summaryrefslogtreecommitdiff
path: root/src/ciphers/kasumi.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/ciphers/kasumi.c')
-rw-r--r--src/ciphers/kasumi.c318
1 files changed, 318 insertions, 0 deletions
diff --git a/src/ciphers/kasumi.c b/src/ciphers/kasumi.c
new file mode 100644
index 0000000..4a075b1
--- /dev/null
+++ b/src/ciphers/kasumi.c
@@ -0,0 +1,318 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
+ */
+
+/**
+ @file kasumi.c
+ Implementation of the 3GPP Kasumi block cipher
+ Derived from the 3GPP standard source code
+*/
+
+#include "tomcrypt.h"
+
+#ifdef LTC_KASUMI
+
+typedef unsigned u16;
+
+#define ROL16(x, y) ((((x)<<(y)) | ((x)>>(16-(y)))) & 0xFFFF)
+
+const struct ltc_cipher_descriptor kasumi_desc = {
+ "kasumi",
+ 21,
+ 16, 16, 8, 8,
+ &kasumi_setup,
+ &kasumi_ecb_encrypt,
+ &kasumi_ecb_decrypt,
+ &kasumi_test,
+ &kasumi_done,
+ &kasumi_keysize,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+static u16 FI( u16 in, u16 subkey )
+{
+ u16 nine, seven;
+ static const u16 S7[128] = {
+ 54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33,
+ 55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81,
+ 53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43,
+ 20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98,
+ 117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87,
+ 112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66,
+ 102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44,
+ 64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3 };
+ static const u16 S9[512] = {
+ 167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397,
+ 183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177,
+ 175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400,
+ 95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76,
+ 165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223,
+ 501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163,
+ 232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135,
+ 344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27,
+ 487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124,
+ 475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364,
+ 363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229,
+ 439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277,
+ 465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282,
+ 173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330,
+ 280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454,
+ 132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374,
+ 35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285,
+ 50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32,
+ 72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355,
+ 185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190,
+ 1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111,
+ 336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18,
+ 47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84,
+ 414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201,
+ 266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133,
+ 311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404,
+ 485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127,
+ 312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398,
+ 284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451,
+ 97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402,
+ 438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380,
+ 43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461};
+
+ /* The sixteen bit input is split into two unequal halves, *
+ * nine bits and seven bits - as is the subkey */
+
+ nine = (u16)(in>>7)&0x1FF;
+ seven = (u16)(in&0x7F);
+
+ /* Now run the various operations */
+ nine = (u16)(S9[nine] ^ seven);
+ seven = (u16)(S7[seven] ^ (nine & 0x7F));
+ seven ^= (subkey>>9);
+ nine ^= (subkey&0x1FF);
+ nine = (u16)(S9[nine] ^ seven);
+ seven = (u16)(S7[seven] ^ (nine & 0x7F));
+ return (u16)(seven<<9) + nine;
+}
+
+static ulong32 FO( ulong32 in, int round_no, symmetric_key *key)
+{
+ u16 left, right;
+
+ /* Split the input into two 16-bit words */
+ left = (u16)(in>>16);
+ right = (u16) in&0xFFFF;
+
+ /* Now apply the same basic transformation three times */
+ left ^= key->kasumi.KOi1[round_no];
+ left = FI( left, key->kasumi.KIi1[round_no] );
+ left ^= right;
+
+ right ^= key->kasumi.KOi2[round_no];
+ right = FI( right, key->kasumi.KIi2[round_no] );
+ right ^= left;
+
+ left ^= key->kasumi.KOi3[round_no];
+ left = FI( left, key->kasumi.KIi3[round_no] );
+ left ^= right;
+
+ return (((ulong32)right)<<16)+left;
+}
+
+static ulong32 FL( ulong32 in, int round_no, symmetric_key *key )
+{
+ u16 l, r, a, b;
+ /* split out the left and right halves */
+ l = (u16)(in>>16);
+ r = (u16)(in)&0xFFFF;
+ /* do the FL() operations */
+ a = (u16) (l & key->kasumi.KLi1[round_no]);
+ r ^= ROL16(a,1);
+ b = (u16)(r | key->kasumi.KLi2[round_no]);
+ l ^= ROL16(b,1);
+ /* put the two halves back together */
+
+ return (((ulong32)l)<<16) + r;
+}
+
+int kasumi_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+{
+ ulong32 left, right, temp;
+ int n;
+
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ LOAD32H(left, pt);
+ LOAD32H(right, pt+4);
+
+ for (n = 0; n <= 7; ) {
+ temp = FL(left, n, skey);
+ temp = FO(temp, n++, skey);
+ right ^= temp;
+ temp = FO(right, n, skey);
+ temp = FL(temp, n++, skey);
+ left ^= temp;
+ }
+
+ STORE32H(left, ct);
+ STORE32H(right, ct+4);
+
+ return CRYPT_OK;
+}
+
+int kasumi_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+{
+ ulong32 left, right, temp;
+ int n;
+
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ LOAD32H(left, ct);
+ LOAD32H(right, ct+4);
+
+ for (n = 7; n >= 0; ) {
+ temp = FO(right, n, skey);
+ temp = FL(temp, n--, skey);
+ left ^= temp;
+ temp = FL(left, n, skey);
+ temp = FO(temp, n--, skey);
+ right ^= temp;
+ }
+
+ STORE32H(left, pt);
+ STORE32H(right, pt+4);
+
+ return CRYPT_OK;
+}
+
+int kasumi_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+ static const u16 C[8] = { 0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210 };
+ u16 ukey[8], Kprime[8];
+ int n;
+
+ LTC_ARGCHK(key != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ if (keylen != 16) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+
+ if (num_rounds != 0 && num_rounds != 8) {
+ return CRYPT_INVALID_ROUNDS;
+ }
+
+ /* Start by ensuring the subkeys are endian correct on a 16-bit basis */
+ for (n = 0; n < 8; n++ ) {
+ ukey[n] = (((u16)key[2*n]) << 8) | key[2*n+1];
+ }
+
+ /* Now build the K'[] keys */
+ for (n = 0; n < 8; n++) {
+ Kprime[n] = ukey[n] ^ C[n];
+ }
+
+ /* Finally construct the various sub keys */
+ for(n = 0; n < 8; n++) {
+ skey->kasumi.KLi1[n] = ROL16(ukey[n],1);
+ skey->kasumi.KLi2[n] = Kprime[(n+2)&0x7];
+ skey->kasumi.KOi1[n] = ROL16(ukey[(n+1)&0x7],5);
+ skey->kasumi.KOi2[n] = ROL16(ukey[(n+5)&0x7],8);
+ skey->kasumi.KOi3[n] = ROL16(ukey[(n+6)&0x7],13);
+ skey->kasumi.KIi1[n] = Kprime[(n+4)&0x7];
+ skey->kasumi.KIi2[n] = Kprime[(n+3)&0x7];
+ skey->kasumi.KIi3[n] = Kprime[(n+7)&0x7];
+ }
+
+ return CRYPT_OK;
+}
+
+void kasumi_done(symmetric_key *skey)
+{
+}
+
+int kasumi_keysize(int *keysize)
+{
+ LTC_ARGCHK(keysize != NULL);
+ if (*keysize >= 16) {
+ *keysize = 16;
+ return CRYPT_OK;
+ } else {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+}
+
+int kasumi_test(void)
+{
+#ifndef LTC_TEST
+ return CRYPT_NOP;
+#else
+ static const struct {
+ unsigned char key[16], pt[8], ct[8];
+ } tests[] = {
+
+{
+ { 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x4B, 0x58, 0xA7, 0x71, 0xAF, 0xC7, 0xE5, 0xE8 }
+},
+
+{
+ { 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x7E, 0xEF, 0x11, 0x3C, 0x95, 0xBB, 0x5A, 0x77 }
+},
+
+{
+ { 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x5F, 0x14, 0x06, 0x86, 0xD7, 0xAD, 0x5A, 0x39 },
+},
+
+{
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x2E, 0x14, 0x91, 0xCF, 0x70, 0xAA, 0x46, 0x5D }
+},
+
+{
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00 },
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xB5, 0x45, 0x86, 0xF4, 0xAB, 0x9A, 0xE5, 0x46 }
+},
+
+};
+ unsigned char buf[2][8];
+ symmetric_key key;
+ int err, x;
+
+ for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
+ if ((err = kasumi_setup(tests[x].key, 16, 0, &key)) != CRYPT_OK) {
+ return err;
+ }
+ if ((err = kasumi_ecb_encrypt(tests[x].pt, buf[0], &key)) != CRYPT_OK) {
+ return err;
+ }
+ if ((err = kasumi_ecb_decrypt(tests[x].ct, buf[1], &key)) != CRYPT_OK) {
+ return err;
+ }
+ if (XMEMCMP(tests[x].pt, buf[1], 8) || XMEMCMP(tests[x].ct, buf[0], 8)) {
+ return CRYPT_FAIL_TESTVECTOR;
+ }
+ }
+ return CRYPT_OK;
+#endif
+}
+
+#endif
+
+/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/kasumi.c,v $ */
+/* $Revision: 1.7 $ */
+/* $Date: 2006/11/09 03:05:44 $ */