summaryrefslogtreecommitdiff
path: root/libtommath/bn_mp_prime_is_prime.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtommath/bn_mp_prime_is_prime.c')
-rw-r--r--libtommath/bn_mp_prime_is_prime.c363
1 files changed, 297 insertions, 66 deletions
diff --git a/libtommath/bn_mp_prime_is_prime.c b/libtommath/bn_mp_prime_is_prime.c
index 3eda4fd..7f9fc0b 100644
--- a/libtommath/bn_mp_prime_is_prime.c
+++ b/libtommath/bn_mp_prime_is_prime.c
@@ -1,83 +1,314 @@
-#include <tommath_private.h>
+#include "tommath_private.h"
#ifdef BN_MP_PRIME_IS_PRIME_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
- */
-
-/* performs a variable number of rounds of Miller-Rabin
- *
- * Probability of error after t rounds is no more than
-
- *
- * Sets result to 1 if probably prime, 0 otherwise
- */
-int mp_prime_is_prime (mp_int * a, int t, int *result)
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
+/* portable integer log of two with small footprint */
+static unsigned int s_floor_ilog2(int value)
{
- mp_int b;
- int ix, err, res;
+ unsigned int r = 0;
+ while ((value >>= 1) != 0) {
+ r++;
+ }
+ return r;
+}
+
- /* default to no */
- *result = MP_NO;
+mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result)
+{
+ mp_int b;
+ int ix, p_max = 0, size_a, len;
+ mp_bool res;
+ mp_err err;
+ unsigned int fips_rand, mask;
- /* valid value of t? */
- if ((t <= 0) || (t > PRIME_SIZE)) {
- return MP_VAL;
- }
+ /* default to no */
+ *result = MP_NO;
- /* is the input equal to one of the primes in the table? */
- for (ix = 0; ix < PRIME_SIZE; ix++) {
- if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
- *result = 1;
+ /* Some shortcuts */
+ /* N > 3 */
+ if (a->used == 1) {
+ if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) {
+ *result = MP_NO;
+ return MP_OKAY;
+ }
+ if (a->dp[0] == 2u) {
+ *result = MP_YES;
return MP_OKAY;
}
- }
+ }
- /* first perform trial division */
- if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
- return err;
- }
+ /* N must be odd */
+ if (MP_IS_EVEN(a)) {
+ return MP_OKAY;
+ }
+ /* N is not a perfect square: floor(sqrt(N))^2 != N */
+ if ((err = mp_is_square(a, &res)) != MP_OKAY) {
+ return err;
+ }
+ if (res != MP_NO) {
+ return MP_OKAY;
+ }
- /* return if it was trivially divisible */
- if (res == MP_YES) {
- return MP_OKAY;
- }
+ /* is the input equal to one of the primes in the table? */
+ for (ix = 0; ix < PRIVATE_MP_PRIME_TAB_SIZE; ix++) {
+ if (mp_cmp_d(a, s_mp_prime_tab[ix]) == MP_EQ) {
+ *result = MP_YES;
+ return MP_OKAY;
+ }
+ }
+#ifdef MP_8BIT
+ /* The search in the loop above was exhaustive in this case */
+ if ((a->used == 1) && (PRIVATE_MP_PRIME_TAB_SIZE >= 31)) {
+ return MP_OKAY;
+ }
+#endif
- /* now perform the miller-rabin rounds */
- if ((err = mp_init (&b)) != MP_OKAY) {
- return err;
- }
+ /* first perform trial division */
+ if ((err = s_mp_prime_is_divisible(a, &res)) != MP_OKAY) {
+ return err;
+ }
- for (ix = 0; ix < t; ix++) {
- /* set the prime */
- mp_set (&b, ltm_prime_tab[ix]);
+ /* return if it was trivially divisible */
+ if (res == MP_YES) {
+ return MP_OKAY;
+ }
- if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
- goto LBL_B;
- }
+ /*
+ Run the Miller-Rabin test with base 2 for the BPSW test.
+ */
+ if ((err = mp_init_set(&b, 2uL)) != MP_OKAY) {
+ return err;
+ }
- if (res == MP_NO) {
+ if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
+ goto LBL_B;
+ }
+ if (res == MP_NO) {
goto LBL_B;
- }
- }
+ }
+ /*
+ Rumours have it that Mathematica does a second M-R test with base 3.
+ Other rumours have it that their strong L-S test is slightly different.
+ It does not hurt, though, beside a bit of extra runtime.
+ */
+ b.dp[0]++;
+ if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
+ goto LBL_B;
+ }
+ if (res == MP_NO) {
+ goto LBL_B;
+ }
- /* passed the test */
- *result = MP_YES;
-LBL_B:mp_clear (&b);
- return err;
-}
+ /*
+ * Both, the Frobenius-Underwood test and the the Lucas-Selfridge test are quite
+ * slow so if speed is an issue, define LTM_USE_ONLY_MR to use M-R tests with
+ * bases 2, 3 and t random bases.
+ */
+#ifndef LTM_USE_ONLY_MR
+ if (t >= 0) {
+ /*
+ * Use a Frobenius-Underwood test instead of the Lucas-Selfridge test for
+ * MP_8BIT (It is unknown if the Lucas-Selfridge test works with 16-bit
+ * integers but the necesssary analysis is on the todo-list).
+ */
+#if defined (MP_8BIT) || defined (LTM_USE_FROBENIUS_TEST)
+ err = mp_prime_frobenius_underwood(a, &res);
+ if ((err != MP_OKAY) && (err != MP_ITER)) {
+ goto LBL_B;
+ }
+ if (res == MP_NO) {
+ goto LBL_B;
+ }
+#else
+ if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
+ goto LBL_B;
+ }
+ if (res == MP_NO) {
+ goto LBL_B;
+ }
+#endif
+ }
#endif
-/* ref: $Format:%D$ */
-/* git commit: $Format:%H$ */
-/* commit time: $Format:%ai$ */
+ /* run at least one Miller-Rabin test with a random base */
+ if (t == 0) {
+ t = 1;
+ }
+
+ /*
+ Only recommended if the input range is known to be < 3317044064679887385961981
+
+ It uses the bases necessary for a deterministic M-R test if the input is
+ smaller than 3317044064679887385961981
+ The caller has to check the size.
+ TODO: can be made a bit finer grained but comparing is not free.
+ */
+ if (t < 0) {
+ /*
+ Sorenson, Jonathan; Webster, Jonathan (2015).
+ "Strong Pseudoprimes to Twelve Prime Bases".
+ */
+ /* 0x437ae92817f9fc85b7e5 = 318665857834031151167461 */
+ if ((err = mp_read_radix(&b, "437ae92817f9fc85b7e5", 16)) != MP_OKAY) {
+ goto LBL_B;
+ }
+
+ if (mp_cmp(a, &b) == MP_LT) {
+ p_max = 12;
+ } else {
+ /* 0x2be6951adc5b22410a5fd = 3317044064679887385961981 */
+ if ((err = mp_read_radix(&b, "2be6951adc5b22410a5fd", 16)) != MP_OKAY) {
+ goto LBL_B;
+ }
+
+ if (mp_cmp(a, &b) == MP_LT) {
+ p_max = 13;
+ } else {
+ err = MP_VAL;
+ goto LBL_B;
+ }
+ }
+
+ /* we did bases 2 and 3 already, skip them */
+ for (ix = 2; ix < p_max; ix++) {
+ mp_set(&b, s_mp_prime_tab[ix]);
+ if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
+ goto LBL_B;
+ }
+ if (res == MP_NO) {
+ goto LBL_B;
+ }
+ }
+ }
+ /*
+ Do "t" M-R tests with random bases between 3 and "a".
+ See Fips 186.4 p. 126ff
+ */
+ else if (t > 0) {
+ /*
+ * The mp_digit's have a defined bit-size but the size of the
+ * array a.dp is a simple 'int' and this library can not assume full
+ * compliance to the current C-standard (ISO/IEC 9899:2011) because
+ * it gets used for small embeded processors, too. Some of those MCUs
+ * have compilers that one cannot call standard compliant by any means.
+ * Hence the ugly type-fiddling in the following code.
+ */
+ size_a = mp_count_bits(a);
+ mask = (1u << s_floor_ilog2(size_a)) - 1u;
+ /*
+ Assuming the General Rieman hypothesis (never thought to write that in a
+ comment) the upper bound can be lowered to 2*(log a)^2.
+ E. Bach, "Explicit bounds for primality testing and related problems,"
+ Math. Comp. 55 (1990), 355-380.
+
+ size_a = (size_a/10) * 7;
+ len = 2 * (size_a * size_a);
+
+ E.g.: a number of size 2^2048 would be reduced to the upper limit
+
+ floor(2048/10)*7 = 1428
+ 2 * 1428^2 = 4078368
+
+ (would have been ~4030331.9962 with floats and natural log instead)
+ That number is smaller than 2^28, the default bit-size of mp_digit.
+ */
+
+ /*
+ How many tests, you might ask? Dana Jacobsen of Math::Prime::Util fame
+ does exactly 1. In words: one. Look at the end of _GMP_is_prime() in
+ Math-Prime-Util-GMP-0.50/primality.c if you do not believe it.
+
+ The function mp_rand() goes to some length to use a cryptographically
+ good PRNG. That also means that the chance to always get the same base
+ in the loop is non-zero, although very low.
+ If the BPSW test and/or the addtional Frobenious test have been
+ performed instead of just the Miller-Rabin test with the bases 2 and 3,
+ a single extra test should suffice, so such a very unlikely event
+ will not do much harm.
+
+ To preemptivly answer the dangling question: no, a witness does not
+ need to be prime.
+ */
+ for (ix = 0; ix < t; ix++) {
+ /* mp_rand() guarantees the first digit to be non-zero */
+ if ((err = mp_rand(&b, 1)) != MP_OKAY) {
+ goto LBL_B;
+ }
+ /*
+ * Reduce digit before casting because mp_digit might be bigger than
+ * an unsigned int and "mask" on the other side is most probably not.
+ */
+ fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask);
+#ifdef MP_8BIT
+ /*
+ * One 8-bit digit is too small, so concatenate two if the size of
+ * unsigned int allows for it.
+ */
+ if ((MP_SIZEOF_BITS(unsigned int)/2) >= MP_SIZEOF_BITS(mp_digit)) {
+ if ((err = mp_rand(&b, 1)) != MP_OKAY) {
+ goto LBL_B;
+ }
+ fips_rand <<= MP_SIZEOF_BITS(mp_digit);
+ fips_rand |= (unsigned int) b.dp[0];
+ fips_rand &= mask;
+ }
+#endif
+ if (fips_rand > (unsigned int)(INT_MAX - MP_DIGIT_BIT)) {
+ len = INT_MAX / MP_DIGIT_BIT;
+ } else {
+ len = (((int)fips_rand + MP_DIGIT_BIT) / MP_DIGIT_BIT);
+ }
+ /* Unlikely. */
+ if (len < 0) {
+ ix--;
+ continue;
+ }
+ /*
+ * As mentioned above, one 8-bit digit is too small and
+ * although it can only happen in the unlikely case that
+ * an "unsigned int" is smaller than 16 bit a simple test
+ * is cheap and the correction even cheaper.
+ */
+#ifdef MP_8BIT
+ /* All "a" < 2^8 have been caught before */
+ if (len == 1) {
+ len++;
+ }
+#endif
+ if ((err = mp_rand(&b, len)) != MP_OKAY) {
+ goto LBL_B;
+ }
+ /*
+ * That number might got too big and the witness has to be
+ * smaller than "a"
+ */
+ len = mp_count_bits(&b);
+ if (len >= size_a) {
+ len = (len - size_a) + 1;
+ if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) {
+ goto LBL_B;
+ }
+ }
+ /* Although the chance for b <= 3 is miniscule, try again. */
+ if (mp_cmp_d(&b, 3uL) != MP_GT) {
+ ix--;
+ continue;
+ }
+ if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
+ goto LBL_B;
+ }
+ if (res == MP_NO) {
+ goto LBL_B;
+ }
+ }
+ }
+
+ /* passed the test */
+ *result = MP_YES;
+LBL_B:
+ mp_clear(&b);
+ return err;
+}
+
+#endif