANK_LONG+0.5, SIGNED)
c_ssize_t_type =     CSSizeTType(RANK_LONG+0.5, SIGNED)
c_size_t_type =      CSizeTType(RANK_LONG+0.5, UNSIGNED)
c_ptrdiff_t_type =   CPtrdiffTType(RANK_LONG+0.75, SIGNED)

c_null_ptr_type =     CNullPtrType(c_void_type)
c_void_ptr_type =     CPtrType(c_void_type)
c_void_ptr_ptr_type = CPtrType(c_void_ptr_type)
c_char_ptr_type =     CPtrType(c_char_type)
c_const_char_ptr_type = CPtrType(CConstType(c_char_type))
c_uchar_ptr_type =    CPtrType(c_uchar_type)
c_const_uchar_ptr_type = CPtrType(CConstType(c_uchar_type))
c_char_ptr_ptr_type = CPtrType(c_char_ptr_type)
c_int_ptr_type =      CPtrType(c_int_type)
c_py_unicode_ptr_type = CPtrType(c_py_unicode_type)
c_const_py_unicode_ptr_type = CPtrType(CConstType(c_py_unicode_type))
c_py_ssize_t_ptr_type =  CPtrType(c_py_ssize_t_type)
c_ssize_t_ptr_type =  CPtrType(c_ssize_t_type)
c_size_t_ptr_type =  CPtrType(c_size_t_type)

# GIL state
c_gilstate_type = CEnumType("PyGILState_STATE", "PyGILState_STATE", True)
c_threadstate_type = CStructOrUnionType("PyThreadState", "struct", None, 1, "PyThreadState")
c_threadstate_ptr_type = CPtrType(c_threadstate_type)

# PEP-539 "Py_tss_t" type
c_pytss_t_type = CPyTSSTType()

# the Py_buffer type is defined in Builtin.py
c_py_buffer_type = CStructOrUnionType("Py_buffer", "struct", None, 1, "Py_buffer")
c_py_buffer_ptr_type = CPtrType(c_py_buffer_type)

# Not sure whether the unsigned versions and 'long long' should be in there
# long long requires C99 and might be slow, and would always get preferred
# when specialization happens through calling and not indexing
cy_integral_type = FusedType([c_short_type, c_int_type, c_long_type],
                             name="integral")
# Omitting long double as it might be slow
cy_floating_type = FusedType([c_float_type, c_double_type], name="floating")
cy_numeric_type = FusedType([c_short_type,
                             c_int_type,
                             c_long_type,
                             c_float_type,
                             c_double_type,
                             c_float_complex_type,
                             c_double_complex_type], name="numeric")

# buffer-related structs
c_buf_diminfo_type =  CStructOrUnionType("__Pyx_Buf_DimInfo", "struct",
                                      None, 1, "__Pyx_Buf_DimInfo")
c_pyx_buffer_type = CStructOrUnionType("__Pyx_Buffer", "struct", None, 1, "__Pyx_Buffer")
c_pyx_buffer_ptr_type = CPtrType(c_pyx_buffer_type)
c_pyx_buffer_nd_type = CStructOrUnionType("__Pyx_LocalBuf_ND", "struct",
                                      None, 1, "__Pyx_LocalBuf_ND")

cython_memoryview_type = CStructOrUnionType("__pyx_memoryview_obj", "struct",
                                      None, 0, "__pyx_memoryview_obj")

memoryviewslice_type = CStructOrUnionType("memoryviewslice", "struct",
                                          None, 1, "__Pyx_memviewslice")

modifiers_and_name_to_type = {
    #(signed, longness, name) : type
    (0,  0, "char"): c_uchar_type,
    (1,  0, "char"): c_char_type,
    (2,  0, "char"): c_schar_type,

    (0, -1, "int"): c_ushort_type,
    (0,  0, "int"): c_uint_type,
    (0,  1, "int"): c_ulong_type,
    (0,  2, "int"): c_ulonglong_type,

    (1, -1, "int"): c_short_type,
    (1,  0, "int"): c_int_type,
    (1,  1, "int"): c_long_type,
    (1,  2, "int"): c_longlong_type,

    (2, -1, "int"): c_sshort_type,
    (2,  0, "int"): c_sint_type,
    (2,  1, "int"): c_slong_type,
    (2,  2, "int"): c_slonglong_type,

    (1,  0, "float"):  c_float_type,
    (1,  0, "double"): c_double_type,
    (1,  1, "double"): c_longdouble_type,

    (1,  0, "complex"):  c_double_complex_type,  # C: float, Python: double => Python wins
    (1,  0, "floatcomplex"):  c_float_complex_type,
    (1,  0, "doublecomplex"): c_double_complex_type,
    (1,  1, "doublecomplex"): c_longdouble_complex_type,

    #
    (1,  0, "void"): c_void_type,
    (1,  0, "Py_tss_t"): c_pytss_t_type,

    (1,  0, "bint"):       c_bint_type,
    (0,  0, "Py_UNICODE"): c_py_unicode_type,
    (0,  0, "Py_UCS4"):    c_py_ucs4_type,
    (2,  0, "Py_hash_t"):  c_py_hash_t_type,
    (2,  0, "Py_ssize_t"): c_py_ssize_t_type,
    (2,  0, "ssize_t") :   c_ssize_t_type,
    (0,  0, "size_t") :    c_size_t_type,
    (2,  0, "ptrdiff_t") : c_ptrdiff_t_type,

    (1,  0, "object"): py_object_type,
}

def is_promotion(src_type, dst_type):
    # It's hard to find a hard definition of promotion, but empirical
    # evidence suggests that the below is all that's allowed.
    if src_type.is_numeric:
        if dst_type.same_as(c_int_type):
            unsigned = (not src_type.signed)
            return (src_type.is_enum or
                    (src_type.is_int and
                     unsigned + src_type.rank < dst_type.rank))
        elif dst_type.same_as(c_double_type):
            return src_type.is_float and src_type.rank <= dst_type.rank
    return False

def best_match(arg_types, functions, pos=None, env=None, args=None):
    """
    Given a list args of arguments and a list of functions, choose one
    to call which seems to be the "best" fit for this list of arguments.
    This function is used, e.g., when deciding which overloaded method
    to dispatch for C++ classes.

    We first eliminate functions based on arity, and if only one
    function has the correct arity, we return it. Otherwise, we weight
    functions based on how much work must be done to convert the
    arguments, with the following priorities:
      * identical types or pointers to identical types
      * promotions
      * non-Python types
    That is, we prefer functions where no arguments need converted,
    and failing that, functions where only promotions are required, and
    so on.

    If no function is deemed a good fit, or if two or more functions have
    the same weight, we return None (as there is no best match). If pos
    is not None, we also generate an error.
    """
    # TODO: args should be a list of types, not a list of Nodes.
    actual_nargs = len(arg_types)

    candidates = []
    errors = []
    for func in functions:
        error_mesg = ""
        func_type = func.type
        if func_type.is_ptr:
            func_type = func_type.base_type
        # Check function type
        if not func_type.is_cfunction:
            if not func_type.is_error and pos is not None:
                error_mesg = "Calling non-function type '%s'" % func_type
            errors.append((func, error_mesg))
            continue
        # Check no. of args
        max_nargs = len(func_type.args)
        min_nargs = max_nargs - func_type.optional_arg_count
        if actual_nargs < min_nargs or (not func_type.has_varargs and actual_nargs > max_nargs):
            if max_nargs == min_nargs and not func_type.has_varargs:
                expectation = max_nargs
            elif actual_nargs < min_nargs:
                expectation = "at least %s" % min_nargs
            else:
                expectation = "at most %s" % max_nargs
            error_mesg = "Call with wrong number of arguments (expected %s, got %s)" \
                         % (expectation, actual_nargs)
            errors.append((func, error_mesg))
            continue
        if func_type.templates:
            # For any argument/parameter pair A/P, if P is a forwarding reference,
            # use lvalue-reference-to-A for deduction in place of A when the
            # function call argument is an lvalue. See:
            # https://en.cppreference.com/w/cpp/language/template_argument_deduction#Deduction_from_a_function_call
            arg_types_for_deduction = list(arg_types)
            if func.type.is_cfunction and args:
                for i, formal_arg in enumerate(func.type.args):
                    if formal_arg.is_forwarding_reference():
                        if args[i].is_lvalue():
                            arg_types_for_deduction[i] = c_ref_type(arg_types[i])
            deductions = reduce(
                merge_template_deductions,
                [pattern.type.deduce_template_params(actual) for (pattern, actual) in zip(func_type.args, arg_types_for_deduction)],
                {})
            if deductions is None:
                errors.append((func, "Unable to deduce type parameters for %s given (%s)" % (
                    func_type, ', '.join(map(str, arg_types_for_deduction)))))
            elif len(deductions) < len(func_type.templates):
                errors.append((func, "Unable to deduce type parameter %s" % (
                    ", ".join([param.name for param in set(func_type.templates) - set(deductions.keys())]))))
            else:
                type_list = [deductions[param] for param in func_type.templates]
                from .Symtab import Entry
                specialization = Entry(
                    name = func.name + "[%s]" % ",".join([str(t) for t in type_list]),
                    cname = func.cname + "<%s>" % ",".join([t.empty_declaration_code() for t in type_list]),
                    type = func_type.specialize(deductions),
                    pos = func.pos)
                candidates.append((specialization, specialization.type))
        else:
            candidates.append((func, func_type))

    # Optimize the most common case of no overloading...
    if len(candidates) == 1:
        return candidates[0][0]
    elif len(candidates) == 0:
        if pos is not None:
            func, errmsg = errors[0]
            if len(errors) == 1 or [1 for func, e in errors if e == errmsg]:
                error(pos, errmsg)
            else:
                error(pos, "no suitable method found")
        return None

    possibilities = []
    bad_types = []
    needed_coercions = {}

    for index, (func, func_type) in enumerate(candidates):
        score = [0,0,0,0,0,0,0]
        for i in range(min(actual_nargs, len(func_type.args))):
            src_type = arg_types[i]
            dst_type = func_type.args[i].type

            assignable = dst_type.assignable_from(src_type)

            # Now take care of unprefixed string literals. So when you call a cdef
            # function that takes a char *, the coercion will mean that the
            # type will simply become bytes. We need to do this coercion
            # manually for overloaded and fused functions
            if not assignable:
                c_src_type = None
                if src_type.is_pyobject:
                    if src_type.is_builtin_type and src_type.name == 'str' and dst_type.resolve().is_string:
                        c_src_type = dst_type.resolve()
                    else:
                        c_src_type = src_type.default_coerced_ctype()
                elif src_type.is_pythran_expr:
                        c_src_type = src_type.org_buffer

                if c_src_type is not None:
                    assignable = dst_type.assignable_from(c_src_type)
                    if assignable:
                        src_type = c_src_type
                        needed_coercions[func] = (i, dst_type)

            if assignable:
                if src_type == dst_type or dst_type.same_as(src_type):
                    pass  # score 0
                elif func_type.is_strict_signature:
                    break  # exact match requested but not found
                elif is_promotion(src_type, dst_type):
                    score[2] += 1
                elif ((src_type.is_int and dst_type.is_int) or
                      (src_type.is_float and dst_type.is_float)):
                    score[2] += abs(dst_type.rank + (not dst_type.signed) -
                                    (src_type.rank + (not src_type.signed))) + 1
                elif dst_type.is_ptr and src_type.is_ptr:
                    if dst_type.base_type == c_void_type:
                        score[4] += 1
                    elif src_type.base_type.is_cpp_class and src_type.base_type.is_subclass(dst_type.base_type):
                        score[6] += src_type.base_type.subclass_dist(dst_type.base_type)
                    else:
                        score[5] += 1
                elif not src_type.is_pyobject:
                    score[1] += 1
                else:
                    score[0] += 1
            else:
                error_mesg = "Invalid conversion from '%s' to '%s'" % (src_type, dst_type)
                bad_types.append((func, error_mesg))
                break
        else:
            possibilities.append((score, index, func))  # so we can sort it

    if possibilities:
        possibilities.sort()
        if len(possibilities) > 1:
            score1 = possibilities[0][0]
            score2 = possibilities[1][0]
            if score1 == score2:
                if pos is not None:
                    error(pos, "ambiguous overloaded method")
                return None

        function = possibilities[0][-1]

        if function in needed_coercions and env:
            arg_i, coerce_to_type = needed_coercions[function]
            args[arg_i] = args[arg_i].coerce_to(coerce_to_type, env)

        return function

    if pos is not None:
        if len(bad_types) == 1:
            error(pos, bad_types[0][1])
        else:
            error(pos, "no suitable method found")

    return None

def merge_template_deductions(a, b):
    if a is None or b is None:
        return None
    all = a
    for param, value in b.items():
        if param in all:
            if a[param] != b[param]:
                return None
        else:
            all[param] = value
    return all


def widest_numeric_type(type1, type2):
    """Given two numeric types, return the narrowest type encompassing both of them.
    """
    if type1.is_reference:
        type1 = type1.ref_base_type
    if type2.is_reference:
        type2 = type2.ref_base_type
    if type1.is_cv_qualified:
        type1 = type1.cv_base_type
    if type2.is_cv_qualified:
        type2 = type2.cv_base_type
    if type1 == type2:
        widest_type = type1
    elif type1.is_complex or type2.is_complex:
        def real_type(ntype):
            if ntype.is_complex:
                return ntype.real_type
            return ntype
        widest_type = CComplexType(
            widest_numeric_type(
                real_type(type1),
                real_type(type2)))
        if type1 is soft_complex_type or type2 is soft_complex_type:
            type1_is_other_complex = type1 is not soft_complex_type and type1.is_complex
            type2_is_other_complex = type2 is not soft_complex_type and type2.is_complex
            if (not type1_is_other_complex and not type2_is_other_complex and
                    widest_type.real_type == soft_complex_type.real_type):
                # ensure we can do an actual "is" comparison
                # (this possibly goes slightly wrong when mixing long double and soft complex)
                widest_type = soft_complex_type
    elif type1.is_enum and type2.is_enum:
        widest_type = c_int_type
    elif type1.rank < type2.rank:
        widest_type = type2
    elif type1.rank > type2.rank:
        widest_type = type1
    elif type1.signed < type2.signed:
        widest_type = type1
    elif type1.signed > type2.signed:
        widest_type = type2
    elif type1.is_typedef > type2.is_typedef:
        widest_type = type1
    else:
        widest_type = type2
    return widest_type


def numeric_type_fits(small_type, large_type):
    return widest_numeric_type(small_type, large_type) == large_type


def independent_spanning_type(type1, type2):
    # Return a type assignable independently from both type1 and
    # type2, but do not require any interoperability between the two.
    # For example, in "True * 2", it is safe to assume an integer
    # result type (so spanning_type() will do the right thing),
    # whereas "x = True or 2" must evaluate to a type that can hold
    # both a boolean value and an integer, so this function works
    # better.
    if type1.is_reference ^ type2.is_reference:
        if type1.is_reference:
            type1 = type1.ref_base_type
        else:
            type2 = type2.ref_base_type

    resolved_type1 = type1.resolve()
    resolved_type2 = type2.resolve()
    if resolved_type1 == resolved_type2:
        return type1
    elif ((resolved_type1 is c_bint_type or resolved_type2 is c_bint_type)
            and (type1.is_numeric and type2.is_numeric)):
        # special case: if one of the results is a bint and the other
        # is another C integer, we must prevent returning a numeric
        # type so that we do not lose the ability to coerce to a
        # Python bool if we have to.
        return py_object_type

    span_type = _spanning_type(type1, type2)
    if span_type is None:
        return error_type
    return span_type

def spanning_type(type1, type2):
    # Return a type assignable from both type1 and type2, or
    # py_object_type if no better type is found.  Assumes that the
    # code that calls this will try a coercion afterwards, which will
    # fail if the types cannot actually coerce to a py_object_type.
    if type1 == type2:
        return type1
    elif type1 is py_object_type or type2 is py_object_type:
        return py_object_type
    elif type1 is c_py_unicode_type or type2 is c_py_unicode_type:
        # Py_UNICODE behaves more like a string than an int
        return py_object_type
    span_type = _spanning_type(type1, type2)
    if span_type is None:
        return py_object_type
    return span_type

def _spanning_type(type1, type2):
    if type1.is_numeric and type2.is_numeric:
        return widest_numeric_type(type1, type2)
    elif type1.is_builtin_type and type1.name == 'float' and type2.is_numeric:
        return widest_numeric_type(c_double_type, type2)
    elif type2.is_builtin_type and type2.name == 'float' and type1.is_numeric:
        return widest_numeric_type(type1, c_double_type)
    elif type1.is_extension_type and type2.is_extension_type:
        return widest_extension_type(type1, type2)
    elif type1.is_pyobject or type2.is_pyobject:
        return py_object_type
    elif type1.assignable_from(type2):
        if type1.is_extension_type and type1.typeobj_is_imported():
            # external types are unsafe, so we use PyObject instead
            return py_object_type
        return type1
    elif type2.assignable_from(type1):
        if type2.is_extension_type and type2.typeobj_is_imported():
            # external types are unsafe, so we use PyObject instead
            return py_object_type
        return type2
    elif type1.is_ptr and type2.is_ptr:
        if type1.base_type.is_cpp_class and type2.base_type.is_cpp_class:
            common_base = widest_cpp_type(type1.base_type, type2.base_type)
            if common_base:
                return CPtrType(common_base)
        # incompatible pointers, void* will do as a result
        return c_void_ptr_type
    else:
        return None

def widest_extension_type(type1, type2):
    if type1.typeobj_is_imported() or type2.typeobj_is_imported():
        return py_object_type
    while True:
        if type1.subtype_of(type2):
            return type2
        elif type2.subtype_of(type1):
            return type1
        type1, type2 = type1.base_type, type2.base_type
        if type1 is None or type2 is None:
            return py_object_type

def widest_cpp_type(type1, type2):
    @cached_function
    def bases(type):
        all = set()
        for base in type.base_classes:
            all.add(base)
            all.update(bases(base))
        return all
    common_bases = bases(type1).intersection(bases(type2))
    common_bases_bases = reduce(set.union, [bases(b) for b in common_bases], set())
    candidates = [b for b in common_bases if b not in common_bases_bases]
    if len(candidates) == 1:
        return candidates[0]
    else:
        # Fall back to void* for now.
        return None


def simple_c_type(signed, longness, name):
    # Find type descriptor for simple type given name and modifiers.
    # Returns None if arguments don't make sense.
    return modifiers_and_name_to_type.get((signed, longness, name))

def parse_basic_type(name):
    base = None
    if name.startswith('p_'):
        base = parse_basic_type(name[2:])
    elif name.startswith('p'):
        base = parse_basic_type(name[1:])
    elif name.endswith('*'):
        base = parse_basic_type(name[:-1])
    if base:
        return CPtrType(base)
    #
    basic_type = simple_c_type(1, 0, name)
    if basic_type:
        return basic_type
    #
    signed = 1
    longness = 0
    if name == 'Py_UNICODE':
        signed = 0
    elif name == 'Py_UCS4':
        signed = 0
    elif name == 'Py_hash_t':
        signed = 2
    elif name == 'Py_ssize_t':
        signed = 2
    elif name == 'ssize_t':
        signed = 2
    elif name == 'size_t':
        signed = 0
    else:
        if name.startswith('u'):
            name = name[1:]
            signed = 0
        elif (name.startswith('s') and
              not name.startswith('short')):
            name = name[1:]
            signed = 2
        longness = 0
        while name.startswith('short'):
            name = name.replace('short', '', 1).strip()
            longness -= 1
        while name.startswith('long'):
            name = name.replace('long', '', 1).strip()
            longness += 1
        if longness != 0 and not name:
            name = 'int'
    return simple_c_type(signed, longness, name)


def _construct_type_from_base(cls, base_type, *args):
    if base_type is error_type:
        return error_type
    return cls(base_type, *args)

def c_array_type(base_type, size):
    # Construct a C array type.
    return _construct_type_from_base(CArrayType, base_type, size)

def c_ptr_type(base_type):
    # Construct a C pointer type.
    if base_type.is_reference:
        base_type = base_type.ref_base_type
    return _construct_type_from_base(CPtrType, base_type)

def c_ref_type(base_type):
    # Construct a C reference type
    return _construct_type_from_base(CReferenceType, base_type)

def cpp_rvalue_ref_type(base_type):
    # Construct a C++ rvalue reference type
    return _construct_type_from_base(CppRvalueReferenceType, base_type)

def c_const_type(base_type):
    # Construct a C const type.
    return _construct_type_from_base(CConstType, base_type)

def c_const_or_volatile_type(base_type, is_const, is_volatile):
    # Construct a C const/volatile type.
    return _construct_type_from_base(CConstOrVolatileType, base_type, is_const, is_volatile)


def same_type(type1, type2):
    return type1.same_as(type2)

def assignable_from(type1, type2):
    return type1.assignable_from(type2)

def typecast(to_type, from_type, expr_code):
    #  Return expr_code cast to a C type which can be
    #  assigned to to_type, assuming its existing C type
    #  is from_type.
    if (to_type is from_type or
            (not to_type.is_pyobject and assignable_from(to_type, from_type))):
        return expr_code
    elif (to_type is py_object_type and from_type and
            from_type.is_builtin_type and from_type.name != 'type'):
        # no cast needed, builtins are PyObject* already
        return expr_code
    else:
        #print "typecast: to", to_type, "from", from_type ###
        return to_type.cast_code(expr_code)

def type_list_identifier(types):
    return cap_length('__and_'.join(type_identifier(type) for type in types))

_special_type_characters = {
    '__': '__dunder',
    'const ': '__const_',
    ' ': '__space_',
    '*': '__ptr',
    '&': '__ref',
    '&&': '__fwref',
    '[': '__lArr',
    ']': '__rArr',
    '<': '__lAng',
    '>': '__rAng',
    '(': '__lParen',
    ')': '__rParen',
    ',': '__comma_',
    '...': '__EL',
    '::': '__in_',
    ':': '__D',
}

_escape_special_type_characters = partial(re.compile(
    # join substrings in reverse order to put longer matches first, e.g. "::" before ":"
    " ?(%s) ?" % "|".join(re.escape(s) for s in sorted(_special_type_characters, reverse=True))
).sub, lambda match: _special_type_characters[match.group(1)])

def type_identifier(type, pyrex=False):
    decl = type.empty_declaration_code(pyrex=pyrex)
    return type_identifier_from_declaration(decl)

_type_identifier_cache = {}
def type_identifier_from_declaration(decl):
    safe = _type_identifier_cache.get(decl)
    if safe is None:
        safe = decl
        safe = re.sub(' +', ' ', safe)
        safe = re.sub(' ?([^a-zA-Z0-9_]) ?', r'\1', safe)
        safe = _escape_special_type_characters(safe)
        safe = cap_length(re.sub('[^a-zA-Z0-9_]', lambda x: '__%X' % ord(x.group(0)), safe))
        _type_identifier_cache[decl] = safe
    return safe

def cap_length(s, max_prefix=63, max_len=1024):
    if len(s) <= max_prefix:
        return s
    hash_prefix = hashlib.sha256(s.encode('ascii')).hexdigest()[:6]
    return '%s__%s__etc' % (hash_prefix, s[:max_len-17])