summaryrefslogtreecommitdiff
path: root/libtomcrypt/src/ciphers/noekeon.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtomcrypt/src/ciphers/noekeon.c')
-rw-r--r--libtomcrypt/src/ciphers/noekeon.c303
1 files changed, 303 insertions, 0 deletions
diff --git a/libtomcrypt/src/ciphers/noekeon.c b/libtomcrypt/src/ciphers/noekeon.c
new file mode 100644
index 0000000..f467ff2
--- /dev/null
+++ b/libtomcrypt/src/ciphers/noekeon.c
@@ -0,0 +1,303 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
+ */
+/**
+ @file noekeon.c
+ Implementation of the Noekeon block cipher by Tom St Denis
+*/
+#include "tomcrypt.h"
+
+#ifdef NOEKEON
+
+const struct ltc_cipher_descriptor noekeon_desc =
+{
+ "noekeon",
+ 16,
+ 16, 16, 16, 16,
+ &noekeon_setup,
+ &noekeon_ecb_encrypt,
+ &noekeon_ecb_decrypt,
+ &noekeon_test,
+ &noekeon_done,
+ &noekeon_keysize,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+static const ulong32 RC[] = {
+ 0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
+ 0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
+ 0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
+ 0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
+ 0x000000d4UL
+};
+
+#define kTHETA(a, b, c, d) \
+ temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
+ b ^= temp; d ^= temp; \
+ temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
+ a ^= temp; c ^= temp;
+
+#define THETA(k, a, b, c, d) \
+ temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
+ b ^= temp ^ k[1]; d ^= temp ^ k[3]; \
+ temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
+ a ^= temp ^ k[0]; c ^= temp ^ k[2];
+
+#define GAMMA(a, b, c, d) \
+ b ^= ~(d|c); \
+ a ^= c&b; \
+ temp = d; d = a; a = temp;\
+ c ^= a ^ b ^ d; \
+ b ^= ~(d|c); \
+ a ^= c&b;
+
+#define PI1(a, b, c, d) \
+ a = ROLc(a, 1); c = ROLc(c, 5); d = ROLc(d, 2);
+
+#define PI2(a, b, c, d) \
+ a = RORc(a, 1); c = RORc(c, 5); d = RORc(d, 2);
+
+ /**
+ Initialize the Noekeon block cipher
+ @param key The symmetric key you wish to pass
+ @param keylen The key length in bytes
+ @param num_rounds The number of rounds desired (0 for default)
+ @param skey The key in as scheduled by this function.
+ @return CRYPT_OK if successful
+ */
+int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+ ulong32 temp;
+
+ LTC_ARGCHK(key != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ if (keylen != 16) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+
+ if (num_rounds != 16 && num_rounds != 0) {
+ return CRYPT_INVALID_ROUNDS;
+ }
+
+ LOAD32H(skey->noekeon.K[0],&key[0]);
+ LOAD32H(skey->noekeon.K[1],&key[4]);
+ LOAD32H(skey->noekeon.K[2],&key[8]);
+ LOAD32H(skey->noekeon.K[3],&key[12]);
+
+ LOAD32H(skey->noekeon.dK[0],&key[0]);
+ LOAD32H(skey->noekeon.dK[1],&key[4]);
+ LOAD32H(skey->noekeon.dK[2],&key[8]);
+ LOAD32H(skey->noekeon.dK[3],&key[12]);
+
+ kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
+
+ return CRYPT_OK;
+}
+
+/**
+ Encrypts a block of text with Noekeon
+ @param pt The input plaintext (16 bytes)
+ @param ct The output ciphertext (16 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+#ifdef LTC_CLEAN_STACK
+static int _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+#else
+int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+#endif
+{
+ ulong32 a,b,c,d,temp;
+ int r;
+
+ LTC_ARGCHK(skey != NULL);
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+
+ LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
+ LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
+
+#define ROUND(i) \
+ a ^= RC[i]; \
+ THETA(skey->noekeon.K, a,b,c,d); \
+ PI1(a,b,c,d); \
+ GAMMA(a,b,c,d); \
+ PI2(a,b,c,d);
+
+ for (r = 0; r < 16; ++r) {
+ ROUND(r);
+ }
+
+#undef ROUND
+
+ a ^= RC[16];
+ THETA(skey->noekeon.K, a, b, c, d);
+
+ STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
+ STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
+
+ return CRYPT_OK;
+}
+
+#ifdef LTC_CLEAN_STACK
+int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+{
+ int err = _noekeon_ecb_encrypt(pt, ct, skey);
+ burn_stack(sizeof(ulong32) * 5 + sizeof(int));
+ return CRYPT_OK;
+}
+#endif
+
+/**
+ Decrypts a block of text with Noekeon
+ @param ct The input ciphertext (16 bytes)
+ @param pt The output plaintext (16 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+#ifdef LTC_CLEAN_STACK
+static int _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+#else
+int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+#endif
+{
+ ulong32 a,b,c,d, temp;
+ int r;
+
+ LTC_ARGCHK(skey != NULL);
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+
+ LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
+ LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
+
+
+#define ROUND(i) \
+ THETA(skey->noekeon.dK, a,b,c,d); \
+ a ^= RC[i]; \
+ PI1(a,b,c,d); \
+ GAMMA(a,b,c,d); \
+ PI2(a,b,c,d);
+
+ for (r = 16; r > 0; --r) {
+ ROUND(r);
+ }
+
+#undef ROUND
+
+ THETA(skey->noekeon.dK, a,b,c,d);
+ a ^= RC[0];
+ STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
+ STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
+ return CRYPT_OK;
+}
+
+#ifdef LTC_CLEAN_STACK
+int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+{
+ int err = _noekeon_ecb_decrypt(ct, pt, skey);
+ burn_stack(sizeof(ulong32) * 5 + sizeof(int));
+ return err;
+}
+#endif
+
+/**
+ Performs a self-test of the Noekeon block cipher
+ @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
+*/
+int noekeon_test(void)
+{
+ #ifndef LTC_TEST
+ return CRYPT_NOP;
+ #else
+ static const struct {
+ int keylen;
+ unsigned char key[16], pt[16], ct[16];
+ } tests[] = {
+ {
+ 16,
+ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
+ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
+ { 0x18, 0xa6, 0xec, 0xe5, 0x28, 0xaa, 0x79, 0x73,
+ 0x28, 0xb2, 0xc0, 0x91, 0xa0, 0x2f, 0x54, 0xc5}
+ }
+ };
+ symmetric_key key;
+ unsigned char tmp[2][16];
+ int err, i, y;
+
+ for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
+ zeromem(&key, sizeof(key));
+ if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
+ return err;
+ }
+
+ noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
+ noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
+ if (XMEMCMP(tmp[0], tests[i].ct, 16) || XMEMCMP(tmp[1], tests[i].pt, 16)) {
+#if 0
+ printf("\n\nTest %d failed\n", i);
+ if (XMEMCMP(tmp[0], tests[i].ct, 16)) {
+ printf("CT: ");
+ for (i = 0; i < 16; i++) {
+ printf("%02x ", tmp[0][i]);
+ }
+ printf("\n");
+ } else {
+ printf("PT: ");
+ for (i = 0; i < 16; i++) {
+ printf("%02x ", tmp[1][i]);
+ }
+ printf("\n");
+ }
+#endif
+ return CRYPT_FAIL_TESTVECTOR;
+ }
+
+ /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
+ for (y = 0; y < 16; y++) tmp[0][y] = 0;
+ for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
+ for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
+ for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
+ }
+ return CRYPT_OK;
+ #endif
+}
+
+/** Terminate the context
+ @param skey The scheduled key
+*/
+void noekeon_done(symmetric_key *skey)
+{
+}
+
+/**
+ Gets suitable key size
+ @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
+ @return CRYPT_OK if the input key size is acceptable.
+*/
+int noekeon_keysize(int *keysize)
+{
+ LTC_ARGCHK(keysize != NULL);
+ if (*keysize < 16) {
+ return CRYPT_INVALID_KEYSIZE;
+ } else {
+ *keysize = 16;
+ return CRYPT_OK;
+ }
+}
+
+#endif
+
+
+/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/noekeon.c,v $ */
+/* $Revision: 1.12 $ */
+/* $Date: 2006/11/08 23:01:06 $ */