summaryrefslogtreecommitdiff
path: root/DevIL/src-IL/src/il_quantizer.cpp
blob: 0e0057284e5078d6de74b791d0aecbf7048e1db8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
//-----------------------------------------------------------------------
//         Color Quantization Demo
//
// Author: Roman Podobedov
// Email: romka@ut.ee
// Romka Graphics: www.ut.ee/~romka
// 
// Also in this file implemented Wu's Color Quantizer algorithm (v. 2)
// For details see Graphics Gems vol. II, pp. 126-133
//
// Wu's Color Quantizer Algorithm:
// Author: Xiaolin Wu
//			Dept. of Computer Science
//			Univ. of Western Ontario
//			London, Ontario N6A 5B7
//			wu@csd.uwo.ca
//			http://www.csd.uwo.ca/faculty/wu/
//-----------------------------------------------------------------------

//-----------------------------------------------------------------------------
//
// ImageLib Sources
// by Denton Woods
// Last modified: 01/04/2009
//
// Filename: src-IL/src/il_quantizer.c
//
// Description:  Heavily modified by Denton Woods.
//
// 20040223 XIX : Modified so it works better with color requests < 256
// pallete always has memory space for 256 entries
// used so we can quant down to 255 colors then add a transparent color in there.
//
//-----------------------------------------------------------------------------

#include "il_internal.h"

#define MAXCOLOR	256
#define	RED			2
#define	GREEN		1
#define BLUE		0

typedef struct Box
{
    ILint r0;  // min value, exclusive
    ILint r1;  // max value, inclusive
    ILint g0;  
    ILint g1;  
    ILint b0;  
    ILint b1;
    ILint vol;
} Box;

/* Histogram is in elements 1..HISTSIZE along each axis,
 * element 0 is for base or marginal value
 * NB: these must start out 0!
 */

ILfloat		gm2[33][33][33];
ILint		wt[33][33][33], mr[33][33][33],	mg[33][33][33],	mb[33][33][33];
ILuint		size; //image size
ILint		K;    //colour look-up table size
ILushort	*Qadd;


ILint	WindW, WindH, WindD;
ILint	i;
ILubyte	*buffer;
static ILint	Width, Height, Depth, Comp;
/*ILint	TotalColors;
ILint	a, b;
ILubyte	*buf1, *buf2;*/

ILuint n2(ILint s)
{
	ILint	i;
	ILint	res;

	res = 1;
	for (i = 0; i < s; i++) {
		res = res*2;
	}

	return res;
}


// Build 3-D color histogram of counts, r/g/b, c^2
ILboolean Hist3d(ILubyte *Ir, ILubyte *Ig, ILubyte *Ib, ILint *vwt, ILint *vmr, ILint *vmg, ILint *vmb, ILfloat *m2)
{
	ILint	ind, r, g, b;
	ILint	inr, ing, inb, table[2560];
	ILuint	i;
		
	for (i = 0; i < 256; i++)
	{
		table[i] = i * i;
	}
	Qadd = (ILushort*)ialloc(sizeof(ILushort) * size);
	if (Qadd == NULL)
	{
		return IL_FALSE;
	}
	
        imemclear(Qadd, sizeof(ILushort) * size);
        
	for (i = 0; i < size; i++)
	{
	    r = Ir[i]; g = Ig[i]; b = Ib[i];
	    inr = (r>>3) + 1; 
	    ing = (g>>3) + 1; 
	    inb = (b>>3) + 1; 
	    Qadd[i] = ind = (inr<<10)+(inr<<6)+inr+(ing<<5)+ing+inb;
	    //[inr][ing][inb]
	    vwt[ind]++;
	    vmr[ind] += r;
	    vmg[ind] += g;
	    vmb[ind] += b;
		m2[ind] += (ILfloat)(table[r]+table[g]+table[b]);
	}
	return IL_TRUE;
}

/* At conclusion of the histogram step, we can interpret
 *   wt[r][g][b] = sum over voxel of P(c)
 *   mr[r][g][b] = sum over voxel of r*P(c)  ,  similarly for mg, mb
 *   m2[r][g][b] = sum over voxel of c^2*P(c)
 * Actually each of these should be divided by 'size' to give the usual
 * interpretation of P() as ranging from 0 to 1, but we needn't do that here.
 */

/* We now convert histogram into moments so that we can rapidly calculate
 * the sums of the above quantities over any desired Box.
 */


// Compute cumulative moments
void M3d(ILint *vwt, ILint *vmr, ILint *vmg, ILint *vmb, ILfloat *m2)
{
	ILushort	ind1, ind2;
	ILubyte		i, r, g, b;
	ILint		line, line_r, line_g, line_b, area[33], area_r[33], area_g[33], area_b[33];
	ILfloat		line2, area2[33];

	for (r = 1; r <= 32; r++) {
		for (i = 0; i <= 32; i++) {
			area2[i] = 0.0f;
			area[i]=area_r[i]=area_g[i]=area_b[i]=0;
		}
		for (g = 1; g <= 32; g++) {
			line2 = 0.0f;
			line = line_r = line_g = line_b = 0;
			for (b = 1; b <= 32; b++) {
				ind1 = (r<<10) + (r<<6) + r + (g<<5) + g + b; // [r][g][b]
				line += vwt[ind1];
				line_r += vmr[ind1]; 
				line_g += vmg[ind1]; 
				line_b += vmb[ind1];
				line2 += m2[ind1];
				area[b] += line;
				area_r[b] += line_r;
				area_g[b] += line_g;
				area_b[b] += line_b;
				area2[b] += line2;
				ind2 = ind1 - 1089; // [r-1][g][b]
				vwt[ind1] = vwt[ind2] + area[b];
				vmr[ind1] = vmr[ind2] + area_r[b];
				vmg[ind1] = vmg[ind2] + area_g[b];
				vmb[ind1] = vmb[ind2] + area_b[b];
				m2[ind1] = m2[ind2] + area2[b];
			}
		}
    }

	return;
}


// Compute sum over a Box of any given statistic
ILint Vol(Box *cube, ILint mmt[33][33][33]) 
{
    return( mmt[cube->r1][cube->g1][cube->b1] 
	   -mmt[cube->r1][cube->g1][cube->b0]
	   -mmt[cube->r1][cube->g0][cube->b1]
	   +mmt[cube->r1][cube->g0][cube->b0]
	   -mmt[cube->r0][cube->g1][cube->b1]
	   +mmt[cube->r0][cube->g1][cube->b0]
	   +mmt[cube->r0][cube->g0][cube->b1]
	   -mmt[cube->r0][cube->g0][cube->b0] );
}

/* The next two routines allow a slightly more efficient calculation
 * of Vol() for a proposed subBox of a given Box.  The sum of Top()
 * and Bottom() is the Vol() of a subBox split in the given direction
 * and with the specified new upper bound.
 */

// Compute part of Vol(cube, mmt) that doesn't depend on r1, g1, or b1
//	(depending on dir)
ILint Bottom(Box *cube, ILubyte dir, ILint mmt[33][33][33])
{
    switch(dir)
    {
		case RED:
			return( -mmt[cube->r0][cube->g1][cube->b1]
				+mmt[cube->r0][cube->g1][cube->b0]
				+mmt[cube->r0][cube->g0][cube->b1]
				-mmt[cube->r0][cube->g0][cube->b0] );
			break;
		case GREEN:
			return( -mmt[cube->r1][cube->g0][cube->b1]
				+mmt[cube->r1][cube->g0][cube->b0]
				+mmt[cube->r0][cube->g0][cube->b1]
				-mmt[cube->r0][cube->g0][cube->b0] );
			break;
		case BLUE:
			return( -mmt[cube->r1][cube->g1][cube->b0]
				+mmt[cube->r1][cube->g0][cube->b0]
				+mmt[cube->r0][cube->g1][cube->b0]
				-mmt[cube->r0][cube->g0][cube->b0] );
			break;
    }
    return 0;
}


// Compute remainder of Vol(cube, mmt), substituting pos for
//	r1, g1, or b1 (depending on dir)
ILint Top(Box *cube, ILubyte dir, ILint pos, ILint mmt[33][33][33])
{
    switch (dir)
    {
		case RED:
			return( mmt[pos][cube->g1][cube->b1] 
			   -mmt[pos][cube->g1][cube->b0]
			   -mmt[pos][cube->g0][cube->b1]
			   +mmt[pos][cube->g0][cube->b0] );
			break;
		case GREEN:
			return( mmt[cube->r1][pos][cube->b1] 
			   -mmt[cube->r1][pos][cube->b0]
			   -mmt[cube->r0][pos][cube->b1]
			   +mmt[cube->r0][pos][cube->b0] );
			break;
		case BLUE:
			return( mmt[cube->r1][cube->g1][pos]
			   -mmt[cube->r1][cube->g0][pos]
			   -mmt[cube->r0][cube->g1][pos]
			   +mmt[cube->r0][cube->g0][pos] );
			break;
    }

    return 0;
}


// Compute the weighted variance of a Box
//	NB: as with the raw statistics, this is really the variance * size
ILfloat Var(Box *cube)
{
	ILfloat dr, dg, db, xx;

	dr = (ILfloat)Vol(cube, mr); 
	dg = (ILfloat)Vol(cube, mg); 
	db = (ILfloat)Vol(cube, mb);
	xx = gm2[cube->r1][cube->g1][cube->b1] 
		-gm2[cube->r1][cube->g1][cube->b0]
		-gm2[cube->r1][cube->g0][cube->b1]
		+gm2[cube->r1][cube->g0][cube->b0]
		-gm2[cube->r0][cube->g1][cube->b1]
		+gm2[cube->r0][cube->g1][cube->b0]
		+gm2[cube->r0][cube->g0][cube->b1]
		-gm2[cube->r0][cube->g0][cube->b0];

	return xx - (dr*dr+dg*dg+db*db) / (ILfloat)Vol(cube, wt);
}

/* We want to minimize the sum of the variances of two subBoxes.
 * The sum(c^2) terms can be ignored since their sum over both subBoxes
 * is the same (the sum for the whole Box) no matter where we split.
 * The remaining terms have a minus sign in the variance formula,
 * so we drop the minus sign and MAXIMIZE the sum of the two terms.
 */

ILfloat Maximize(Box *cube, ILubyte dir, ILint first, ILint last, ILint *cut,
				 ILint whole_r, ILint whole_g, ILint whole_b, ILint whole_w)
{
	ILint	half_r, half_g, half_b, half_w;
	ILint	base_r, base_g, base_b, base_w;
	ILint	i;
	ILfloat	temp, max;

	base_r = Bottom(cube, dir, mr);
	base_g = Bottom(cube, dir, mg);
	base_b = Bottom(cube, dir, mb);
	base_w = Bottom(cube, dir, wt);
	max = 0.0;
	*cut = -1;

	for (i = first; i < last; ++i) {
		half_r = base_r + Top(cube, dir, i, mr);
		half_g = base_g + Top(cube, dir, i, mg);
		half_b = base_b + Top(cube, dir, i, mb);
		half_w = base_w + Top(cube, dir, i, wt);
		// Now half_x is sum over lower half of Box, if split at i 
		if (half_w == 0) {  // subBox could be empty of pixels!
			continue;       // never split into an empty Box
		}
		else {
			temp = ((ILfloat)half_r*half_r + (ILfloat)half_g * half_g +
					(ILfloat)half_b*half_b) / half_w;
		}

		half_r = whole_r - half_r;
		half_g = whole_g - half_g;
		half_b = whole_b - half_b;
		half_w = whole_w - half_w;
		if (half_w == 0) {  // subBox could be empty of pixels!
			continue;       // never split into an empty Box
		}
		else {
			temp += ((ILfloat)half_r*half_r + (ILfloat)half_g * half_g +
					(ILfloat)half_b*half_b) / half_w;
		}

		if (temp > max) {
			max = temp;
			*cut = i;
		}
	}

	return max;
}


ILint Cut(Box *set1, Box *set2)
{
	ILubyte dir;
	ILint cutr, cutg, cutb;
	ILfloat maxr, maxg, maxb;
	ILint whole_r, whole_g, whole_b, whole_w;

	whole_r = Vol(set1, mr);
	whole_g = Vol(set1, mg);
	whole_b = Vol(set1, mb);
	whole_w = Vol(set1, wt);

	maxr = Maximize(set1, RED, set1->r0+1, set1->r1, &cutr, whole_r, whole_g, whole_b, whole_w);
	maxg = Maximize(set1, GREEN, set1->g0+1, set1->g1, &cutg, whole_r, whole_g, whole_b, whole_w);
	maxb = Maximize(set1, BLUE, set1->b0+1, set1->b1, &cutb, whole_r, whole_g, whole_b, whole_w);

	if ((maxr >= maxg) && (maxr >= maxb)) {
		dir = RED;
		if (cutr < 0)
			return 0; // can't split the Box 
	}
	else if ((maxg >= maxr) && (maxg >= maxb))
		dir = GREEN;
	else
		dir = BLUE;

	set2->r1 = set1->r1;
	set2->g1 = set1->g1;
	set2->b1 = set1->b1;

	switch (dir)
	{
		case RED:
			set2->r0 = set1->r1 = cutr;
			set2->g0 = set1->g0;
			set2->b0 = set1->b0;
			break;
		case GREEN:
			set2->g0 = set1->g1 = cutg;
			set2->r0 = set1->r0;
			set2->b0 = set1->b0;
			break;
		case BLUE:
			set2->b0 = set1->b1 = cutb;
			set2->r0 = set1->r0;
			set2->g0 = set1->g0;
			break;
	}

	set1->vol = (set1->r1-set1->r0) * (set1->g1-set1->g0) * (set1->b1-set1->b0);
	set2->vol = (set2->r1-set2->r0) * (set2->g1-set2->g0) * (set2->b1-set2->b0);

	return 1;
}


void Mark(struct Box *cube, int label, unsigned char *tag)
{
	ILint r, g, b;

	for (r = cube->r0 + 1; r <= cube->r1; r++) {
		for (g = cube->g0 + 1; g <= cube->g1; g++) {
			for (b = cube->b0 + 1; b <= cube->b1; b++) {
				tag[(r<<10) + (r<<6) + r + (g<<5) + g + b] = label;
			}
		}
	}
	return;
}


ILimage *iQuantizeImage(ILimage *Image, ILuint NumCols)
{
	Box		cube[MAXCOLOR];
	ILubyte	*tag = NULL;
	ILubyte	lut_r[MAXCOLOR], lut_g[MAXCOLOR], lut_b[MAXCOLOR];
	ILint	next;
	ILint	weight;
	ILuint	k;
	ILfloat	vv[MAXCOLOR], temp;
	//ILint	color_num;
	ILubyte	*NewData = NULL, *Palette = NULL;
	ILimage	*TempImage = NULL, *NewImage = NULL;
	ILubyte	*Ir = NULL, *Ig = NULL, *Ib = NULL;

	ILint num_alloced_colors; // number of colors we allocated space for in palette, as NumCols but will not be less than 256

	num_alloced_colors=NumCols;
	if(num_alloced_colors<256) { num_alloced_colors=256; }


	NewImage = iCurImage;
	iCurImage = Image;
	TempImage = iConvertImage(iCurImage, IL_RGB, IL_UNSIGNED_BYTE);
	iCurImage = NewImage;



	if (TempImage == NULL)
		return NULL;

	buffer = Image->Data;
	WindW = Width = Image->Width;
	WindH = Height = Image->Height;
	WindD = Depth = Image->Depth;
	Comp = Image->Bpp;
	Qadd = NULL;

	//color_num = ImagePrecalculate(Image);

	NewData = (ILubyte*)ialloc(Image->Width * Image->Height * Image->Depth);
	Palette = (ILubyte*)ialloc(3 * num_alloced_colors);
	if (!NewData || !Palette) {
		ifree(NewData);
		ifree(Palette);
		return NULL;
	}

	Ir = (ILubyte*)ialloc(Width * Height * Depth);
	Ig = (ILubyte*)ialloc(Width * Height * Depth);
	Ib = (ILubyte*)ialloc(Width * Height * Depth);
	if (!Ir || !Ig || !Ib) {
		ifree(Ir);
		ifree(Ig);
		ifree(Ib);
		ifree(NewData);
		ifree(Palette);
		return NULL;
	}

	size = Width * Height * Depth;
        
        #ifdef ALTIVEC_GCC
            register ILuint v_size = size>>4;
            register ILuint pos = 0;
            v_size = v_size /3;
            register vector unsigned char d0,d1,d2;
            register vector unsigned char red[3],blu[3],green[3];
            
            register union{
                vector unsigned char vec;
                vector unsigned int load;
            } mask_1, mask_2, mask_3;
            
            mask_1.load = (vector unsigned int){0xFF0000FF,0x0000FF00,0x00FF0000,0xFF0000FF};
            mask_2.load = (vector unsigned int){0x00FF0000,0xFF0000FF,0x0000FF00,0x00FF0000};
            mask_2.load = (vector unsigned int){0x0000FF00,0x00FF0000,0xFF0000FF,0x0000FF00};
            
            while( v_size >= 0 ) {
                d0 = vec_ld(pos,TempImage->Data);
                d1 = vec_ld(pos+16,TempImage->Data);
                d2 = vec_ld(pos+32,TempImage->Data);
                
                red[0] =   vec_and(d0,mask_1.vec);
                green[0] = vec_and(d0,mask_2.vec);
                blu[0] =   vec_and(d0,mask_3.vec);
                
                red[1] =   vec_and(d1,mask_3.vec);
                green[1] = vec_and(d1,mask_1.vec);
                blu[1] =   vec_and(d1,mask_2.vec);
                
                red[2] =   vec_and(d2,mask_2.vec);
                green[2] = vec_and(d2,mask_3.vec);
                blu[2] =   vec_and(d2,mask_1.vec);
                
                vec_st(red[0],pos,Ir);
                vec_st(red[1],pos+16,Ir);
                vec_st(red[2],pos+32,Ir);
                
                vec_st(blu[0],pos,Ib);
                vec_st(blu[1],pos+16,Ib);
                vec_st(blu[2],pos+32,Ib);
                
                vec_st(green[0],pos,Ig);
                vec_st(green[1],pos+16,Ig);
                vec_st(green[2],pos+32,Ig);
                
                pos += 48;
            }
            size -= pos;
        #endif

	for (k = 0; k < size; k++) {
                Ir[k] = TempImage->Data[k * 3];
		Ig[k] = TempImage->Data[k * 3 + 1];
		Ib[k] = TempImage->Data[k * 3 + 2];
	}
        
        #ifdef ALTIVEC_GCC
           size = Width * Height * Depth;
        #endif
        
	// Set new colors number
	K = NumCols;

	if (K <= 256) {
		// Begin Wu's color quantization algorithm

		// May have "leftovers" from a previous run.
		
                imemclear(gm2, 33 * 33 * 33 * sizeof(ILfloat));
                imemclear(wt, 33 * 33 * 33 * sizeof(ILint));
                imemclear(mr, 33 * 33 * 33 * sizeof(ILint));
                imemclear(mg, 33 * 33 * 33 * sizeof(ILint));
                imemclear(mb, 33 * 33 * 33 * sizeof(ILint));
                
		if (!Hist3d(Ir, Ig, Ib, (ILint*)wt, (ILint*)mr, (ILint*)mg, (ILint*)mb, (ILfloat*)gm2))
			goto error_label;

		M3d((ILint*)wt, (ILint*)mr, (ILint*)mg, (ILint*)mb, (ILfloat*)gm2);

		cube[0].r0 = cube[0].g0 = cube[0].b0 = 0;
		cube[0].r1 = cube[0].g1 = cube[0].b1 = 32;
		next = 0;
		for (i = 1; i < K; ++i) {
			if (Cut(&cube[next], &cube[i])) { // volume test ensures we won't try to cut one-cell Box */
				vv[next] = (cube[next].vol>1) ? Var(&cube[next]) : 0.0f;
				vv[i] = (cube[i].vol>1) ? Var(&cube[i]) : 0.0f;
			}
			else {
				vv[next] = 0.0;   // don't try to split this Box again
				i--;              // didn't create Box i
			}
			next = 0;
			temp = vv[0];
			for (k = 1; (ILint)k <= i; ++k) {
				if (vv[k] > temp) {
					temp = vv[k]; next = k;
				}
			}
				
			if (temp <= 0.0) {
				K = i+1;
				// Only got K Boxes
				break;
			}
		}

		tag = (ILubyte*)ialloc(33 * 33 * 33 * sizeof(ILubyte));
		if (tag == NULL)
			goto error_label;
		for (k = 0; (ILint)k < K; k++) {
			Mark(&cube[k], k, tag);
			weight = Vol(&cube[k], wt);
			if (weight) {
				lut_r[k] = (ILubyte)(Vol(&cube[k], mr) / weight);
				lut_g[k] = (ILubyte)(Vol(&cube[k], mg) / weight);
				lut_b[k] = (ILubyte)(Vol(&cube[k], mb) / weight);
			}
			else {
				// Bogus Box
				lut_r[k] = lut_g[k] = lut_b[k] = 0;		
			}
		}

		for (i = 0; i < (ILint)size; i++) {
			NewData[i] = tag[Qadd[i]];
		}
		ifree(tag);
		ifree(Qadd);

		for (k = 0; k < NumCols; k++) {
			Palette[k * 3]     = lut_b[k];
			Palette[k * 3 + 1] = lut_g[k];
			Palette[k * 3 + 2] = lut_r[k];
		}
	}
	else { // If colors more than 256
		// Begin Octree quantization
		//Quant_Octree(Image->Width, Image->Height, Image->Bpp, buffer2, NewData, Palette, K);
		ilSetError(IL_INTERNAL_ERROR);  // Can't get much more specific than this.
		goto error_label;
	}

	ifree(Ig);
	ifree(Ib);
	ifree(Ir);
	ilCloseImage(TempImage);

	NewImage = (ILimage*)icalloc(sizeof(ILimage), 1);
	if (NewImage == NULL) {
		return NULL;
	}
	ilCopyImageAttr(NewImage, Image);
	NewImage->Bpp = 1;
	NewImage->Bps = Image->Width;
	NewImage->SizeOfPlane = NewImage->Bps * Image->Height;
	NewImage->SizeOfData = NewImage->SizeOfPlane;
	NewImage->Format = IL_COLOUR_INDEX;
	NewImage->Type = IL_UNSIGNED_BYTE;

	NewImage->Pal.Palette = Palette;
	NewImage->Pal.PalSize = 256 * 3;
	NewImage->Pal.PalType = IL_PAL_BGR24;
	NewImage->Data = NewData;

	return NewImage;

error_label:
	ifree(NewData);
	ifree(Palette);
	ifree(Ig);
	ifree(Ib);
	ifree(Ir);
	ifree(tag);
	ifree(Qadd);
	return NULL;
}