summaryrefslogtreecommitdiff
path: root/libc/sysdeps/ia64/fpu/e_coshf.S
diff options
context:
space:
mode:
Diffstat (limited to 'libc/sysdeps/ia64/fpu/e_coshf.S')
-rw-r--r--libc/sysdeps/ia64/fpu/e_coshf.S711
1 files changed, 0 insertions, 711 deletions
diff --git a/libc/sysdeps/ia64/fpu/e_coshf.S b/libc/sysdeps/ia64/fpu/e_coshf.S
deleted file mode 100644
index 97cb4e177..000000000
--- a/libc/sysdeps/ia64/fpu/e_coshf.S
+++ /dev/null
@@ -1,711 +0,0 @@
-.file "coshf.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-
-// History
-//*********************************************************************
-// 02/02/00 Initial version
-// 02/16/00 The error tag for coshf overflow changed to 65 (from 64).
-// 04/04/00 Unwind support added
-// 08/15/00 Bundle added after call to __libm_error_support to properly
-// set [the previously overwritten] GR_Parameter_RESULT.
-// 05/07/01 Reworked to improve speed of all paths
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 11/15/02 Improved algorithm based on expf
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//*********************************************************************
-// float coshf(float)
-//
-// Overview of operation
-//*********************************************************************
-// Case 1: 0 < |x| < 0.25
-// Evaluate cosh(x) by a 8th order polynomial
-// Care is take for the order of multiplication; and A2 is not exactly 1/4!,
-// A3 is not exactly 1/6!, etc.
-// cosh(x) = 1 + (A1*x^2 + A2*x^4 + A3*x^6 + A4*x^8)
-//
-// Case 2: 0.25 < |x| < 89.41598
-// Algorithm is based on the identity cosh(x) = ( exp(x) + exp(-x) ) / 2.
-// The algorithm for exp is described as below. There are a number of
-// economies from evaluating both exp(x) and exp(-x). Although we
-// are evaluating both quantities, only where the quantities diverge do we
-// duplicate the computations. The basic algorithm for exp(x) is described
-// below.
-//
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 64/log2
-// NJ = int(w)
-// x = NJ*log2/64 + R
-
-// NJ = 64*n + j
-// x = n*log2 + (log2/64)*j + R
-//
-// So, exp(x) = 2^n * 2^(j/64)* exp(R)
-//
-// T = 2^n * 2^(j/64)
-// Construct 2^n
-// Get 2^(j/64) table
-// actually all the entries of 2^(j/64) table are stored in DP and
-// with exponent bits set to 0 -> multiplication on 2^n can be
-// performed by doing logical "or" operation with bits presenting 2^n
-
-// exp(R) = 1 + (exp(R) - 1)
-// P = exp(R) - 1 approximated by Taylor series of 3rd degree
-// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
-//
-
-// The final result is reconstructed as follows
-// exp(x) = T + T*P
-
-// Special values
-//*********************************************************************
-// coshf(+0) = 1.0
-// coshf(-0) = 1.0
-
-// coshf(+qnan) = +qnan
-// coshf(-qnan) = -qnan
-// coshf(+snan) = +qnan
-// coshf(-snan) = -qnan
-
-// coshf(-inf) = +inf
-// coshf(+inf) = +inf
-
-// Overflow and Underflow
-//*********************************************************************
-// coshf(x) = largest single normal when
-// x = 89.41598 = 0x42b2d4fc
-//
-// There is no underflow.
-
-// Registers used
-//*********************************************************************
-// Floating Point registers used:
-// f8 input, output
-// f6,f7, f9 -> f15, f32 -> f45
-
-// General registers used:
-// r2, r3, r16 -> r38
-
-// Predicate registers used:
-// p6 -> p15
-
-// Assembly macros
-//*********************************************************************
-// integer registers used
-// scratch
-rNJ = r2
-rNJ_neg = r3
-
-rJ_neg = r16
-rN_neg = r17
-rSignexp_x = r18
-rExp_x = r18
-rExp_mask = r19
-rExp_bias = r20
-rAd1 = r21
-rAd2 = r22
-rJ = r23
-rN = r24
-rTblAddr = r25
-rA3 = r26
-rExpHalf = r27
-rLn2Div64 = r28
-rGt_ln = r29
-r17ones_m1 = r29
-rRightShifter = r30
-rJ_mask = r30
-r64DivLn2 = r31
-rN_mask = r31
-// stacked
-GR_SAVE_PFS = r32
-GR_SAVE_B0 = r33
-GR_SAVE_GP = r34
-GR_Parameter_X = r35
-GR_Parameter_Y = r36
-GR_Parameter_RESULT = r37
-GR_Parameter_TAG = r38
-
-// floating point registers used
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-// scratch
-fRightShifter = f6
-f64DivLn2 = f7
-fNormX = f9
-fNint = f10
-fN = f11
-fR = f12
-fLn2Div64 = f13
-fA2 = f14
-fA3 = f15
-// stacked
-fP = f32
-fT = f33
-fMIN_SGL_OFLOW_ARG = f34
-fMAX_SGL_NORM_ARG = f35
-fRSqr = f36
-fA1 = f37
-fA21 = f37
-fA4 = f38
-fA43 = f38
-fA4321 = f38
-fX4 = f39
-fTmp = f39
-fGt_pln = f39
-fWre_urm_f8 = f40
-fXsq = f40
-fP_neg = f41
-fT_neg = f42
-fExp = f43
-fExp_neg = f44
-fAbsX = f45
-
-
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(_coshf_table)
-data4 0x42b2d4fd // Smallest single arg to overflow single result
-data4 0x42b2d4fc // Largest single arg to give normal single result
-data4 0x00000000 // pad
-data4 0x00000000 // pad
-//
-// 2^(j/64) table, j goes from 0 to 63
-data8 0x0000000000000000 // 2^(0/64)
-data8 0x00002C9A3E778061 // 2^(1/64)
-data8 0x000059B0D3158574 // 2^(2/64)
-data8 0x0000874518759BC8 // 2^(3/64)
-data8 0x0000B5586CF9890F // 2^(4/64)
-data8 0x0000E3EC32D3D1A2 // 2^(5/64)
-data8 0x00011301D0125B51 // 2^(6/64)
-data8 0x0001429AAEA92DE0 // 2^(7/64)
-data8 0x000172B83C7D517B // 2^(8/64)
-data8 0x0001A35BEB6FCB75 // 2^(9/64)
-data8 0x0001D4873168B9AA // 2^(10/64)
-data8 0x0002063B88628CD6 // 2^(11/64)
-data8 0x0002387A6E756238 // 2^(12/64)
-data8 0x00026B4565E27CDD // 2^(13/64)
-data8 0x00029E9DF51FDEE1 // 2^(14/64)
-data8 0x0002D285A6E4030B // 2^(15/64)
-data8 0x000306FE0A31B715 // 2^(16/64)
-data8 0x00033C08B26416FF // 2^(17/64)
-data8 0x000371A7373AA9CB // 2^(18/64)
-data8 0x0003A7DB34E59FF7 // 2^(19/64)
-data8 0x0003DEA64C123422 // 2^(20/64)
-data8 0x0004160A21F72E2A // 2^(21/64)
-data8 0x00044E086061892D // 2^(22/64)
-data8 0x000486A2B5C13CD0 // 2^(23/64)
-data8 0x0004BFDAD5362A27 // 2^(24/64)
-data8 0x0004F9B2769D2CA7 // 2^(25/64)
-data8 0x0005342B569D4F82 // 2^(26/64)
-data8 0x00056F4736B527DA // 2^(27/64)
-data8 0x0005AB07DD485429 // 2^(28/64)
-data8 0x0005E76F15AD2148 // 2^(29/64)
-data8 0x0006247EB03A5585 // 2^(30/64)
-data8 0x0006623882552225 // 2^(31/64)
-data8 0x0006A09E667F3BCD // 2^(32/64)
-data8 0x0006DFB23C651A2F // 2^(33/64)
-data8 0x00071F75E8EC5F74 // 2^(34/64)
-data8 0x00075FEB564267C9 // 2^(35/64)
-data8 0x0007A11473EB0187 // 2^(36/64)
-data8 0x0007E2F336CF4E62 // 2^(37/64)
-data8 0x00082589994CCE13 // 2^(38/64)
-data8 0x000868D99B4492ED // 2^(39/64)
-data8 0x0008ACE5422AA0DB // 2^(40/64)
-data8 0x0008F1AE99157736 // 2^(41/64)
-data8 0x00093737B0CDC5E5 // 2^(42/64)
-data8 0x00097D829FDE4E50 // 2^(43/64)
-data8 0x0009C49182A3F090 // 2^(44/64)
-data8 0x000A0C667B5DE565 // 2^(45/64)
-data8 0x000A5503B23E255D // 2^(46/64)
-data8 0x000A9E6B5579FDBF // 2^(47/64)
-data8 0x000AE89F995AD3AD // 2^(48/64)
-data8 0x000B33A2B84F15FB // 2^(49/64)
-data8 0x000B7F76F2FB5E47 // 2^(50/64)
-data8 0x000BCC1E904BC1D2 // 2^(51/64)
-data8 0x000C199BDD85529C // 2^(52/64)
-data8 0x000C67F12E57D14B // 2^(53/64)
-data8 0x000CB720DCEF9069 // 2^(54/64)
-data8 0x000D072D4A07897C // 2^(55/64)
-data8 0x000D5818DCFBA487 // 2^(56/64)
-data8 0x000DA9E603DB3285 // 2^(57/64)
-data8 0x000DFC97337B9B5F // 2^(58/64)
-data8 0x000E502EE78B3FF6 // 2^(59/64)
-data8 0x000EA4AFA2A490DA // 2^(60/64)
-data8 0x000EFA1BEE615A27 // 2^(61/64)
-data8 0x000F50765B6E4540 // 2^(62/64)
-data8 0x000FA7C1819E90D8 // 2^(63/64)
-LOCAL_OBJECT_END(_coshf_table)
-
-LOCAL_OBJECT_START(cosh_p_table)
-data8 0x3efa3001dcf5905b // A4
-data8 0x3f56c1437543543e // A3
-data8 0x3fa5555572601504 // A2
-data8 0x3fdfffffffe2f097 // A1
-LOCAL_OBJECT_END(cosh_p_table)
-
-
-.section .text
-GLOBAL_IEEE754_ENTRY(coshf)
-
-{ .mlx
- getf.exp rSignexp_x = f8 // Must recompute if x unorm
- movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
-}
-{ .mlx
- addl rTblAddr = @ltoff(_coshf_table),gp
- movl rRightShifter = 0x43E8000000000000 // DP Right Shifter
-}
-;;
-
-{ .mfi
- // point to the beginning of the table
- ld8 rTblAddr = [rTblAddr]
- fclass.m p6, p0 = f8, 0x0b // Test for x=unorm
- addl rA3 = 0x3E2AA, r0 // high bits of 1.0/6.0 rounded to SP
-}
-{ .mfi
- nop.m 0
- fnorm.s1 fNormX = f8 // normalized x
- addl rExpHalf = 0xFFFE, r0 // exponent of 1/2
-}
-;;
-
-{ .mfi
- setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
- fclass.m p15, p0 = f8, 0x1e3 // test for NaT,NaN,Inf
- nop.i 0
-}
-{ .mlx
- // load Right Shifter to FP reg
- setf.d fRightShifter = rRightShifter
- movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
-}
-;;
-
-{ .mfi
- mov rExp_mask = 0x1ffff
- fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0
- shl rA3 = rA3, 12 // 0x3E2AA000, approx to 1.0/6.0 in SP
-}
-{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt COSH_UNORM // Branch if x=unorm
-}
-;;
-
-COSH_COMMON:
-{ .mfi
- setf.exp fA2 = rExpHalf // load A2 to FP reg
- nop.f 0
- mov rExp_bias = 0xffff
-}
-{ .mfb
- setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
-(p15) fma.s.s0 f8 = f8, f8, f0 // result if x = NaT,NaN,Inf
-(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,Inf
-}
-;;
-
-{ .mfi
- // min overflow and max normal threshold
- ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8
- nop.f 0
- and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
-}
-{ .mfb
- setf.s fA3 = rA3 // load A3 to FP reg
-(p13) fma.s.s0 f8 = f1, f1, f0 // result if x = 0.0
-(p13) br.ret.spnt b0 // exit here if x =0.0
-}
-;;
-
-{ .mfi
- sub rExp_x = rExp_x, rExp_bias // True exponent of x
- fmerge.s fAbsX = f0, fNormX // Form |x|
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- // x*(64/ln(2)) + Right Shifter
- fma.s1 fNint = fNormX, f64DivLn2, fRightShifter
- add rTblAddr = 8, rTblAddr
-}
-{ .mfb
- cmp.gt p7, p0 = -2, rExp_x // Test |x| < 2^(-2)
- fma.s1 fXsq = fNormX, fNormX, f0 // x*x for small path
-(p7) br.cond.spnt COSH_SMALL // Branch if 0 < |x| < 2^-2
-}
-;;
-
-{ .mfi
- nop.m 0
- // check for overflow
- fcmp.ge.s1 p12, p13 = fAbsX, fMIN_SGL_OFLOW_ARG
- mov rJ_mask = 0x3f // 6-bit mask for J
-}
-;;
-
-{ .mfb
- nop.m 0
- fms.s1 fN = fNint, f1, fRightShifter // n in FP register
- // branch out if overflow
-(p12) br.cond.spnt COSH_CERTAIN_OVERFLOW
-}
-;;
-
-{ .mfi
- getf.sig rNJ = fNint // bits of n, j
- // check for possible overflow
- fcmp.gt.s1 p13, p0 = fAbsX, fMAX_SGL_NORM_ARG
- nop.i 0
-}
-;;
-
-{ .mfi
- addl rN = 0xFFBF - 63, rNJ // biased and shifted n-1,j
- fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
- and rJ = rJ_mask, rNJ // bits of j
-}
-{ .mfi
- sub rNJ_neg = r0, rNJ // bits of n, j for -x
- nop.f 0
- andcm rN_mask = -1, rJ_mask // 0xff...fc0 to mask N
-}
-;;
-
-{ .mfi
- shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
- nop.f 0
- and rN = rN_mask, rN // biased, shifted n-1
-}
-{ .mfi
- addl rN_neg = 0xFFBF - 63, rNJ_neg // -x biased, shifted n-1,j
- nop.f 0
- and rJ_neg = rJ_mask, rNJ_neg // bits of j for -x
-}
-;;
-
-{ .mfi
- ld8 rJ = [rJ] // Table value
- nop.f 0
- shl rN = rN, 46 // 2^(n-1) bits in DP format
-}
-{ .mfi
- shladd rJ_neg = rJ_neg, 3, rTblAddr // addr in 2^(j/64) table -x
- nop.f 0
- and rN_neg = rN_mask, rN_neg // biased, shifted n-1 for -x
-}
-;;
-
-{ .mfi
- ld8 rJ_neg = [rJ_neg] // Table value for -x
- nop.f 0
- shl rN_neg = rN_neg, 46 // 2^(n-1) bits in DP format for -x
-}
-;;
-
-{ .mfi
- or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
- nop.f 0
- nop.i 0
-}
-;;
-
-{ .mmf
- setf.d fT = rN // 2^(n-1) * 2^(j/64)
- or rN_neg = rN_neg, rJ_neg // -x bits of 2^n * 2^(j/64) in DP
- fma.s1 fRSqr = fR, fR, f0 // R^2
-}
-;;
-
-{ .mfi
- setf.d fT_neg = rN_neg // 2^(n-1) * 2^(j/64) for -x
- fma.s1 fP = fA3, fR, fA2 // A3*R + A2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fnma.s1 fP_neg = fA3, fR, fA2 // A3*R + A2 for -x
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*R^2 + R
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fms.s1 fP_neg = fP_neg, fRSqr, fR // P = (A3*R + A2)*R^2 + R, -x
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fmpy.s0 fTmp = fLn2Div64, fLn2Div64 // Force inexact
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fExp = fP, fT, fT // exp(x)/2
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fma.s1 fExp_neg = fP_neg, fT_neg, fT_neg // exp(-x)/2
- // branch out if possible overflow result
-(p13) br.cond.spnt COSH_POSSIBLE_OVERFLOW
-}
-;;
-
-{ .mfb
- nop.m 0
- // final result in the absence of overflow
- fma.s.s0 f8 = fExp, f1, fExp_neg // result = (exp(x)+exp(-x))/2
- // exit here in the absence of overflow
- br.ret.sptk b0 // Exit main path, 0.25 <= |x| < 89.41598
-}
-;;
-
-// Here if 0 < |x| < 0.25. Evaluate 8th order polynomial.
-COSH_SMALL:
-{ .mmi
- add rAd1 = 0x200, rTblAddr
- add rAd2 = 0x210, rTblAddr
- nop.i 0
-}
-;;
-
-{ .mmi
- ldfpd fA4, fA3 = [rAd1]
- ldfpd fA2, fA1 = [rAd2]
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fX4 = fXsq, fXsq, f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fA43 = fXsq, fA4, fA3
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fA21 = fXsq, fA2, fA1
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fA4321 = fX4, fA43, fA21
- nop.i 0
-}
-;;
-
-// Dummy multiply to generate inexact
-{ .mfi
- nop.m 0
- fmpy.s0 fTmp = fA4, fA4
- nop.i 0
-}
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = fA4321, fXsq, f1
- br.ret.sptk b0 // Exit if 0 < |x| < 0.25
-}
-;;
-
-COSH_POSSIBLE_OVERFLOW:
-
-// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
-// This cannot happen if input is a single, only if input higher precision.
-// Overflow is a possibility, not a certainty.
-
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set. If result is larger than largest single, then we have
-// overflow
-
-{ .mfi
- mov rGt_ln = 0x1007f // Exponent for largest single + 1 ulp
- fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
- nop.i 0
-}
-;;
-
-{ .mfi
- setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp
- fma.s.s2 fWre_urm_f8 = fP, fT, fT // Result with wre set
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off wre in sf2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt COSH_CERTAIN_OVERFLOW // Branch if overflow
-}
-;;
-
-{ .mfb
- nop.m 0
- fma.s.s0 f8 = fP, fT, fT
- br.ret.sptk b0 // Exit if really no overflow
-}
-;;
-
-// here if overflow
-COSH_CERTAIN_OVERFLOW:
-{ .mmi
- addl r17ones_m1 = 0x1FFFE, r0
-;;
- setf.exp fTmp = r17ones_m1
- nop.i 0
-}
-;;
-
-{ .mfi
- alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
- fmerge.s FR_X = f8,f8
- nop.i 0
-}
-{ .mfb
- mov GR_Parameter_TAG = 65
- fma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
- br.cond.sptk __libm_error_region
-}
-;;
-
-// Here if x unorm
-COSH_UNORM:
-{ .mfb
- getf.exp rSignexp_x = fNormX // Must recompute if x unorm
- fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
- br.cond.sptk COSH_COMMON // Return to main path
-}
-;;
-
-GLOBAL_IEEE754_END(coshf)
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mfi
- stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- nop.f 0
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
-}
-{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-
-{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-
-
-.type __libm_error_support#,@function
-.global __libm_error_support#