1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
# cython: language_level=3
# mode: run
# tag: pure3.7, pep526, pep484, warnings
# for the benefit of the pure tests, don't require annotations
# to be evaluated
from __future__ import annotations
import cython
from typing import Dict, List, TypeVar, Optional, Generic, Tuple
try:
import typing
from typing import Set as _SET_
from typing import ClassVar
except ImportError:
pass # this should allow Cython to interpret the directives even when the module doesn't exist
var = 1 # type: annotation
var: cython.int = 2
fvar: cython.float = 1.2
some_number: cython.int # variable without initial value
some_list: List[cython.int] = [] # variable with initial value
another_list: list[cython.int] = []
t: Tuple[cython.int, ...] = (1, 2, 3)
t2: tuple[cython.int, ...]
body: Optional[List[str]]
descr_only : "descriptions are allowed but ignored"
some_number = 5
body = None
def f():
"""
>>> f()
(2, 1.5, [], (1, 2, 3))
"""
var = 1 # type: annotation
var: cython.int = 2
fvar: cython.float = 1.5
some_number: cython.int # variable without initial value
some_list: List[cython.int] = [] # variable with initial value
t: Tuple[cython.int, ...] = (1, 2, 3)
body: Optional[List[str]]
descr_only: "descriptions are allowed but ignored"
return var, fvar, some_list, t
class BasicStarship(object):
"""
>>> bs = BasicStarship(5)
>>> bs.damage
5
>>> bs.captain
'Picard'
>>> bs.stats
{}
>>> BasicStarship.stats
{}
"""
captain: str = 'Picard' # instance variable with default
damage: cython.int # instance variable without default
stats: ClassVar[Dict[str, cython.int]] = {} # class variable
descr_only: "descriptions are allowed but ignored"
def __init__(self, damage):
self.damage = damage
@cython.cclass
class BasicStarshipExt(object):
"""
>>> bs = BasicStarshipExt(5)
>>> bs.test()
(5, 'Picard', {})
"""
captain: str = 'Picard' # instance variable with default
damage: cython.int # instance variable without default
stats: ClassVar[Dict[str, cython.int]] = {} # class variable
descr_only: "descriptions are allowed but ignored"
def __init__(self, damage):
self.damage = damage
def test(self):
return self.damage, self.captain, self.stats
T = TypeVar('T')
# FIXME: this fails in Py3.7 now
#class Box(Generic[T]):
# def __init__(self, content):
# self.content: T = content
#
#box = Box(content=5)
class Cls(object):
pass
c = Cls()
c.x: int = 0 # Annotates c.x with int.
c.y: int # Annotates c.y with int.
d = {}
d['a']: int = 0 # Annotates d['a'] with int.
d['b']: int # Annotates d['b'] with int.
(x): int # Annotates x with int, (x) treated as expression by compiler.
(y): int = 0 # Same situation here.
@cython.test_assert_path_exists(
"//WhileStatNode",
"//WhileStatNode//DictIterationNextNode",
)
def iter_declared_dict(d):
"""
>>> d = {1.1: 2.5, 3.3: 4.5}
>>> iter_declared_dict(d)
7.0
# specialized "compiled" test in module-level __doc__
"""
typed_dict : Dict[cython.float, cython.float] = d
s = 0.0
for key in typed_dict:
s += d[key]
return s
@cython.test_assert_path_exists(
"//WhileStatNode",
"//WhileStatNode//DictIterationNextNode",
)
def iter_declared_dict_arg(d : Dict[cython.float, cython.float]):
"""
>>> d = {1.1: 2.5, 3.3: 4.5}
>>> iter_declared_dict_arg(d)
7.0
# module level "compiled" test in __doc__ below
"""
s = 0.0
for key in d:
s += d[key]
return s
def literal_list_ptr():
"""
>>> literal_list_ptr()
4
"""
a : cython.p_int = [1, 2, 3, 4, 5]
return a[3]
def test_subscripted_types():
"""
>>> test_subscripted_types()
dict object
dict object
list object
list object
list object
set object
"""
a1: typing.Dict[cython.int, cython.float] = {}
a2: dict[cython.int, cython.float] = {}
b1: List[cython.int] = []
b2: list[cython.int] = []
b3: List = [] # doesn't need to be subscripted
c: _SET_[object] = set()
print(cython.typeof(a1) + (" object" if not cython.compiled else ""))
print(cython.typeof(a2) + (" object" if not cython.compiled else ""))
print(cython.typeof(b1) + (" object" if not cython.compiled else ""))
print(cython.typeof(b2) + (" object" if not cython.compiled else ""))
print(cython.typeof(b3) + (" object" if not cython.compiled else ""))
print(cython.typeof(c) + (" object" if not cython.compiled else ""))
# because tuple is specifically special cased to go to ctuple where possible
def test_tuple(a: typing.Tuple[cython.int, cython.float], b: typing.Tuple[cython.int, ...],
c: Tuple[cython.int, object] # cannot be a ctuple
):
"""
>>> test_tuple((1, 1.0), (1, 1.0), (1, 1.0))
int
int
float
Python object
(int, float)
tuple object
tuple object
tuple object
tuple object
"""
x: typing.Tuple[int, float] = (a[0], a[1]) # note: Python int/float, not cython.int/float
y: Tuple[cython.int, ...] = (1,2.)
plain_tuple: Tuple = ()
z = a[0] # should infer to C int
p = x[1] # should infer to Python float -> C double
print(cython.typeof(z))
print("int" if cython.compiled and cython.typeof(x[0]) == "Python object" else cython.typeof(x[0])) # FIXME: infer Python int
if cython.compiled:
print(cython.typeof(p))
else:
print('float' if cython.typeof(p) == 'float' else cython.typeof(p))
print(cython.typeof(x[1]) if cython.compiled or cython.typeof(p) != 'float' else "Python object") # FIXME: infer C double
print(cython.typeof(a) if cython.compiled or cython.typeof(a) != 'tuple' else "(int, float)")
print(cython.typeof(x) + (" object" if not cython.compiled else ""))
print(cython.typeof(y) + (" object" if not cython.compiled else ""))
print(cython.typeof(c) + (" object" if not cython.compiled else ""))
print(cython.typeof(plain_tuple) + (" object" if not cython.compiled else ""))
# because tuple is specifically special cased to go to ctuple where possible
def test_tuple_without_typing(a: tuple[cython.int, cython.float], b: tuple[cython.int, ...],
c: tuple[cython.int, object] # cannot be a ctuple
):
"""
>>> test_tuple_without_typing((1, 1.0), (1, 1.0), (1, 1.0))
int
int
float
Python object
(int, float)
tuple object
tuple object
tuple object
tuple object
"""
x: tuple[int, float] = (a[0], a[1]) # note: Python int/float, not cython.int/float
y: tuple[cython.int, ...] = (1,2.)
plain_tuple: tuple = ()
z = a[0] # should infer to C int
p = x[1] # should infer to Python float -> C double
print(cython.typeof(z))
print("int" if cython.compiled and cython.typeof(x[0]) == "Python object" else cython.typeof(x[0])) # FIXME: infer Python int
print(cython.typeof(p) if cython.compiled or cython.typeof(p) != 'float' else "float") # FIXME: infer C double/PyFloat from Py type
print(cython.typeof(x[1]) if cython.compiled or cython.typeof(p) != 'float' else "Python object") # FIXME: infer C double
print(cython.typeof(a) if cython.compiled or cython.typeof(a) != 'tuple' else "(int, float)")
print(cython.typeof(x) + (" object" if not cython.compiled else ""))
print(cython.typeof(y) + (" object" if not cython.compiled else ""))
print(cython.typeof(c) + (" object" if not cython.compiled else ""))
print(cython.typeof(plain_tuple) + (" object" if not cython.compiled else ""))
def test_use_typing_attributes_as_non_annotations():
"""
>>> test_use_typing_attributes_as_non_annotations()
typing.Tuple typing.Tuple[int]
typing.Optional True
typing.Optional True
"""
x1 = typing.Tuple
x2 = typing.Tuple[int]
y1 = typing.Optional
y2 = typing.Optional[typing.Dict]
z1 = Optional
z2 = Optional[Dict]
# The result of printing "Optional[type]" is slightly version-dependent
# so accept both possible forms
allowed_optional_strings = [
"typing.Union[typing.Dict, NoneType]",
"typing.Optional[typing.Dict]"
]
print(x1, x2)
print(y1, str(y2) in allowed_optional_strings)
print(z1, str(z2) in allowed_optional_strings)
def test_optional_ctuple(x: typing.Optional[tuple[float]]):
"""
Should not be a C-tuple (because these can't be optional)
>>> test_optional_ctuple((1.0,))
tuple object
"""
print(cython.typeof(x) + (" object" if not cython.compiled else ""))
try:
import numpy.typing as npt
import numpy as np
except ImportError:
# we can't actually use numpy typing right now, it was just part
# of a reproducer that caused a compiler crash. We don't need it
# available to use it in annotations, so don't fail if it's not there
pass
def list_float_to_numpy(z: List[float]) -> List[npt.NDArray[np.float64]]:
# since we're not actually requiring numpy, don't make the return type match
assert cython.typeof(z) == 'list'
return [z[0]]
if cython.compiled:
__doc__ = """
# passing non-dicts to variables declared as dict now fails
>>> class D(object):
... def __getitem__(self, x): return 2
... def __iter__(self): return iter([1, 2, 3])
>>> iter_declared_dict(D()) # doctest:+IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TypeError: Expected dict, got D
>>> iter_declared_dict_arg(D()) # doctest:+IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TypeError: Expected dict, got D
"""
_WARNINGS = """
"""
|