summaryrefslogtreecommitdiff
path: root/libc/sysdeps/ieee754/ldbl-128
diff options
context:
space:
mode:
Diffstat (limited to 'libc/sysdeps/ieee754/ldbl-128')
-rw-r--r--libc/sysdeps/ieee754/ldbl-128/e_gammal_r.c145
-rw-r--r--libc/sysdeps/ieee754/ldbl-128/e_rem_pio2l.c10
-rw-r--r--libc/sysdeps/ieee754/ldbl-128/gamma_productl.c75
3 files changed, 220 insertions, 10 deletions
diff --git a/libc/sysdeps/ieee754/ldbl-128/e_gammal_r.c b/libc/sysdeps/ieee754/ldbl-128/e_gammal_r.c
index b6da31c13..e8d49e987 100644
--- a/libc/sysdeps/ieee754/ldbl-128/e_gammal_r.c
+++ b/libc/sysdeps/ieee754/ldbl-128/e_gammal_r.c
@@ -20,14 +20,108 @@
#include <math.h>
#include <math_private.h>
+#include <float.h>
+/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
+ approximation to gamma function. */
+
+static const long double gamma_coeff[] =
+ {
+ 0x1.5555555555555555555555555555p-4L,
+ -0xb.60b60b60b60b60b60b60b60b60b8p-12L,
+ 0x3.4034034034034034034034034034p-12L,
+ -0x2.7027027027027027027027027028p-12L,
+ 0x3.72a3c5631fe46ae1d4e700dca8f2p-12L,
+ -0x7.daac36664f1f207daac36664f1f4p-12L,
+ 0x1.a41a41a41a41a41a41a41a41a41ap-8L,
+ -0x7.90a1b2c3d4e5f708192a3b4c5d7p-8L,
+ 0x2.dfd2c703c0cfff430edfd2c703cp-4L,
+ -0x1.6476701181f39edbdb9ce625987dp+0L,
+ 0xd.672219167002d3a7a9c886459cp+0L,
+ -0x9.cd9292e6660d55b3f712eb9e07c8p+4L,
+ 0x8.911a740da740da740da740da741p+8L,
+ -0x8.d0cc570e255bf59ff6eec24b49p+12L,
+ };
+
+#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
+
+/* Return gamma (X), for positive X less than 1775, in the form R *
+ 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
+ avoid overflow or underflow in intermediate calculations. */
+
+static long double
+gammal_positive (long double x, int *exp2_adj)
+{
+ int local_signgam;
+ if (x < 0.5L)
+ {
+ *exp2_adj = 0;
+ return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x;
+ }
+ else if (x <= 1.5L)
+ {
+ *exp2_adj = 0;
+ return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam));
+ }
+ else if (x < 12.5L)
+ {
+ /* Adjust into the range for using exp (lgamma). */
+ *exp2_adj = 0;
+ long double n = __ceill (x - 1.5L);
+ long double x_adj = x - n;
+ long double eps;
+ long double prod = __gamma_productl (x_adj, 0, n, &eps);
+ return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam))
+ * prod * (1.0L + eps));
+ }
+ else
+ {
+ long double eps = 0;
+ long double x_eps = 0;
+ long double x_adj = x;
+ long double prod = 1;
+ if (x < 24.0L)
+ {
+ /* Adjust into the range for applying Stirling's
+ approximation. */
+ long double n = __ceill (24.0L - x);
+ x_adj = x + n;
+ x_eps = (x - (x_adj - n));
+ prod = __gamma_productl (x_adj - n, x_eps, n, &eps);
+ }
+ /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
+ Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
+ starting by computing pow (X_ADJ, X_ADJ) with a power of 2
+ factored out. */
+ long double exp_adj = -eps;
+ long double x_adj_int = __roundl (x_adj);
+ long double x_adj_frac = x_adj - x_adj_int;
+ int x_adj_log2;
+ long double x_adj_mant = __frexpl (x_adj, &x_adj_log2);
+ if (x_adj_mant < M_SQRT1_2l)
+ {
+ x_adj_log2--;
+ x_adj_mant *= 2.0L;
+ }
+ *exp2_adj = x_adj_log2 * (int) x_adj_int;
+ long double ret = (__ieee754_powl (x_adj_mant, x_adj)
+ * __ieee754_exp2l (x_adj_log2 * x_adj_frac)
+ * __ieee754_expl (-x_adj)
+ * __ieee754_sqrtl (2 * M_PIl / x_adj)
+ / prod);
+ exp_adj += x_eps * __ieee754_logl (x);
+ long double bsum = gamma_coeff[NCOEFF - 1];
+ long double x_adj2 = x_adj * x_adj;
+ for (size_t i = 1; i <= NCOEFF - 1; i++)
+ bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
+ exp_adj += bsum / x_adj;
+ return ret + ret * __expm1l (exp_adj);
+ }
+}
long double
__ieee754_gammal_r (long double x, int *signgamp)
{
- /* We don't have a real gamma implementation now. We'll use lgamma
- and the exp function. But due to the required boundary
- conditions we must check some values separately. */
int64_t hx;
u_int64_t lx;
@@ -51,8 +145,49 @@ __ieee754_gammal_r (long double x, int *signgamp)
*signgamp = 0;
return x - x;
}
+ if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL)
+ {
+ /* Positive infinity (return positive infinity) or NaN (return
+ NaN). */
+ *signgamp = 0;
+ return x + x;
+ }
- /* XXX FIXME. */
- return __ieee754_expl (__ieee754_lgammal_r (x, signgamp));
+ if (x >= 1756.0L)
+ {
+ /* Overflow. */
+ *signgamp = 0;
+ return LDBL_MAX * LDBL_MAX;
+ }
+ else if (x > 0.0L)
+ {
+ *signgamp = 0;
+ int exp2_adj;
+ long double ret = gammal_positive (x, &exp2_adj);
+ return __scalbnl (ret, exp2_adj);
+ }
+ else if (x >= -LDBL_EPSILON / 4.0L)
+ {
+ *signgamp = 0;
+ return 1.0f / x;
+ }
+ else
+ {
+ long double tx = __truncl (x);
+ *signgamp = (tx == 2.0L * __truncl (tx / 2.0L)) ? -1 : 1;
+ if (x <= -1775.0L)
+ /* Underflow. */
+ return LDBL_MIN * LDBL_MIN;
+ long double frac = tx - x;
+ if (frac > 0.5L)
+ frac = 1.0L - frac;
+ long double sinpix = (frac <= 0.25L
+ ? __sinl (M_PIl * frac)
+ : __cosl (M_PIl * (0.5L - frac)));
+ int exp2_adj;
+ long double ret = M_PIl / (-x * sinpix
+ * gammal_positive (-x, &exp2_adj));
+ return __scalbnl (ret, -exp2_adj);
+ }
}
strong_alias (__ieee754_gammal_r, __gammal_r_finite)
diff --git a/libc/sysdeps/ieee754/ldbl-128/e_rem_pio2l.c b/libc/sysdeps/ieee754/ldbl-128/e_rem_pio2l.c
index 84846fdc3..ee856acd5 100644
--- a/libc/sysdeps/ieee754/ldbl-128/e_rem_pio2l.c
+++ b/libc/sysdeps/ieee754/ldbl-128/e_rem_pio2l.c
@@ -184,13 +184,13 @@ static const int32_t two_over_pi[] = {
};
static const long double c[] = {
-/* 93 bits of pi/2 */
+/* 113 bits of pi/2 */
#define PI_2_1 c[0]
- 1.57079632679489661923132169155131424e+00L, /* 3fff921fb54442d18469898cc5100000 */
+ 0x1.921fb54442d18469898cc51701b8p+0L,
/* pi/2 - PI_2_1 */
#define PI_2_1t c[1]
- 8.84372056613570112025531863263659260e-29L, /* 3fa1c06e0e68948127044533e63a0106 */
+ 0x3.9a252049c1114cf98e804177d4c8p-116L,
};
int32_t __ieee754_rem_pio2l(long double x, long double *y)
@@ -213,7 +213,7 @@ int32_t __ieee754_rem_pio2l(long double x, long double *y)
{
if (hx > 0)
{
- /* 113 + 93 bit PI is ok */
+ /* 113 + 113 bit PI is ok */
z = x - PI_2_1;
y[0] = z - PI_2_1t;
y[1] = (z - y[0]) - PI_2_1t;
@@ -221,7 +221,7 @@ int32_t __ieee754_rem_pio2l(long double x, long double *y)
}
else
{
- /* 113 + 93 bit PI is ok */
+ /* 113 + 113 bit PI is ok */
z = x + PI_2_1;
y[0] = z + PI_2_1t;
y[1] = (z - y[0]) + PI_2_1t;
diff --git a/libc/sysdeps/ieee754/ldbl-128/gamma_productl.c b/libc/sysdeps/ieee754/ldbl-128/gamma_productl.c
new file mode 100644
index 000000000..157dbab9f
--- /dev/null
+++ b/libc/sysdeps/ieee754/ldbl-128/gamma_productl.c
@@ -0,0 +1,75 @@
+/* Compute a product of X, X+1, ..., with an error estimate.
+ Copyright (C) 2013 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#include <math.h>
+#include <math_private.h>
+#include <float.h>
+
+/* Calculate X * Y exactly and store the result in *HI + *LO. It is
+ given that the values are small enough that no overflow occurs and
+ large enough (or zero) that no underflow occurs. */
+
+static inline void
+mul_split (long double *hi, long double *lo, long double x, long double y)
+{
+#ifdef __FP_FAST_FMAL
+ /* Fast built-in fused multiply-add. */
+ *hi = x * y;
+ *lo = __builtin_fmal (x, y, -*hi);
+#elif defined FP_FAST_FMAL
+ /* Fast library fused multiply-add, compiler before GCC 4.6. */
+ *hi = x * y;
+ *lo = __fmal (x, y, -*hi);
+#else
+ /* Apply Dekker's algorithm. */
+ *hi = x * y;
+# define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1)
+ long double x1 = x * C;
+ long double y1 = y * C;
+# undef C
+ x1 = (x - x1) + x1;
+ y1 = (y - y1) + y1;
+ long double x2 = x - x1;
+ long double y2 = y - y1;
+ *lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2;
+#endif
+}
+
+/* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N
+ - 1, in the form R * (1 + *EPS) where the return value R is an
+ approximation to the product and *EPS is set to indicate the
+ approximate error in the return value. X is such that all the
+ values X + 1, ..., X + N - 1 are exactly representable, and X_EPS /
+ X is small enough that factors quadratic in it can be
+ neglected. */
+
+long double
+__gamma_productl (long double x, long double x_eps, int n, long double *eps)
+{
+ SET_RESTORE_ROUNDL (FE_TONEAREST);
+ long double ret = x;
+ *eps = x_eps / x;
+ for (int i = 1; i < n; i++)
+ {
+ *eps += x_eps / (x + i);
+ long double lo;
+ mul_split (&ret, &lo, ret, x + i);
+ *eps += lo / ret;
+ }
+ return ret;
+}