summaryrefslogtreecommitdiff
path: root/libc/sysdeps/ia64/fpu/s_erfcl.S
blob: 31ffc2db1222e1166473571ffba7194b2cd97e72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
.file "erfcl.s"


// Copyright (c) 2001 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2001 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
// 
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at 
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 11/12/01  Initial version
// 02/08/02  Added missing }
// 05/20/02  Cleaned up namespace and sf0 syntax
// 02/10/03  Reordered header: .section, .global, .proc, .align;
//           used data8 for long double table values
// 03/31/05  Reformatted delimiters between data tables
//
// API
//==============================================================
// long double erfcl(long double)
//
// Implementation and Algorithm Notes:
//==============================================================
// 1. 0 <= x <= 107.0
//    
//    erfcl(x) ~=~ P15(z) * expl( -x^2 )/(dx + x), z = x - xc(i).
//
//    Comment:
//
//    Let x(i) = -1.0 + 2^(i/4),i=0,...27. So we have 28 unequal
//    argument intervals [x(i),x(i+1)] with length ratio q = 2^(1/4).
//    Values xc(i) we have in the table erfc_xc_table,xc(i)=x(i)for i = 0
//    and xc(i)= 0.5*( x(i)+x(i+1) ) for i>0.
// 
//    Let x(i)<= x < x(i+1).
//    We can find i as exponent of number (x + 1)^4.
// 
//    Let P15(z)= a0+ a1*z +..+a15*z^15 - polynomial approximation of degree 15
//    for function      erfcl(z+xc(i)) * expl( (z+xc(i))^2)* (dx+z+xc(i)) and 
//    -0.5*[x(i+1)-x(i)] <= z <= 0.5*[x(i+1)-x(i)].
//
//    Let  Q(z)= (P(z)- S)/S, S = a0, rounded to 16 bits.
//    Polynomial coeffitients for Q(z) we have in the table erfc_Q_table as
//    long double values
//
//    We use multi precision to calculate input argument -x^2 for expl and 
//    for u = 1/(dx + x). 
//
//    Algorithm description for expl function see below. In accordance with
//    denotation of this algorithm we have for expl:
//
//    expl(X) ~=~ 2^K*T_1*(1+W_1)*T_2*(1+W_2)*(1+ poly(r)), X = -x^2. 
//
//    Final calculations for erfcl:
// 
//    erfcl(x) ~=~
//
//         2^K*T_1*(1+W_1)*T_2*(1+W_2)*(1+ poly(r))*(1-dy)*S*(1+Q(z))*u*(1+du),
//
//    where dy - low bits of x^2 and u, u*du - hi and low bits of 1/(dx + x).
//
//    The order of calculations is the next:
//
//    1)  M = 2^K*T_1*T_2*S          without rounding error,
//    2)  W = W_1 + (W_2 + W_1*W_2), where 1+W  ~=~ (1+W_1)(1+W_2),
//    3)  H = W - dy,                where 1+H  ~=~ (1+W )(1-dy),
//    4)  R = poly(r)*H + poly(r),    
//    5)  R = H + R              ,   where 1+R  ~=~ (1+H )(1+poly(r)),
//    6)  G = Q(z)*R + Q(z),
//    7)  R1 = R + du,               where 1+R1 ~=~ (1+R)(1+du),
//    8)  G1 = R1 + G,               where 1+G1 ~=~ (1+R1)(1+Q(z)),
//    9)  V  = G1*M*u,
//    10) erfcl(x) ~=~ M*u + V     
//                     
// 2. -6.5 <= x < 0
//
//    erfcl(x)  = 2.0 - erfl(-x)
//
// 3. x > 107.0
//    erfcl(x)  ~=~ 0.0                      
//
// 4. x < -6.5            
//    erfcl(x)  ~=~ 2.0                      

// Special values 
//==============================================================
// erfcl(+0)    = 1.0
// erfcl(-0)    = 1.0

// erfcl(+qnan) = +qnan 
// erfcl(-qnan) = -qnan 
// erfcl(+snan) = +qnan 
// erfcl(-snan) = -qnan 

// erfcl(-inf)  = 2.0 
// erfcl(+inf)  = +0

//==============================================================
// Algorithm description of used expl function.
//
// Implementation and Algorithm Notes:
//
//  ker_exp_64( in_FR  : X,
//            out_FR : Y_hi,
//            out_FR : Y_lo,
//            out_FR : scale,
//            out_PR : Safe )
//
// On input, X is in register format
//
// On output, 
//
//   scale*(Y_hi + Y_lo)  approximates  exp(X)
//
// The accuracy is sufficient for a highly accurate 64 sig.
// bit implementation.  Safe is set if there is no danger of 
// overflow/underflow when the result is composed from scale, 
// Y_hi and Y_lo. Thus, we can have a fast return if Safe is set. 
// Otherwise, one must prepare to handle the possible exception 
// appropriately.  Note that SAFE not set (false) does not mean 
// that overflow/underflow will occur; only the setting of SAFE
// guarantees the opposite.
//
// **** High Level Overview **** 
//
// The method consists of three cases.
// 
// If           |X| < Tiny  use case exp_tiny;
// else if  |X| < 2^(-6)    use case exp_small;
// else     use case exp_regular;
//
// Case exp_tiny:
//
//   1 + X     can be used to approximate exp(X) 
//   X + X^2/2 can be used to approximate exp(X) - 1
//
// Case exp_small:
//
//   Here, exp(X) and exp(X) - 1 can all be 
//   approximated by a relatively simple polynomial.
//
//   This polynomial resembles the truncated Taylor series
//
//  exp(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!
//
// Case exp_regular:
//
//   Here we use a table lookup method. The basic idea is that in
//   order to compute exp(X), we accurately decompose X into
//
//   X = N * log(2)/(2^12)  + r,    |r| <= log(2)/2^13.
//
//   Hence
//
//   exp(X) = 2^( N / 2^12 ) * exp(r).
//
//   The value 2^( N / 2^12 ) is obtained by simple combinations
//   of values calculated beforehand and stored in table; exp(r)
//   is approximated by a short polynomial because |r| is small.
//
//   We elaborate this method in 4 steps.
//
//   Step 1: Reduction
//
//   The value 2^12/log(2) is stored as a double-extended number
//   L_Inv.
//
//   N := round_to_nearest_integer( X * L_Inv )
//
//   The value log(2)/2^12 is stored as two numbers L_hi and L_lo so
//   that r can be computed accurately via
//
//   r := (X - N*L_hi) - N*L_lo
//
//   We pick L_hi such that N*L_hi is representable in 64 sig. bits
//   and thus the FMA   X - N*L_hi   is error free. So r is the 
//   1 rounding error from an exact reduction with respect to 
//   
//   L_hi + L_lo.
//
//   In particular, L_hi has 30 significant bit and can be stored
//   as a double-precision number; L_lo has 64 significant bits and
//   stored as a double-extended number.
//
//   Step 2: Approximation
//
//   exp(r) - 1 is approximated by a short polynomial of the form
//   
//   r + A_1 r^2 + A_2 r^3 + A_3 r^4 .
//
//   Step 3: Composition from Table Values 
//
//   The value 2^( N / 2^12 ) can be composed from a couple of tables
//   of precalculated values. First, express N as three integers
//   K, M_1, and M_2 as
//
//     N  =  K * 2^12  + M_1 * 2^6 + M_2
//
//   Where 0 <= M_1, M_2 < 2^6; and K can be positive or negative.
//   When N is represented in 2's complement, M_2 is simply the 6
//   lsb's, M_1 is the next 6, and K is simply N shifted right
//   arithmetically (sign extended) by 12 bits.
//
//   Now, 2^( N / 2^12 ) is simply  
//  
//      2^K * 2^( M_1 / 2^6 ) * 2^( M_2 / 2^12 )
//
//   Clearly, 2^K needs no tabulation. The other two values are less
//   trivial because if we store each accurately to more than working
//   precision, than its product is too expensive to calculate. We
//   use the following method.
//
//   Define two mathematical values, delta_1 and delta_2, implicitly
//   such that
//
//     T_1 = exp( [M_1 log(2)/2^6]  -  delta_1 ) 
//     T_2 = exp( [M_2 log(2)/2^12] -  delta_2 )
//
//   are representable as 24 significant bits. To illustrate the idea,
//   we show how we define delta_1: 
//
//     T_1     := round_to_24_bits( exp( M_1 log(2)/2^6 ) )
//     delta_1  = (M_1 log(2)/2^6) - log( T_1 )  
//
//   The last equality means mathematical equality. We then tabulate
//
//     W_1 := exp(delta_1) - 1
//     W_2 := exp(delta_2) - 1
//
//   Both in double precision.
//
//   From the tabulated values T_1, T_2, W_1, W_2, we compose the values
//   T and W via
//
//     T := T_1 * T_2           ...exactly
//     W := W_1 + (1 + W_1)*W_2 
//
//   W approximates exp( delta ) - 1  where delta = delta_1 + delta_2.
//   The mathematical product of T and (W+1) is an accurate representation
//   of 2^(M_1/2^6) * 2^(M_2/2^12).
//
//   Step 4. Reconstruction
//
//   Finally, we can reconstruct exp(X), exp(X) - 1. 
//   Because
//
//  X = K * log(2) + (M_1*log(2)/2^6  - delta_1) 
//             + (M_2*log(2)/2^12 - delta_2)
//             + delta_1 + delta_2 + r      ...accurately
//   We have
//
//  exp(X) ~=~ 2^K * ( T + T*[exp(delta_1+delta_2+r) - 1] )
//         ~=~ 2^K * ( T + T*[exp(delta + r) - 1]         )
//         ~=~ 2^K * ( T + T*[(exp(delta)-1)  
//               + exp(delta)*(exp(r)-1)]   )
//             ~=~ 2^K * ( T + T*( W + (1+W)*poly(r) ) )
//             ~=~ 2^K * ( Y_hi  +  Y_lo )
//
//   where Y_hi = T  and Y_lo = T*(W + (1+W)*poly(r))
//
//   For exp(X)-1, we have
//
//  exp(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1
//       ~=~ 2^K * ( Y_hi + Y_lo - 2^(-K) )
//
//   and we combine Y_hi + Y_lo - 2^(-N)  into the form of two 
//   numbers  Y_hi + Y_lo carefully.
//
//   **** Algorithm Details ****
//
//   A careful algorithm must be used to realize the mathematical ideas
//   accurately. We describe each of the three cases. We assume SAFE
//   is preset to be TRUE.
//
//   Case exp_tiny:
//
//   The important points are to ensure an accurate result under 
//   different rounding directions and a correct setting of the SAFE 
//   flag.
//
//   If expm1 is 1, then
//      SAFE  := False  ...possibility of underflow
//      Scale := 1.0
//      Y_hi  := X
//      Y_lo  := 2^(-17000)
//   Else
//      Scale := 1.0
//      Y_hi  := 1.0
//      Y_lo  := X  ...for different rounding modes
//   Endif
//
//   Case exp_small:
//
//   Here we compute a simple polynomial. To exploit parallelism, we split
//   the polynomial into several portions.
//
//   Let r = X 
//
//   If exp     ...i.e. exp( argument )
//
//      rsq := r * r; 
//      r4  := rsq*rsq
//      poly_lo := P_3 + r*(P_4 + r*(P_5 + r*P_6))
//      poly_hi := r + rsq*(P_1 + r*P_2)
//      Y_lo    := poly_hi + r4 * poly_lo
//      Y_hi    := 1.0
//      Scale   := 1.0
//
//   Else           ...i.e. exp( argument ) - 1
//
//      rsq := r * r
//      r4  := rsq * rsq
//      r6  := rsq * r4
//      poly_lo := r6*(Q_5 + r*(Q_6 + r*Q_7))
//      poly_hi := Q_1 + r*(Q_2 + r*(Q_3 + r*Q_4))
//      Y_lo    := rsq*poly_hi +  poly_lo
//      Y_hi    := X
//      Scale   := 1.0
//
//   Endif
//
//  Case exp_regular:
//
//  The previous description contain enough information except the
//  computation of poly and the final Y_hi and Y_lo in the case for
//  exp(X)-1.
//
//  The computation of poly for Step 2:
//
//   rsq := r*r
//   poly := r + rsq*(A_1 + r*(A_2 + r*A_3))
//
//  For the case exp(X) - 1, we need to incorporate 2^(-K) into
//  Y_hi and Y_lo at the end of Step 4.
//
//   If K > 10 then
//      Y_lo := Y_lo - 2^(-K)
//   Else
//      If K < -10 then
//   Y_lo := Y_hi + Y_lo
//   Y_hi := -2^(-K)
//      Else
//   Y_hi := Y_hi - 2^(-K)
//      End If
//   End If
//

// Overview of operation
//==============================================================

// Registers used
//==============================================================
// Floating Point registers used: 
// f8, input
// f9 -> f14,  f36 -> f126

// General registers used: 
// r32 -> r71 

// Predicate registers used:
// p6 -> p15

// Assembly macros
//==============================================================
// GR for exp(X)
GR_ad_Arg           = r33
GR_ad_C             = r34
GR_ERFC_S_TB        = r35
GR_signexp_x        = r36
GR_exp_x            = r36
GR_exp_mask         = r37
GR_ad_W1            = r38
GR_ad_W2            = r39
GR_M2               = r40
GR_M1               = r41
GR_K                = r42
GR_exp_2_k          = r43
GR_ad_T1            = r44
GR_ad_T2            = r45
GR_N_fix            = r46
GR_ad_P             = r47
GR_exp_bias         = r48
GR_BIAS             = r48
GR_exp_half         = r49
GR_sig_inv_ln2      = r50
GR_rshf_2to51       = r51
GR_exp_2tom51       = r52
GR_rshf             = r53

// GR for erfcl(x)
//==============================================================

GR_ERFC_XC_TB       = r54
GR_ERFC_P_TB        = r55
GR_IndxPlusBias     = r56
GR_P_POINT_1        = r57
GR_P_POINT_2        = r58
GR_AbsArg           = r59
GR_ShftXBi          = r60
GR_ShftPi           = r61
GR_mBIAS            = r62
GR_ShftPi_bias      = r63
GR_ShftXBi_bias     = r64
GR_ShftA14          = r65
GR_ShftA15          = r66
GR_EpsNorm          = r67
GR_0x1              = r68
GR_ShftPi_8         = r69
GR_26PlusBias       = r70
GR_27PlusBias       = r71

// GR for __libm_support call
//==============================================================
GR_SAVE_B0          = r64
GR_SAVE_PFS         = r65
GR_SAVE_GP          = r66
GR_SAVE_SP          = r67

GR_Parameter_X      = r68
GR_Parameter_Y      = r69
GR_Parameter_RESULT = r70
GR_Parameter_TAG    = r71

//==============================================================
// Floating Point Registers
//
FR_RSHF_2TO51       = f10
FR_INV_LN2_2TO63    = f11
FR_W_2TO51_RSH      = f12
FR_2TOM51           = f13
FR_RSHF             = f14

FR_scale            = f36
FR_float_N          = f37
FR_N_signif         = f38
FR_L_hi             = f39
FR_L_lo             = f40
FR_r                = f41
FR_W1               = f42
FR_T1               = f43
FR_W2               = f44
FR_T2               = f45
FR_rsq              = f46
FR_C2               = f47
FR_C3               = f48
FR_poly             = f49
FR_P6               = f49
FR_T                = f50
FR_P5               = f50
FR_P4               = f51
FR_W                = f51
FR_P3               = f52
FR_Wp1              = f52
FR_P2               = f53
FR_P1               = f54
FR_Q7               = f56
FR_Q6               = f57
FR_Q5               = f58
FR_Q4               = f59
FR_Q3               = f60
FR_Q2               = f61
FR_Q1               = f62
FR_C1               = f63
FR_A15              = f64
FR_ch_dx            = f65
FR_T_scale          = f66
FR_norm_x           = f67
FR_AbsArg           = f68
FR_POS_ARG_ASYMP    = f69
FR_NEG_ARG_ASYMP    = f70
FR_Tmp              = f71
FR_Xc               = f72
FR_A0               = f73
FR_A1               = f74
FR_A2               = f75
FR_A3               = f76
FR_A4               = f77
FR_A5               = f78
FR_A6               = f79
FR_A7               = f80
FR_A8               = f81
FR_A9               = f82
FR_A10              = f83
FR_A11              = f84
FR_A12              = f85
FR_A13              = f86
FR_A14              = f87
FR_P15_0_1          = f88
FR_P15_8_1          = f88
FR_P15_1_1          = f89
FR_P15_8_2          = f89
FR_P15_1_2          = f90
FR_P15_2_1          = f91
FR_P15_2_2          = f92
FR_P15_3_1          = f93
FR_P15_3_2          = f94
FR_P15_4_2          = f95
FR_P15_7_1          = f96
FR_P15_7_2          = f97
FR_P15_9_1          = f98
FR_P15_9_2          = f99
FR_P15_13_1         = f100
FR_P15_14_1         = f101
FR_P15_14_2         = f102
FR_Tmp2             = f103
FR_Xpdx_lo          = f104
FR_2                = f105
FR_xsq_lo           = f106
FR_LocArg           = f107
FR_Tmpf             = f108
FR_Tmp1             = f109
FR_EpsNorm          = f110
FR_UnfBound         = f111
FR_NormX            = f112
FR_Xpdx_hi          = f113
FR_dU               = f114
FR_H                = f115
FR_G                = f116
FR_V                = f117
FR_M                = f118
FR_U                = f119
FR_Q                = f120
FR_S                = f121
FR_R                = f122
FR_res_pos_x_hi     = f123
FR_res_pos_x_lo     = f124
FR_dx               = f125
FR_dx1              = f126

// for error handler routine
FR_X                = f9
FR_Y                = f0
FR_RESULT           = f8

// Data tables
//==============================================================
RODATA
.align 16

// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
LOCAL_OBJECT_START(exp_table_1)

data8 0xae89f995ad3ad5ea , 0x00003ffe      // x = 0.681..,bound for dx = 0.875
data8 0x405AC00000000000 , 0x401A000000000000        //ARG_ASYMP,NEG_ARG_ASYMP
data8 0x3FE4000000000000 , 0x3FEC000000000000                    //0.625,0.875
data8 0xD5126065B720A4e9 , 0x00004005                    // underflow boundary
data8 0x8000000000000000 , 0x00000001                             //FR_EpsNorm
LOCAL_OBJECT_END(exp_table_1)

LOCAL_OBJECT_START(Constants_exp_64_Arg)
data8 0xB17217F400000000,0x00003FF2 //L_hi = hi part log(2)/2^12
data8 0xF473DE6AF278ECE6,0x00003FD4 //L_lo = lo part log(2)/2^12
LOCAL_OBJECT_END(Constants_exp_64_Arg)

LOCAL_OBJECT_START(Constants_exp_64_C)
data8 0xAAAAAAABB1B736A0,0x00003FFA // C3
data8 0xAAAAAAAB90CD6327,0x00003FFC // C2
data8 0xFFFFFFFFFFFFFFFF,0x00003FFD // C1
LOCAL_OBJECT_END(Constants_exp_64_C)

LOCAL_OBJECT_START(Constants_exp_64_T1)
data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29 
data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5 
data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
LOCAL_OBJECT_END(Constants_exp_64_T1)

LOCAL_OBJECT_START(Constants_exp_64_T2)
data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4 
data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7 
data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E 
data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349 
data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987 
data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA 
data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610 
data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A 
data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8 
data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA 
data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50 
data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA 
data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07 
data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269 
data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE 
data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
LOCAL_OBJECT_END(Constants_exp_64_T2)

LOCAL_OBJECT_START(Constants_exp_64_W1)
data8 0x0000000000000000, 0xBE384454171EC4B4
data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
LOCAL_OBJECT_END(Constants_exp_64_W1)

LOCAL_OBJECT_START(Constants_exp_64_W2)
data8 0x0000000000000000, 0xBE641F2537A3D7A2
data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
data8 0xBE56856B49BFF529, 0x3E66DD3300508651
data8 0x3E51165FC114BC13, 0x3E53333DC453290F
data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
data8 0xBE559725ADE45917, 0xBE68C29C042FC476
data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
LOCAL_OBJECT_END(Constants_exp_64_W2)


LOCAL_OBJECT_START(erfc_xc_table)

data8 0x0000000000000000, 0x00000000 //XC[0] = +0.00000000000000000000e-01L
data8 0x9A79C70000000000, 0x00003FFD //XC[1] = +3.01710337400436401367e-01L
data8 0x8C49EF0000000000, 0x00003FFE //XC[2] = +5.48003137111663818359e-01L
data8 0xD744FC0000000000, 0x00003FFE //XC[3] = +8.40896368026733398438e-01L
data8 0x9837F00000000000, 0x00003FFF //XC[4] = +1.18920707702636718750e+00L
data8 0xCD3CE30000000000, 0x00003FFF //XC[5] = +1.60342061519622802734e+00L
data8 0x8624F70000000000, 0x00004000 //XC[6] = +2.09600615501403808594e+00L
data8 0xABA27E0000000000, 0x00004000 //XC[7] = +2.68179273605346679688e+00L
data8 0xD837F00000000000, 0x00004000 //XC[8] = +3.37841415405273437500e+00L
data8 0x869E710000000000, 0x00004001 //XC[9] = +4.20684099197387695313e+00L
data8 0xA624F70000000000, 0x00004001 //XC[10] = +5.19201231002807617188e+00L
data8 0xCBA27E0000000000, 0x00004001 //XC[11] = +6.36358547210693359375e+00L
data8 0xF837F00000000000, 0x00004001 //XC[12] = +7.75682830810546875000e+00L
data8 0x969E710000000000, 0x00004002 //XC[13] = +9.41368198394775390625e+00L
data8 0xB624F70000000000, 0x00004002 //XC[14] = +1.13840246200561523438e+01L
data8 0xDBA27E0000000000, 0x00004002 //XC[15] = +1.37271709442138671875e+01L
data8 0x841BF80000000000, 0x00004003 //XC[16] = +1.65136566162109375000e+01L
data8 0x9E9E710000000000, 0x00004003 //XC[17] = +1.98273639678955078125e+01L
data8 0xBE24F70000000000, 0x00004003 //XC[18] = +2.37680492401123046875e+01L
data8 0xE3A27E0000000000, 0x00004003 //XC[19] = +2.84543418884277343750e+01L
data8 0x881BF80000000000, 0x00004004 //XC[20] = +3.40273132324218750000e+01L
data8 0xA29E710000000000, 0x00004004 //XC[21] = +4.06547279357910156250e+01L
data8 0xC224F70000000000, 0x00004004 //XC[22] = +4.85360984802246093750e+01L
data8 0xE7A27E0000000000, 0x00004004 //XC[23] = +5.79086837768554687500e+01L
data8 0x8A1BF80000000000, 0x00004005 //XC[24] = +6.90546264648437500000e+01L
data8 0xA49E710000000000, 0x00004005 //XC[25] = +8.23094558715820312500e+01L
data8 0xC424F70000000000, 0x00004005 //XC[26] = +9.80721969604492187500e+01L
data8 0xD5A27E0000000000, 0x00004005 //XC[27] = +1.06817367553710937500e+02L
LOCAL_OBJECT_END(erfc_xc_table)

LOCAL_OBJECT_START(erfc_s_table)

data8 0xE000000000000000, 0x00003FFE //s[0] = +8.75000000000000000000e-01L
data8 0xDCEF000000000000, 0x00003FFE //s[1] = +8.63021850585937500000e-01L
data8 0xD79D000000000000, 0x00003FFE //s[2] = +8.42239379882812500000e-01L
data8 0xB25E000000000000, 0x00003FFE //s[3] = +6.96746826171875000000e-01L
data8 0xB0EA000000000000, 0x00003FFE //s[4] = +6.91070556640625000000e-01L
data8 0xAE3F000000000000, 0x00003FFE //s[5] = +6.80648803710937500000e-01L
data8 0xAB05000000000000, 0x00003FFE //s[6] = +6.68045043945312500000e-01L
data8 0xA7AC000000000000, 0x00003FFE //s[7] = +6.54968261718750000000e-01L
data8 0xA478000000000000, 0x00003FFE //s[8] = +6.42456054687500000000e-01L
data8 0xA18D000000000000, 0x00003FFE //s[9] = +6.31057739257812500000e-01L
data8 0x9EF8000000000000, 0x00003FFE //s[10] = +6.20971679687500000000e-01L
data8 0x9CBA000000000000, 0x00003FFE //s[11] = +6.12213134765625000000e-01L
data8 0x9ACD000000000000, 0x00003FFE //s[12] = +6.04690551757812500000e-01L
data8 0x992A000000000000, 0x00003FFE //s[13] = +5.98297119140625000000e-01L
data8 0x97C7000000000000, 0x00003FFE //s[14] = +5.92880249023437500000e-01L
data8 0x969C000000000000, 0x00003FFE //s[15] = +5.88317871093750000000e-01L
data8 0x95A0000000000000, 0x00003FFE //s[16] = +5.84472656250000000000e-01L
data8 0x94CB000000000000, 0x00003FFE //s[17] = +5.81222534179687500000e-01L
data8 0x9419000000000000, 0x00003FFE //s[18] = +5.78506469726562500000e-01L
data8 0x9383000000000000, 0x00003FFE //s[19] = +5.76217651367187500000e-01L
data8 0x9305000000000000, 0x00003FFE //s[20] = +5.74295043945312500000e-01L
data8 0x929B000000000000, 0x00003FFE //s[21] = +5.72677612304687500000e-01L
data8 0x9242000000000000, 0x00003FFE //s[22] = +5.71319580078125000000e-01L
data8 0x91F8000000000000, 0x00003FFE //s[23] = +5.70190429687500000000e-01L
data8 0x91B9000000000000, 0x00003FFE //s[24] = +5.69229125976562500000e-01L
data8 0x9184000000000000, 0x00003FFE //s[25] = +5.68420410156250000000e-01L
data8 0x9158000000000000, 0x00003FFE //s[26] = +5.67749023437500000000e-01L
data8 0x9145000000000000, 0x00003FFE //s[27] = +5.67459106445312500000e-01L
LOCAL_OBJECT_END(erfc_s_table)

LOCAL_OBJECT_START(erfc_Q_table)
// Q(z)= (P(z)- S)/S
//
// Pol0 
data8 0x98325D50F9DC3499, 0x0000BFAA //A0 = +3.07358861423101280650e-26L
data8 0xED35081A2494DDD9, 0x00003FF8 //A1 = +1.44779757616302832466e-02L
data8 0x9443549BCD0F94CE, 0x0000BFFD //A2 = -2.89576190966300084405e-01L
data8 0xC7FD4B98ECF3DBBF, 0x00003FFD //A3 = +3.90604364793467799170e-01L
data8 0xB82CE31288B49759, 0x0000BFFD //A4 = -3.59717460644199233866e-01L
data8 0x8A8293447BEF69B5, 0x00003FFD //A5 = +2.70527460203054582368e-01L
data8 0xB5793E30EE36766C, 0x0000BFFC //A6 = -1.77220317589265674647e-01L
data8 0xD6066D16BBDECE17, 0x00003FFB //A7 = +1.04504444366724593714e-01L
data8 0xE7C783CE3C997BD8, 0x0000BFFA //A8 = -5.65867565781331646771e-02L
data8 0xE9969EBC2F5B2828, 0x00003FF9 //A9 = +2.85142040533900194955e-02L
data8 0xDD31D619F29AD7BF, 0x0000BFF8 //A10 = -1.35006514390540367929e-02L
data8 0xC63A20EB59768F3A, 0x00003FF7 //A11 = +6.04940993680332271481e-03L
data8 0xA8DEC641AACEB600, 0x0000BFF6 //A12 = -2.57675495383156581601e-03L
data8 0x87F0E77BA914FBEB, 0x00003FF5 //A13 = +1.03714776726541296794e-03L
data8 0xC306C2894C5CEF2D, 0x0000BFF3 //A14 = -3.71983348634136412407e-04L
data8 0xBDAB416A989D0697, 0x00003FF1 //A15 = +9.04412111877987292294e-05L
// Pol1 
data8 0x82808893DA2DD83F, 0x00003FEE //A0 = +7.77853035974467145290e-06L
data8 0xAE9CD9DCADC86113, 0x0000BFFB //A1 = -8.52601070853077921197e-02L
data8 0x9D429743E312AD9F, 0x0000BFFB //A2 = -7.67871682732076080494e-02L
data8 0x8637FC533AE805DC, 0x00003FFC //A3 = +1.31072943286859831330e-01L
data8 0xF68DBE3639ABCB6E, 0x0000BFFB //A4 = -1.20387540845703264588e-01L
data8 0xB168FFC3CFA71256, 0x00003FFB //A5 = +8.66260511047190247534e-02L
data8 0xDBC5078A7EA89236, 0x0000BFFA //A6 = -5.36546988077281230848e-02L
data8 0xF4331FEDB2CB838F, 0x00003FF9 //A7 = +2.98095344165515989564e-02L
data8 0xF909173C0E61C25D, 0x0000BFF8 //A8 = -1.51999213123642373375e-02L
data8 0xEC83560A2ACB23E9, 0x00003FF7 //A9 = +7.21780491979582106904e-03L
data8 0xD350D62C4FEAD8F5, 0x0000BFF6 //A10 = -3.22442272982896360044e-03L
data8 0xB2F44F4B3FD9B826, 0x00003FF5 //A11 = +1.36531322425499451283e-03L
data8 0x9078BC61927671C6, 0x0000BFF4 //A12 = -5.51115510818844954547e-04L
data8 0xDF67AC6287A63B03, 0x00003FF2 //A13 = +2.13055585989529858265e-04L
data8 0xA719CFEE67FCE1CE, 0x0000BFF1 //A14 = -7.96798844477905965933e-05L
data8 0xEF926367BABBB029, 0x00003FEF //A15 = +2.85591875675765038065e-05L
// Pol2 
data8 0x82B5E5A93B059C50, 0x00003FEF //A0 = +1.55819100856330860049e-05L
data8 0xDC856BC2542B1938, 0x0000BFFB //A1 = -1.07676355235999875911e-01L
data8 0xDF225EF5694F14AE, 0x0000BFF8 //A2 = -1.36190345125628043277e-02L
data8 0xDAF66A954ED22428, 0x00003FFA //A3 = +5.34576571853233908886e-02L
data8 0xD28AE4F21A392EC6, 0x0000BFFA //A4 = -5.14019911949062230820e-02L
data8 0x9441A95713F0DB5B, 0x00003FFA //A5 = +3.61954321717769771045e-02L
data8 0xB0957B5C483C7A04, 0x0000BFF9 //A6 = -2.15556535133667988704e-02L
data8 0xBB9260E812814F71, 0x00003FF8 //A7 = +1.14484735825400480057e-02L
data8 0xB68AB17287ABAB04, 0x0000BFF7 //A8 = -5.57073273108465072470e-03L
data8 0xA56A95E0BC0EF01B, 0x00003FF6 //A9 = +2.52405318381952650677e-03L
data8 0x8D19C7D286839C00, 0x0000BFF5 //A10 = -1.07651294935087466892e-03L
data8 0xE45DB3766711A0D3, 0x00003FF3 //A11 = +4.35573615323234291196e-04L
data8 0xB05949F947FA7AEF, 0x0000BFF2 //A12 = -1.68179306983868501372e-04L
data8 0x82901D055A0D5CB6, 0x00003FF1 //A13 = +6.22572626227726684168e-05L
data8 0xBB957698542D6FD0, 0x0000BFEF //A14 = -2.23617364009159182821e-05L
data8 0x810740E1DF572394, 0x00003FEE //A15 = +7.69068800065192940487e-06L
// Pol3 
data8 0x9526D1C87655AFA8, 0x00003FEC //A0 = +2.22253260814242012255e-06L
data8 0xA47E21EBFE73F72F, 0x0000BFF8 //A1 = -1.00398379581527733314e-02L
data8 0xDE65685FCDF7A913, 0x0000BFFA //A2 = -5.42959286802879105148e-02L
data8 0xED289CB8F97D4860, 0x00003FFA //A3 = +5.79000589346770417248e-02L
data8 0xAA3100D5A7D870F1, 0x0000BFFA //A4 = -4.15506394006027604387e-02L
data8 0xCA0567032C5308C0, 0x00003FF9 //A5 = +2.46607791863290331169e-02L
data8 0xD3E1794A50F31BEB, 0x0000BFF8 //A6 = -1.29321751094401754013e-02L
data8 0xCAA02CB4C87CC1F0, 0x00003FF7 //A7 = +6.18364508551740736863e-03L
data8 0xB3F126AF16B121F2, 0x0000BFF6 //A8 = -2.74569696838501870748e-03L
data8 0x962B2D64D3900510, 0x00003FF5 //A9 = +1.14569596409019883022e-03L
data8 0xED8785714A9A00FB, 0x0000BFF3 //A10 = -4.53051338046340380512e-04L
data8 0xB325DA4515D8B54C, 0x00003FF2 //A11 = +1.70848714622328427290e-04L
data8 0x8179C36354571747, 0x0000BFF1 //A12 = -6.17387951061077132522e-05L
data8 0xB40F241C01C907E9, 0x00003FEF //A13 = +2.14647227210702861416e-05L
data8 0xF436D84AD7D4D316, 0x0000BFED //A14 = -7.27815144835213913238e-06L
data8 0x9EB432503FB0B7BC, 0x00003FEC //A15 = +2.36487228755136968792e-06L
// Pol4 
data8 0xE0BA539E4AFC4741, 0x00003FED //A0 = +6.69741148991838024429e-06L
data8 0x8583BF71139452CF, 0x0000BFFA //A1 = -3.25963476363756051657e-02L
data8 0x8384FEF6D08AD6CE, 0x0000BFF9 //A2 = -1.60546283500634200479e-02L
data8 0xB1E67DFB84C97036, 0x00003FF9 //A3 = +2.17163525195697635702e-02L
data8 0xFB6ACEE6899E360D, 0x0000BFF8 //A4 = -1.53452892792759316229e-02L
data8 0x8D2B869EB9149905, 0x00003FF8 //A5 = +8.61633440480716870830e-03L
data8 0x8A90BFE0FD869A41, 0x0000BFF7 //A6 = -4.22868126950622376530e-03L
data8 0xF7536A76E59F54D2, 0x00003FF5 //A7 = +1.88694643606912107006e-03L
data8 0xCCF6FE58C16E1CC7, 0x0000BFF4 //A8 = -7.81878732767742447339e-04L
data8 0x9FCC6ED9914FAA24, 0x00003FF3 //A9 = +3.04791577214885118730e-04L
data8 0xEC7F5AAACAE593E8, 0x0000BFF1 //A10 = -1.12770784960291779798e-04L
data8 0xA72CE628A114C940, 0x00003FF0 //A11 = +3.98577182157456408782e-05L
data8 0xE2DCC5750FD769BA, 0x0000BFEE //A12 = -1.35220520471857266339e-05L
data8 0x9459160B1E6F1F8D, 0x00003FED //A13 = +4.42111470121432700283e-06L
data8 0xBE0A05701BD0DD42, 0x0000BFEB //A14 = -1.41590196994052764542e-06L
data8 0xE905D729105081BF, 0x00003FE9 //A15 = +4.34038814785401120999e-07L
// Pol5 
data8 0xA33649C3AB459832, 0x00003FEE //A0 = +9.72819704141525206634e-06L
data8 0x9E4EA2F44C9A24BD, 0x0000BFFA //A1 = -3.86492123987296806210e-02L
data8 0xE80C0B1280F357BF, 0x0000BFF2 //A2 = -2.21297306012713370124e-04L
data8 0xDAECCE90A4D45D9A, 0x00003FF7 //A3 = +6.68106161291482829670e-03L
data8 0xA4006572071BDD4B, 0x0000BFF7 //A4 = -5.00493005170532147076e-03L
data8 0xB07FD7EB1F4D8E8E, 0x00003FF6 //A5 = +2.69316693731732554959e-03L
data8 0xA1F471D42ADD73A1, 0x0000BFF5 //A6 = -1.23561753760779610478e-03L
data8 0x8611D0ED1B4C8176, 0x00003FF4 //A7 = +5.11434914439322741260e-04L
data8 0xCDADB789B487A541, 0x0000BFF2 //A8 = -1.96150380913036018825e-04L
data8 0x9470252731687FEE, 0x00003FF1 //A9 = +7.07807859951401721129e-05L
data8 0xCB9399AD1C376D85, 0x0000BFEF //A10 = -2.42682175234436724152e-05L
data8 0x858D815F9CA0A9F7, 0x00003FEE //A11 = +7.96036454038012144300e-06L
data8 0xA878D338E6E6A079, 0x0000BFEC //A12 = -2.51042802626063073967e-06L
data8 0xCD2C2F079D2FCB36, 0x00003FEA //A13 = +7.64327468786076941271e-07L
data8 0xF5EF4A4B2EA426F2, 0x0000BFE8 //A14 = -2.29044563492386125272e-07L
data8 0x8CE52181393820FC, 0x00003FE7 //A15 = +6.56093668622712763489e-08L
// Pol6 
data8 0xB2015D7F1864B7CF, 0x00003FEC //A0 = +2.65248615880090351276e-06L
data8 0x954EA7A861B4462A, 0x0000BFFA //A1 = -3.64519642954351295215e-02L
data8 0x9E46F2A4D9157E69, 0x00003FF7 //A2 = +4.83023498390681965101e-03L
data8 0xA0D12B422FFD5BAD, 0x00003FF5 //A3 = +1.22693684633643883352e-03L
data8 0xB291D16A560A740E, 0x0000BFF5 //A4 = -1.36237794246703606647e-03L
data8 0xC138941BC8AF4A9D, 0x00003FF4 //A5 = +7.37079658343628747256e-04L
data8 0xA761669D61B405CF, 0x0000BFF3 //A6 = -3.19252914480518163396e-04L
data8 0x8053680F1C84607E, 0x00003FF2 //A7 = +1.22381025852939439541e-04L
data8 0xB518F4B6F25015F9, 0x0000BFF0 //A8 = -4.31770048258291369742e-05L
data8 0xEFF526AC70B9411E, 0x00003FEE //A9 = +1.43025887824433324525e-05L
data8 0x970B2A848DF5B5C2, 0x0000BFED //A10 = -4.50145058393497252604e-06L
data8 0xB614D2E61DB86963, 0x00003FEB //A11 = +1.35661172167726780059e-06L
data8 0xD34EA4D283EC33FA, 0x0000BFE9 //A12 = -3.93590335713880681528e-07L
data8 0xED209EBD68E1145F, 0x00003FE7 //A13 = +1.10421060667544991323e-07L
data8 0x83A126E22A17568D, 0x0000BFE6 //A14 = -3.06473811074239684132e-08L
data8 0x8B778496EDE9F415, 0x00003FE4 //A15 = +8.11804009754249175736e-09L
// Pol7 
data8 0x8E152F522501B7B9, 0x00003FEE //A0 = +8.46879203970927626532e-06L
data8 0xFD22F92EE21F491E, 0x0000BFF9 //A1 = -3.09004656656418947425e-02L
data8 0xAF0C41847D89EC14, 0x00003FF7 //A2 = +5.34203719233189217519e-03L
data8 0xB7C539C400445956, 0x0000BFF3 //A3 = -3.50514245383356287965e-04L
data8 0x8428C78B2B1E3622, 0x0000BFF3 //A4 = -2.52073850239006530978e-04L
data8 0xAFC0CCC7D1A05F5B, 0x00003FF2 //A5 = +1.67611241057491801028e-04L
data8 0x95DC7272C5695A5A, 0x0000BFF1 //A6 = -7.14593512262564106636e-05L
data8 0xD6FCA68A61F0E835, 0x00003FEF //A7 = +2.56284375437771117850e-05L
data8 0x8B71C74DEA936C66, 0x0000BFEE //A8 = -8.31153675277218441096e-06L
data8 0xA8AC71E2A56AA2C9, 0x00003FEC //A9 = +2.51343269277107451413e-06L
data8 0xC15DED6C44B46046, 0x0000BFEA //A10 = -7.20347851650066610771e-07L
data8 0xD42BA1DFBD1277AC, 0x00003FE8 //A11 = +1.97599119274780745741e-07L
data8 0xE03A81F2C976D11A, 0x0000BFE6 //A12 = -5.22072765405802337371e-08L
data8 0xE56A19A67DD66100, 0x00003FE4 //A13 = +1.33536787408751203998e-08L
data8 0xE964D255CB31DFFA, 0x0000BFE2 //A14 = -3.39632729387679010008e-09L
data8 0xE22E62E932B704D4, 0x00003FE0 //A15 = +8.22842400379225526299e-10L
// Pol8 
data8 0xB8B835882D46A6C8, 0x00003FEF //A0 = +2.20202883282415435401e-05L
data8 0xC9D1F63F89B74E90, 0x0000BFF9 //A1 = -2.46362504515706189782e-02L
data8 0x8E376748B1274F30, 0x00003FF7 //A2 = +4.34010070001387441657e-03L
data8 0x98174C7EA49B5B37, 0x0000BFF4 //A3 = -5.80181163659971286762e-04L
data8 0x8D2C40506AE9FF97, 0x00003FEF //A4 = +1.68291159100251734927e-05L
data8 0xD9A580C115B9D150, 0x00003FEF //A5 = +2.59454841475194555896e-05L
data8 0xDB35B21F1C3F99CE, 0x0000BFEE //A6 = -1.30659192305072674545e-05L
data8 0x99FAADAE17A3050E, 0x00003FED //A7 = +4.58893813631592314881e-06L
data8 0xBA1D259BCD6987A9, 0x0000BFEB //A8 = -1.38665627771423394637e-06L
data8 0xCDD7FF5BEA0145C2, 0x00003FE9 //A9 = +3.83413844219813384124e-07L
data8 0xD60857176CE6AB9D, 0x0000BFE7 //A10 = -9.96666862214499946343e-08L
data8 0xD446A2402112DF4C, 0x00003FE5 //A11 = +2.47121687566658908126e-08L
data8 0xCA87133235F1F495, 0x0000BFE3 //A12 = -5.89433000014933371980e-09L
data8 0xBB15B0021581C8B6, 0x00003FE1 //A13 = +1.36122047057936849125e-09L
data8 0xAC9D6585D4AF505E, 0x0000BFDF //A14 = -3.13984547328132268695e-10L
data8 0x975A1439C3795183, 0x00003FDD //A15 = +6.88268624429648826457e-11L
// Pol9 
data8 0x99A7676284CDC9FE, 0x00003FEF //A0 = +1.83169747921764176475e-05L
data8 0x9AD0AE249A02896C, 0x0000BFF9 //A1 = -1.88983346204739151909e-02L
data8 0xCB89B4AEC19898BE, 0x00003FF6 //A2 = +3.10574208447745576452e-03L
data8 0xEBBC47E30E1AC2C2, 0x0000BFF3 //A3 = -4.49629730048297442064e-04L
data8 0xD1E35B7FCE1CF859, 0x00003FF0 //A4 = +5.00412261289558493438e-05L
data8 0xB40743664EF24552, 0x0000BFEB //A5 = -1.34131589671166307319e-06L
data8 0xCAD2F5C596FFE1B4, 0x0000BFEB //A6 = -1.51115702599728593837e-06L
data8 0xAE42B6D069DFDDF2, 0x00003FEA //A7 = +6.49171330116787223873e-07L
data8 0xD0739A05BB43A714, 0x0000BFE8 //A8 = -1.94135651872623440782e-07L
data8 0xD745B854AB601BD7, 0x00003FE6 //A9 = +5.01219983943456578062e-08L
data8 0xCC4066E13E338B13, 0x0000BFE4 //A10 = -1.18890061172430768892e-08L
data8 0xB6EAADB55A6C3CB4, 0x00003FE2 //A11 = +2.66178850259168707794e-09L
data8 0x9CC6C178AD3F96AD, 0x0000BFE0 //A12 = -5.70349182959704086428e-10L
data8 0x81D0E2AA27DEB74A, 0x00003FDE //A13 = +1.18066926578104076645e-10L
data8 0xD75FB9049190BEFD, 0x0000BFDB //A14 = -2.44851795398843967972e-11L
data8 0xA9384A51D48C8703, 0x00003FD9 //A15 = +4.80951837368635202609e-12L
// Pol10 
data8 0xD2B3482EE449C535, 0x00003FEE //A0 = +1.25587177382575655080e-05L
data8 0xE7939B2D0607DFCF, 0x0000BFF8 //A1 = -1.41343131436717436429e-02L
data8 0x8810EB4AC5F0F1CE, 0x00003FF6 //A2 = +2.07620377002350121270e-03L
data8 0x9546589602AEB955, 0x0000BFF3 //A3 = -2.84719065122144294949e-04L
data8 0x9333434342229798, 0x00003FF0 //A4 = +3.50952732796136549298e-05L
data8 0xEB36A98FD81D3DEB, 0x0000BFEC //A5 = -3.50495464815398722482e-06L
data8 0xAC370EFA025D0477, 0x00003FE8 //A6 = +1.60387784498518639254e-07L
data8 0xC8DF7F8ACA099426, 0x00003FE6 //A7 = +4.67693991699936842330e-08L
data8 0xAC694AD4921C02CF, 0x0000BFE5 //A8 = -2.00713167514877937714e-08L
data8 0xB6E29F2FDE2D8C1A, 0x00003FE3 //A9 = +5.32266106167252495164e-09L
data8 0xA41F8EEA75474358, 0x0000BFE1 //A10 = -1.19415398856537468324e-09L
data8 0x869D778A1C56D3D6, 0x00003FDF //A11 = +2.44863450057778470469e-10L
data8 0xD02658BF31411F4C, 0x0000BFDC //A12 = -4.73277831746128372261e-11L
data8 0x9A4A95EE59127779, 0x00003FDA //A13 = +8.77044784978207256260e-12L
data8 0xE518330AF013C2F6, 0x0000BFD7 //A14 = -1.62781453276882333209e-12L
data8 0xA036A9DF71BD108A, 0x00003FD5 //A15 = +2.84596398987114375607e-13L
// Pol11 
data8 0x9191CFBF001F3BB3, 0x00003FEE //A0 = +8.67662287973472452343e-06L
data8 0xAA47E0CF01AE9730, 0x0000BFF8 //A1 = -1.03931136509584404513e-02L
data8 0xAEABE7F17B01D18F, 0x00003FF5 //A2 = +1.33263784731775399430e-03L
data8 0xAC0D6A309D04E5DB, 0x0000BFF2 //A3 = -1.64081956462118568288e-04L
data8 0xA08357DF458054D0, 0x00003FEF //A4 = +1.91346477952797715021e-05L
data8 0x8A1596B557440FE0, 0x0000BFEC //A5 = -2.05761687274453412571e-06L
data8 0xCDA0EAE0A5615E9A, 0x00003FE8 //A6 = +1.91506542215670149741e-07L
data8 0xD36A08FB4E104F9A, 0x0000BFE4 //A7 = -1.23059260396551086769e-08L
data8 0xD7433F91E78A7A11, 0x0000BFDF //A8 = -3.91560549815575091188e-10L
data8 0xC2F5308FD4F5CE62, 0x00003FDF //A9 = +3.54626121852421163117e-10L
data8 0xC83876915F49D630, 0x0000BFDD //A10 = -9.10497688901018285126e-11L
data8 0xA11C605DEAE1FE9C, 0x00003FDB //A11 = +1.83161825409194847892e-11L
data8 0xE7977BC1342D19BF, 0x0000BFD8 //A12 = -3.29111645807102123274e-12L
data8 0x9BC3A7D6396C6756, 0x00003FD6 //A13 = +5.53385887288503961220e-13L
data8 0xD0110D5683740B8C, 0x0000BFD3 //A14 = -9.24001363293241428519e-14L
data8 0x81786D7856A5CC92, 0x00003FD1 //A15 = +1.43741041714595023996e-14L
// Pol12 
data8 0xB85654F6033B3372, 0x00003FEF //A0 = +2.19747106911869287049e-05L
data8 0xF78B40078736B406, 0x0000BFF7 //A1 = -7.55444170413862312647e-03L
data8 0xDA8FDE84D88E5D5D, 0x00003FF4 //A2 = +8.33747822263358628569e-04L
data8 0xBC2D3F3891721AA9, 0x0000BFF1 //A3 = -8.97296647669960333635e-05L
data8 0x9D15ACFD3BF50064, 0x00003FEE //A4 = +9.36297600601039610762e-06L
data8 0xFBED3D03F3C1B671, 0x0000BFEA //A5 = -9.38500137149172923985e-07L
data8 0xBEE615E3B2FA16C8, 0x00003FE7 //A6 = +8.88941676851808958175e-08L
data8 0x843D32692CF5662A, 0x0000BFE4 //A7 = -7.69732580860195238520e-09L
data8 0x99E74472FD94E22B, 0x00003FE0 //A8 = +5.59897264617128952416e-10L
data8 0xCEF63DABF4C32E15, 0x0000BFDB //A9 = -2.35288414996279313219e-11L
data8 0xA2D86C25C0991123, 0x0000BFD8 //A10 = -2.31417232327307408235e-12L
data8 0xF50C1B31D2E922BD, 0x00003FD6 //A11 = +8.70582858983364191159e-13L
data8 0xC0F093DEC2B019A1, 0x0000BFD4 //A12 = -1.71364927865227509533e-13L
data8 0xFC1441C4CD105981, 0x00003FD1 //A13 = +2.79864052545369490865e-14L
data8 0x9CC959853267F026, 0x0000BFCF //A14 = -4.35170017302700609509e-15L
data8 0xB06BA14016154F1E, 0x00003FCC //A15 = +6.12081320471295704631e-16L
// Pol13 
data8 0xA59E74BF544F2422, 0x00003FEF //A0 = +1.97433196215210145261e-05L
data8 0xB2814F4EDAE15330, 0x0000BFF7 //A1 = -5.44754383528015875700e-03L
data8 0x867C249D378F0A23, 0x00003FF4 //A2 = +5.13019308804593120161e-04L
data8 0xC76644393388AB68, 0x0000BFF0 //A3 = -4.75405403392600215101e-05L
data8 0x91143AD5CCA229FE, 0x00003FED //A4 = +4.32369180778264703719e-06L
data8 0xCE6A11FB6840A974, 0x0000BFE9 //A5 = -3.84476663329551178495e-07L
data8 0x8EC29F66C59DE243, 0x00003FE6 //A6 = +3.32389596787155456596e-08L
data8 0xBE3FCDDCA94CA24E, 0x0000BFE2 //A7 = -2.76849073931513325199e-09L
data8 0xF06A84BDC70A0B0D, 0x00003FDE //A8 = +2.18657158231304988330e-10L
data8 0x8B8E6969D056D124, 0x0000BFDB //A9 = -1.58657139740906811035e-11L
data8 0x8984985AA29A0567, 0x00003FD7 //A10 = +9.77123802231106533829e-13L
data8 0xA53ABA084300137C, 0x0000BFD2 //A11 = -3.66882970952892030306e-14L
data8 0xA90EC851E91C3319, 0x0000BFCE //A12 = -2.34614750044359490986e-15L
data8 0xEC9CAF64237B5060, 0x00003FCC //A13 = +8.20912960028437475035e-16L
data8 0xA9156668FCF01479, 0x0000BFCA //A14 = -1.46656639874123613261e-16L
data8 0xBAEF58D8118DD5D4, 0x00003FC7 //A15 = +2.02675278255254907493e-17L
// Pol14 
data8 0xC698952E9CEAA800, 0x00003FEF //A0 = +2.36744912073515619263e-05L
data8 0x800395F8C7B4FA00, 0x0000BFF7 //A1 = -3.90667746392883642897e-03L
data8 0xA3B2467B6B391831, 0x00003FF3 //A2 = +3.12226081793919541155e-04L
data8 0xCF2061122A69D72B, 0x0000BFEF //A3 = -2.46914006692526122176e-05L
data8 0x817FAB6B5DEB9924, 0x00003FEC //A4 = +1.92968114320180123521e-06L
data8 0x9FC190F5827740E7, 0x0000BFE8 //A5 = -1.48784479265231093475e-07L
data8 0xC1FE5C1835C8AFCD, 0x00003FE4 //A6 = +1.12919132662720380018e-08L
data8 0xE7216A9FBB204DA3, 0x0000BFE0 //A7 = -8.40847981461949000003e-10L
data8 0x867566ED95C5C64F, 0x00003FDD //A8 = +6.11446929759298780795e-11L
data8 0x97A8BFA723F0F014, 0x0000BFD9 //A9 = -4.31041298699752869577e-12L
data8 0xA3D24B7034984522, 0x00003FD5 //A10 = +2.91005377301348717042e-13L
data8 0xA5AAA371C22F3741, 0x0000BFD1 //A11 = -1.83926825395757259128e-14L
data8 0x95352E5597EACC23, 0x00003FCD //A12 = +1.03533666540077850452e-15L
data8 0xCCEBE3043B689428, 0x0000BFC8 //A13 = -4.44352525147076912166e-17L
data8 0xA779DAB4BE1F80BB, 0x0000BFBC //A14 = -8.86610526981738255206e-21L
data8 0xB171271F3517282C, 0x00003FC1 //A15 = +3.00598445879282370850e-19L
// Pol15 
data8 0xB7AC727D1C3FEB05, 0x00003FEE //A0 = +1.09478009914822049780e-05L
data8 0xB6E6274485C10B0A, 0x0000BFF6 //A1 = -2.79081782038927199588e-03L
data8 0xC5CAE2122D009506, 0x00003FF2 //A2 = +1.88629638738336219173e-04L
data8 0xD466E7957D0A3362, 0x0000BFEE //A3 = -1.26601440424012313479e-05L
data8 0xE2593D798DA20E2E, 0x00003FEA //A4 = +8.43214222346512003230e-07L
data8 0xEF2D2BBA7D2882CC, 0x0000BFE6 //A5 = -5.56876064495961858535e-08L
data8 0xFA5819BB4AE974C2, 0x00003FE2 //A6 = +3.64298674151704370449e-09L
data8 0x819BB0CE825FBB28, 0x0000BFDF //A7 = -2.35755881668932259913e-10L
data8 0x84871099BF728B8F, 0x00003FDB //A8 = +1.50666434199945890414e-11L
data8 0x858188962DFEBC9F, 0x0000BFD7 //A9 = -9.48617116568458677088e-13L
data8 0x840F38FF2FBAE753, 0x00003FD3 //A10 = +5.86461827778372616657e-14L
data8 0xFF47EAF69577B213, 0x0000BFCE //A11 = -3.54273456410181081472e-15L
data8 0xEF402CCB4D29FAF8, 0x00003FCA //A12 = +2.07516888659313950588e-16L
data8 0xD6B789E01141231B, 0x0000BFC6 //A13 = -1.16398290506765191078e-17L
data8 0xB5EEE343E9CFE3EC, 0x00003FC2 //A14 = +6.16413506924643419723e-19L
data8 0x859B41A39D600346, 0x0000BFBE //A15 = -2.82922705825870414438e-20L
// Pol16 
data8 0x85708B69FD184E11, 0x00003FED //A0 = +3.97681079176353356199e-06L
data8 0x824D92BC60A1F70A, 0x0000BFF6 //A1 = -1.98826630037499070532e-03L
data8 0xEDCF7D3576BB5258, 0x00003FF1 //A2 = +1.13396885054265675352e-04L
data8 0xD7FC59226A947CDF, 0x0000BFED //A3 = -6.43687650810478871875e-06L
data8 0xC32C51B574E2651E, 0x00003FE9 //A4 = +3.63538268539251809118e-07L
data8 0xAF67910F5681401F, 0x0000BFE5 //A5 = -2.04197779750247395258e-08L
data8 0x9CB3E8D7DCD1EA9D, 0x00003FE1 //A6 = +1.14016272459029850306e-09L
data8 0x8B14ECFBF7D4F114, 0x0000BFDD //A7 = -6.32470533185766848692e-11L
data8 0xF518253AE4A3AE72, 0x00003FD8 //A8 = +3.48299974583453268369e-12L
data8 0xD631A5699AA2F334, 0x0000BFD4 //A9 = -1.90242426474085078079e-13L
data8 0xB971AD4C30C56E5D, 0x00003FD0 //A10 = +1.02942127356740047925e-14L
data8 0x9ED0065A601F3160, 0x0000BFCC //A11 = -5.50991880383698965959e-16L
data8 0x863A04008E12867C, 0x00003FC8 //A12 = +2.91057593756148904838e-17L
data8 0xDF62F9F44F5C7170, 0x0000BFC3 //A13 = -1.51372666097522872780e-18L
data8 0xBA4E118E88CFDD31, 0x00003FBF //A14 = +7.89032177282079635722e-20L
data8 0x942AD897FC4D2F2A, 0x0000BFBB //A15 = -3.92195756076319409245e-21L
// Pol17 
data8 0xCB8514540566C717, 0x00003FEF //A0 = +2.42614557068144130848e-05L
data8 0xB94F08D6816E0CD4, 0x0000BFF5 //A1 = -1.41379340061829929314e-03L
data8 0x8E7C342C2DABB51B, 0x00003FF1 //A2 = +6.79422240687700109911e-05L
data8 0xDA69DAFF71E30D5B, 0x0000BFEC //A3 = -3.25461473899657142468e-06L
data8 0xA6D5B2DB69B4B3F6, 0x00003FE8 //A4 = +1.55376978584082701045e-07L
data8 0xFDF4F76BC1D1BD47, 0x0000BFE3 //A5 = -7.39111857092131684572e-09L
data8 0xC08BC52C95B12C2D, 0x00003FDF //A6 = +3.50239092565793882444e-10L
data8 0x91624BF6D3A3F6C9, 0x0000BFDB //A7 = -1.65282439890232458821e-11L
data8 0xDA91F7A450DE4270, 0x00003FD6 //A8 = +7.76517285902715940501e-13L
data8 0xA380ADF55416E624, 0x0000BFD2 //A9 = -3.63048822989374426852e-14L
data8 0xF350FC0CEDEE0FD6, 0x00003FCD //A10 = +1.68834630987974622269e-15L
data8 0xB3FA19FBDC8F023C, 0x0000BFC9 //A11 = -7.80525639701804380489e-17L
data8 0x8435328C80940126, 0x00003FC5 //A12 = +3.58349966898667910204e-18L
data8 0xC0D22F655BA5EF39, 0x0000BFC0 //A13 = -1.63325770165403860181e-19L
data8 0x8F14B9EBD5A9AB25, 0x00003FBC //A14 = +7.57464305512080733773e-21L
data8 0xCD4804BBF6DC1B6F, 0x0000BFB7 //A15 = -3.39609459750208886298e-22L
// Pol18 
data8 0xE251DFE45AB0C22E, 0x00003FEE //A0 = +1.34897126299700418200e-05L
data8 0x83943CC7D59D4215, 0x0000BFF5 //A1 = -1.00386850310061655307e-03L
data8 0xAA57896951134BCA, 0x00003FF0 //A2 = +4.06126834109940757047e-05L
data8 0xDC0A67051E1C4A2C, 0x0000BFEB //A3 = -1.63943048164477430317e-06L
data8 0x8DCB3C0A8CD07BBE, 0x00003FE7 //A4 = +6.60279229777753829876e-08L
data8 0xB64DE81C24F7F265, 0x0000BFE2 //A5 = -2.65287705357477481067e-09L
data8 0xE9CBB7A990DBA8B5, 0x00003FDD //A6 = +1.06318007608620426224e-10L
data8 0x9583D4B85C2ADC6F, 0x0000BFD9 //A7 = -4.24947087941505088222e-12L
data8 0xBEB0EE8114EEDF77, 0x00003FD4 //A8 = +1.69367754741562774916e-13L
data8 0xF2791BB8F06BDA93, 0x0000BFCF //A9 = -6.72997988617021128704e-15L
data8 0x99A907F6A92195B4, 0x00003FCB //A10 = +2.66558091161711891239e-16L
data8 0xC213E5E6F833BB93, 0x0000BFC6 //A11 = -1.05209746502719578617e-17L
data8 0xF41FBBA6B343960F, 0x00003FC1 //A12 = +4.13562069721140021224e-19L
data8 0x98F194AEE31D188D, 0x0000BFBD //A13 = -1.61935414722333263347e-20L
data8 0xC42F5029BB622157, 0x00003FB8 //A14 = +6.49121108201931196678e-22L
data8 0xF43BD08079E50E0F, 0x0000BFB3 //A15 = -2.52531675510242468317e-23L
// Pol19 
data8 0x82557B149A04D08E, 0x00003FEF //A0 = +1.55370127331027842820e-05L
data8 0xBAAB433307CE614B, 0x0000BFF4 //A1 = -7.12085701486669872724e-04L
data8 0xCB52D9DBAC16FE82, 0x00003FEF //A2 = +2.42380662859334411743e-05L
data8 0xDD214359DBBCE7D1, 0x0000BFEA //A3 = -8.23773197624244883859e-07L
data8 0xF01E8E968139524C, 0x00003FE5 //A4 = +2.79535729459988509676e-08L
data8 0x82286A057E0916CE, 0x0000BFE1 //A5 = -9.47023128967039348510e-10L
data8 0x8CDDDC4E8D013365, 0x00003FDC //A6 = +3.20293663356974901319e-11L
data8 0x982FEEE90D4E8751, 0x0000BFD7 //A7 = -1.08135537312234452657e-12L
data8 0xA41D1E84083B8FD6, 0x00003FD2 //A8 = +3.64405720894915411836e-14L
data8 0xB0A1B6111B72E159, 0x0000BFCD //A9 = -1.22562851790685744085e-15L
data8 0xBDB77DE6B650FFA2, 0x00003FC8 //A10 = +4.11382657214908334175e-17L
data8 0xCB54E95CDB66978A, 0x0000BFC3 //A11 = -1.37782909696752432371e-18L
data8 0xD959E428A62B1B6C, 0x00003FBE //A12 = +4.60258936838597812582e-20L
data8 0xE7D49EC23F1A16A0, 0x0000BFB9 //A13 = -1.53412587409583783059e-21L
data8 0xFDE429BC9947B2BE, 0x00003FB4 //A14 = +5.25034823750902928092e-23L
data8 0x872137A062C042EF, 0x0000BFB0 //A15 = -1.74651114923000080365e-24L
// Pol20 
data8 0x8B9B185C6A2659AC, 0x00003FEF //A0 = +1.66423130594825442963e-05L
data8 0x84503AD52588A1E8, 0x0000BFF4 //A1 = -5.04735556466270303549e-04L
data8 0xF26C7C2B566388E1, 0x00003FEE //A2 = +1.44495826764677427386e-05L
data8 0xDDDA15FEE262BB47, 0x0000BFE9 //A3 = -4.13231361893675488873e-07L
data8 0xCACEBC73C90C2FE0, 0x00003FE4 //A4 = +1.18049538609157282958e-08L
data8 0xB9314D00022B41DD, 0x0000BFDF //A5 = -3.36863342776746896664e-10L
data8 0xA8E9FBDC714638B9, 0x00003FDA //A6 = +9.60164921624768038366e-12L
data8 0x99E246C0CC8CA6F6, 0x0000BFD5 //A7 = -2.73352704217713596798e-13L
data8 0x8C04E7B5DF372EA1, 0x00003FD0 //A8 = +7.77262480048865685174e-15L
data8 0xFE7B90CAA0B6D5F7, 0x0000BFCA //A9 = -2.20728537958846147109e-16L
data8 0xE6F40BAD4EC6CB4F, 0x00003FC5 //A10 = +6.26000182616999972048e-18L
data8 0xD14F4E0538F0F992, 0x0000BFC0 //A11 = -1.77292283439752259258e-19L
data8 0xBD5A7FAA548CC749, 0x00003FBB //A12 = +5.01214569023722089225e-21L
data8 0xAB15D69425373A67, 0x0000BFB6 //A13 = -1.41518447770061562822e-22L
data8 0x9EF95456F75B4DF4, 0x00003FB1 //A14 = +4.10938011540250142351e-24L
data8 0x8FADCC45E81433E7, 0x0000BFAC //A15 = -1.16062889679749879834e-25L
// Pol21 
data8 0xB47A917B0F7B50AE, 0x00003FEF //A0 = +2.15147474240529518138e-05L
data8 0xBB77DC3BA0C937B3, 0x0000BFF3 //A1 = -3.57567223048598672970e-04L
data8 0x90694DFF4EBF7370, 0x00003FEE //A2 = +8.60758700336677694536e-06L
data8 0xDE5379AA90A98F3F, 0x0000BFE8 //A3 = -2.07057292787309736495e-07L
data8 0xAB0322293F1F9CA0, 0x00003FE3 //A4 = +4.97711123919916694625e-09L
data8 0x837119E59D3B7AC2, 0x0000BFDE //A5 = -1.19545621970063369582e-10L
data8 0xC9E5B74A38ECF3FC, 0x00003FD8 //A6 = +2.86913359605586285967e-12L
data8 0x9AEF5110C6885352, 0x0000BFD3 //A7 = -6.88048865490621757799e-14L
data8 0xED988D52189CE6A3, 0x00003FCD //A8 = +1.64865278639132278935e-15L
data8 0xB6063CECD8012B6D, 0x0000BFC8 //A9 = -3.94702428606368525374e-17L
data8 0x8B541EB15E79CEEC, 0x00003FC3 //A10 = +9.44127272399408815784e-19L
data8 0xD51A136D8C75BC25, 0x0000BFBD //A11 = -2.25630369561137931232e-20L
data8 0xA2C1C5E19CC79E6F, 0x00003FB8 //A12 = +5.38517493921589837361e-22L
data8 0xF86F9772306F56C1, 0x0000BFB2 //A13 = -1.28438352359240135735e-23L
data8 0xC32F6FEEDE86528E, 0x00003FAD //A14 = +3.15338862172962186458e-25L
data8 0x9534ED189744D7D4, 0x0000BFA8 //A15 = -7.53301543611470014315e-27L
// Pol22 
data8 0xCBA0A2DB94A2C494, 0x00003FEF //A0 = +2.42742878212752702946e-05L
data8 0x84C089154A49E0E8, 0x0000BFF3 //A1 = -2.53204520651046300034e-04L
data8 0xABF5665BD0D8B0CD, 0x00003FED //A2 = +5.12476542947092361490e-06L
data8 0xDEA1C518E3EEE872, 0x0000BFE7 //A3 = -1.03671063536324831083e-07L
data8 0x900B77F271559AE8, 0x00003FE2 //A4 = +2.09612770408581408652e-09L
data8 0xBA4C74A262BE3E4E, 0x0000BFDC //A5 = -4.23594098489216166935e-11L
data8 0xF0D1680FCC1EAF97, 0x00003FD6 //A6 = +8.55557381760467917779e-13L
data8 0x9B8F8E033BB83A24, 0x0000BFD1 //A7 = -1.72707138247091685914e-14L
data8 0xC8DCA6A691DB8335, 0x00003FCB //A8 = +3.48439884388851942939e-16L
data8 0x819A6CB9CEA5E9BD, 0x0000BFC6 //A9 = -7.02580471688245511753e-18L
data8 0xA726B4F622585BEA, 0x00003FC0 //A10 = +1.41582572516648501043e-19L
data8 0xD7727648A4095986, 0x0000BFBA //A11 = -2.85141885626054217632e-21L
data8 0x8AB627E09CF45997, 0x00003FB5 //A12 = +5.73697507862703019314e-23L
data8 0xB28C15C117CC604F, 0x0000BFAF //A13 = -1.15383428132352407085e-24L
data8 0xECB8428626DA072C, 0x00003FA9 //A14 = +2.39025879246942839796e-26L
data8 0x98B731BCFA2CE2B2, 0x0000BFA4 //A15 = -4.81885474332093262902e-28L
// Pol23 
data8 0xC6D013811314D31B, 0x00003FED //A0 = +5.92508308918577687876e-06L
data8 0xBBF3057B8DBACBCF, 0x0000BFF2 //A1 = -1.79242422493281965934e-04L
data8 0xCCADECA501162313, 0x00003FEC //A2 = +3.04996061562356504918e-06L
data8 0xDED1FDBE8CCAF3DB, 0x0000BFE6 //A3 = -5.18793887648024117154e-08L
data8 0xF27B74EDDCA65859, 0x00003FE0 //A4 = +8.82145297317787820675e-10L
data8 0x83E4415687F01A0C, 0x0000BFDB //A5 = -1.49943414247603665601e-11L
data8 0x8F6CB350861CE446, 0x00003FD5 //A6 = +2.54773288906376920377e-13L
data8 0x9BE8456A30CBFC02, 0x0000BFCF //A7 = -4.32729710913845745148e-15L
data8 0xA9694F7E1033977D, 0x00003FC9 //A8 = +7.34704698157502347441e-17L
data8 0xB8035A3D5AF82D85, 0x0000BFC3 //A9 = -1.24692123826025468001e-18L
data8 0xC7CB4B3ACB905FDA, 0x00003FBD //A10 = +2.11540249352095943317e-20L
data8 0xD8D70AEB2E58D729, 0x0000BFB7 //A11 = -3.58731705184186608576e-22L
data8 0xEB27A61B1D5C7697, 0x00003FB1 //A12 = +6.07861113430709162243e-24L
data8 0xFEF9ED74D4F4C9B0, 0x0000BFAB //A13 = -1.02984099170876754831e-25L
data8 0x8E6F410068C12043, 0x00003FA6 //A14 = +1.79777721804459361762e-27L
data8 0x9AE2F6705481630E, 0x0000BFA0 //A15 = -3.05459905177379058768e-29L
// Pol24 
data8 0xD2D858D5B01C9434, 0x00003FEE //A0 = +1.25673476165670766128e-05L
data8 0x8505330F8B4FDE49, 0x0000BFF2 //A1 = -1.26858053564784963985e-04L
data8 0xF39171C8B1D418C2, 0x00003FEB //A2 = +1.81472407620770441249e-06L
data8 0xDEF065C3D7BFD26E, 0x0000BFE5 //A3 = -2.59535215807652675043e-08L
data8 0xCC0199EA6ACA630C, 0x00003FDF //A4 = +3.71085215769339916703e-10L
data8 0xBAA25319F01ED248, 0x0000BFD9 //A5 = -5.30445960650683029105e-12L
data8 0xAAB28A84F8CFE4D1, 0x00003FD3 //A6 = +7.58048850973457592162e-14L
data8 0x9C14B931AEB311A8, 0x0000BFCD //A7 = -1.08302915828084288776e-15L
data8 0x8EADA745715A0714, 0x00003FC7 //A8 = +1.54692159263197000533e-17L
data8 0x82643F3F722CE6B5, 0x0000BFC1 //A9 = -2.20891945694400066611e-19L
data8 0xEE42ECDE465A99E4, 0x00003FBA //A10 = +3.15336372779307614198e-21L
data8 0xD99FC74326ACBFC0, 0x0000BFB4 //A11 = -4.50036161691276556269e-23L
data8 0xC6A4DCACC554911E, 0x00003FAE //A12 = +6.41853356148678957077e-25L
data8 0xB550CEA09DA96F44, 0x0000BFA8 //A13 = -9.15410112414783078242e-27L
data8 0xAA9149317996F32F, 0x00003FA2 //A14 = +1.34554050666508391264e-28L
data8 0x9C3008EFE3F52F19, 0x0000BF9C //A15 = -1.92516125328592532359e-30L
// Pol25 
data8 0xA68E78218806283F, 0x00003FEF //A0 = +1.98550844852103406280e-05L
data8 0xBC41423996DC8A37, 0x0000BFF1 //A1 = -8.97669395268764751516e-05L
data8 0x90E55AE31A2F8271, 0x00003FEB //A2 = +1.07955871580069359702e-06L
data8 0xDF022272DA4A3BEF, 0x0000BFE4 //A3 = -1.29807937275957214439e-08L
data8 0xAB95DCBFFB0BAAB8, 0x00003FDE //A4 = +1.56056011861921437794e-10L
data8 0x83FF2547BA9011FF, 0x0000BFD8 //A5 = -1.87578539510813332135e-12L
data8 0xCB0C353560EEDC45, 0x00003FD1 //A6 = +2.25428217090412574481e-14L
data8 0x9C24CEB86E76D2C5, 0x0000BFCB //A7 = -2.70866279585559299821e-16L
data8 0xF01AFA23DDFDAE0E, 0x00003FC4 //A8 = +3.25403467375734083376e-18L
data8 0xB892BDFBCF1D9740, 0x0000BFBE //A9 = -3.90848978133441513662e-20L
data8 0x8DDBBF34415AAECA, 0x00003FB8 //A10 = +4.69370027479731756829e-22L
data8 0xDA04170D07458C3B, 0x0000BFB1 //A11 = -5.63558091177482043435e-24L
data8 0xA76F391095A9563A, 0x00003FAB //A12 = +6.76262416498584003290e-26L
data8 0x8098FA125C18D8DB, 0x0000BFA5 //A13 = -8.11564737276592661642e-28L
data8 0xCB9E4D5C08923227, 0x00003F9E //A14 = +1.00391606269366059664e-29L
data8 0x9CEC3BF7A0BE2CAF, 0x0000BF98 //A15 = -1.20888920108938909316e-31L
// Pol26 
data8 0xC17AB25E269272F7, 0x00003FEE //A0 = +1.15322640047234590651e-05L
data8 0x85310509E633FEF2, 0x0000BFF1 //A1 = -6.35106483144690768696e-05L
data8 0xAC5E4C4DCB2D940C, 0x00003FEA //A2 = +6.42122148740412561597e-07L
data8 0xDF0AAD0571FFDD48, 0x0000BFE3 //A3 = -6.49136789710824396482e-09L
data8 0x9049D8440AFD180F, 0x00003FDD //A4 = +6.56147932223174570008e-11L
data8 0xBAA936477C5FA9D7, 0x0000BFD6 //A5 = -6.63153032879993841863e-13L
data8 0xF17261294EAB1443, 0x00003FCF //A6 = +6.70149477756803680009e-15L
data8 0x9C22F87C31DB007A, 0x0000BFC9 //A7 = -6.77134581402030645534e-17L
data8 0xC9E98E633942AC12, 0x00003FC2 //A8 = +6.84105580182052870823e-19L
data8 0x828998181309642C, 0x0000BFBC //A9 = -6.91059649300859944955e-21L
data8 0xA8C3D4DCE1ECBAB6, 0x00003FB5 //A10 = +6.97995542988331257517e-23L
data8 0xDA288D52CC4C351A, 0x0000BFAE //A11 = -7.04907829139578377009e-25L
data8 0x8CEEACB790B5F374, 0x00003FA8 //A12 = +7.11526399101774993883e-27L
data8 0xB61C8A29D98F24C0, 0x0000BFA1 //A13 = -7.18303147470398859453e-29L
data8 0xF296F69FE45BDA7D, 0x00003F9A //A14 = +7.47537230021540031251e-31L
data8 0x9D4B25BF6FB7234B, 0x0000BF94 //A15 = -7.57340869663212138051e-33L
// Pol27 
data8 0xC7772CC326D6FBB8, 0x00003FEE //A0 = +1.18890718679826004395e-05L
data8 0xE0F9D5410565D55D, 0x0000BFF0 //A1 = -5.36384368533203585378e-05L
data8 0x85C0BE825680E148, 0x00003FEA //A2 = +4.98268406609692971520e-07L
data8 0x9F058A389D7BA177, 0x0000BFE3 //A3 = -4.62813885933188677790e-09L
data8 0xBD0B751F0A6BAC7A, 0x00003FDC //A4 = +4.29838009673609430305e-11L
data8 0xE0B6823570502E9D, 0x0000BFD5 //A5 = -3.99170340031272728535e-13L
data8 0x858A9C52FC426D86, 0x00003FCF //A6 = +3.70651975271664045723e-15L
data8 0x9EB4438BFDF1928D, 0x0000BFC8 //A7 = -3.44134780748056488222e-17L
data8 0xBC968DCD8C06D74E, 0x00003FC1 //A8 = +3.19480670422195579127e-19L
data8 0xE0133A405F782125, 0x0000BFBA //A9 = -2.96560935615546392028e-21L
data8 0x851AFEBB70D07E79, 0x00003FB4 //A10 = +2.75255617931932536111e-23L
data8 0x9E1E21A841BF8738, 0x0000BFAD //A11 = -2.55452923487640676799e-25L
data8 0xBBCF2EF1C6E72327, 0x00003FA6 //A12 = +2.37048675755308004410e-27L
data8 0xDF0D320CF12B8BCB, 0x0000BF9F //A13 = -2.19945804585962185550e-29L
data8 0x8470A76DE5FCADD8, 0x00003F99 //A14 = +2.04056213851532266258e-31L
data8 0x9D41C15F6A6FBB04, 0x0000BF92 //A15 = -1.89291056020108587823e-33L
LOCAL_OBJECT_END(erfc_Q_table)


.section .text
GLOBAL_LIBM_ENTRY(erfcl)
 
{ .mfi
      alloc          r32 = ar.pfs, 0, 36, 4, 0
      fma.s1         FR_Tmp = f1, f1, f8                   // |x|+1, if x >= 0
      nop.i          0
}
{ .mfi
      addl           GR_ad_Arg    = @ltoff(exp_table_1), gp
      fms.s1         FR_Tmp1 = f1, f1, f8                   // |x|+1, if x < 0
      mov            GR_rshf_2to51 = 0x4718         // begin 1.10000 2^(63+51)
}
;;

{ .mfi
      ld8            GR_ad_Arg = [GR_ad_Arg]             // Point to Arg table
      fcmp.ge.s1     p6,p7 = f8, f0                     // p6: x >= 0 ,p7: x<0
      shl            GR_rshf_2to51 = GR_rshf_2to51,48 // end 1.10000 2^(63+51)
}
{ .mlx
      mov            GR_rshf = 0x43e8     // begin 1.1000 2^63 for right shift
      movl           GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc   // signif. of 1/ln2
}
;;

{ .mfi
      mov            GR_exp_2tom51 = 0xffff-51
      fclass.m       p8,p0 = f8,0x07                            // p8:   x = 0
      shl            GR_rshf = GR_rshf,48   // end 1.1000 2^63 for right shift
}
{ .mfi
      nop.m          0
      fnma.s1        FR_norm_x   = f8, f8, f0             //high bits for -x^2
      nop.i          0         
}
;;

.pred.rel "mutex",p6,p7
{ .mfi
      setf.sig       FR_INV_LN2_2TO63 = GR_sig_inv_ln2    // form 1/ln2 * 2^63
(p6)  fma.s1         FR_AbsArg = f1, f0, f8                  // |x|, if x >= 0
      nop.i          0    
}
{ .mfi
      setf.d         FR_RSHF_2TO51 = GR_rshf_2to51    //const 1.10 * 2^(63+51)
(p7)  fms.s1         FR_AbsArg = f1, f0, f8                   // |x|, if x < 0
      mov            GR_exp_mask = 0x1FFFF               // Form exponent mask
}
;;

{ .mfi
      ldfe           FR_ch_dx = [GR_ad_Arg], 16
      fclass.m       p10,p0 = f8, 0x21                        // p10: x = +inf
      mov            GR_exp_bias = 0x0FFFF                // Set exponent bias
}
{ .mlx                    
      setf.d         FR_RSHF = GR_rshf      // Right shift const 1.1000 * 2^63
      movl           GR_ERFC_XC_TB = 0x650  
}
;;

.pred.rel "mutex",p6,p7
{ .mfi
      setf.exp       FR_2TOM51 = GR_exp_2tom51    // 2^-51 for scaling float_N
(p6)  fma.s1         FR_Tmp = FR_Tmp, FR_Tmp, f0            // (|x|+1)^2,x >=0
      nop.i          0
}
{ .mfi
      ldfpd          FR_POS_ARG_ASYMP,FR_NEG_ARG_ASYMP = [GR_ad_Arg], 16
(p7)  fma.s1         FR_Tmp = FR_Tmp1, FR_Tmp1, f0           // (|x|+1)^2, x<0
      mov            GR_0x1 = 0x1 
}
;;

//p8: y = 1.0, x = 0.0,quick exit 
{ .mfi
      ldfpd          FR_dx,FR_dx1 = [GR_ad_Arg], 16
      fclass.m       p9,p0 = f8, 0x22                          // p9: x = -inf
      nop.i          0

}
{ .mfb
      nop.m          0      
(p8)  fma.s0         f8 = f1, f1, f0     
(p8)  br.ret.spnt    b0             
}
;;

{ .mfi
      ldfe           FR_UnfBound = [GR_ad_Arg], 16      
      fclass.m       p11,p0 = f8, 0xc3                        // p11: x = nan
      mov            GR_BIAS = 0x0FFFF 
}
{ .mfi
      nop.m          0
      fma.s1         FR_NormX = f8,f1,f0
      nop.i          0
}
;;

{ .mfi
      ldfe           FR_EpsNorm = [GR_ad_Arg], 16
      fmerge.s       FR_X = f8,f8
      nop.i          0
}
{ .mfi
      nop.m          0
      fma.s1         FR_xsq_lo = f8, f8, FR_norm_x        // low bits for -x^2
      nop.i          0
}
;;

{ .mfi
      add            GR_ad_C = 0x20, GR_ad_Arg             // Point to C table
      nop.f          0 
      add            GR_ad_T1 = 0x50, GR_ad_Arg           // Point to T1 table
}
{ .mfi
      add            GR_ad_T2 = 0x150, GR_ad_Arg          // Point to T2 table
      nop.f          0 
      add            GR_ERFC_XC_TB = GR_ERFC_XC_TB, GR_ad_Arg //poin.to XB_TBL
}
;;

{ .mfi
      getf.exp       GR_signexp_x = FR_norm_x  // Extr. sign and exponent of x
      fma.s1         FR_Tmp = FR_Tmp, FR_Tmp, f0                  // (|x|+1)^4
      add            GR_ad_W1 = 0x100, GR_ad_T2           // Point to W1 table
}
{ .mfi
      ldfe           FR_L_hi = [GR_ad_Arg],16                      // Get L_hi
      nop.f          0
      add            GR_ad_W2 = 0x300, GR_ad_T2           // Point to W2 table
}
;;

// p9: y = 2.0, x = -inf, quick exit
{ .mfi
      sub            GR_mBIAS = r0, GR_BIAS 
      fma.s1         FR_2 = f1, f1, f1
      nop.i          0      
}
{ .mfb
      ldfe           FR_L_lo = [GR_ad_Arg],16                      // Get L_lo
(p9)  fma.s0         f8 = f1, f1, f1  
(p9)  br.ret.spnt    b0 
}
;;

// p10: y = 0.0, x = +inf, quick exit
{ .mfi
      adds           GR_ERFC_P_TB = 0x380, GR_ERFC_XC_TB   // pointer to P_TBL
      fma.s1         FR_N_signif = FR_norm_x, FR_INV_LN2_2TO63, FR_RSHF_2TO51
      and            GR_exp_x = GR_signexp_x, GR_exp_mask
}
{ .mfb    
      adds           GR_ERFC_S_TB = 0x1C0, GR_ERFC_XC_TB   // pointer to S_TBL
(p10) fma.s0         f8 = f0, f1, f0 
(p10) br.ret.spnt    b0  
}
;;

// p12: |x| < 0.681...  ->  dx = 0.875 (else dx = 0.625 )
// p11: y = x, x = nan, quick exit
{ .mfi
      ldfe           FR_C3 = [GR_ad_C],16           // Get C3 for normal path
      fcmp.lt.s1     p12,p0 = FR_AbsArg, FR_ch_dx          
      shl            GR_ShftPi_bias = GR_BIAS, 8                //  BIAS * 256
}
{ .mfb
      sub            GR_exp_x = GR_exp_x, GR_exp_bias          // Get exponent
(p11) fma.s0         f8 = f8, f1, f0
(p11) br.ret.spnt    b0                     

}
;;

{ .mfi
      ldfe           FR_C2 = [GR_ad_C],16              // Get A2 for main path
      nop.f          0
      nop.i          0
}
;;

//p15: x > POS_ARG_ASYMP = 107.0 -> erfcl(x) ~=~ 0.0
{ .mfi
      ldfe           FR_C1 = [GR_ad_C],16              // Get C1 for main path
(p6)  fcmp.gt.unc.s1 p15,p0 = FR_AbsArg, FR_POS_ARG_ASYMP        // p6: x >= 0
      nop.i          0    
}
{ .mfb
      nop.m          0
(p12) fma.s1         FR_dx = FR_dx1, f1, f0   //p12: dx = 0.875 for x < 0.681
      nop.b          0
}
;;

//p14: x < - NEG_ARG_ASYMP = -6.5 -> erfcl(x) ~=~ 2.0
{ .mfi
      nop.m          0
(p7)  fcmp.gt.unc.s1 p14,p0 = FR_AbsArg,FR_NEG_ARG_ASYMP          // p7: x < 0
      shladd         GR_ShftXBi_bias = GR_mBIAS, 4, r0
}
;; 

{ .mfi
      nop.m          0
      fma.s0         FR_Tmpf = f1, f1, FR_EpsNorm                    // flag i
      nop.i          0
}
{ .mfi
      nop.m          0
      fms.s1         FR_float_N = FR_N_signif, FR_2TOM51, FR_RSHF  
      nop.i          0
}
;;

// p8: x < UnfBound ~=~ 106.53... -> result without underflow error
// p14: y ~=~ 2, x < -6.5,quick exit
{ .mfi
      getf.exp       GR_IndxPlusBias = FR_Tmp      // exp + bias for (|x|+1)^4
      fcmp.lt.s1     p8,p0 = FR_NormX,FR_UnfBound   
      nop.i          0
}
{ .mfb
      nop.m          0
(p14) fnma.s0        FR_RESULT = FR_EpsNorm,FR_EpsNorm,FR_2
(p14) br.ret.spnt    b0               

}
;;

// p15: y ~=~ 0.0 (result with underflow error), x > POS_ARG_ASYMP = 107.0,
// call __libm_error_region 
{ .mfb
(p15) mov            GR_Parameter_TAG = 207
(p15) fma.s0         FR_RESULT = FR_EpsNorm,FR_EpsNorm,f0 
(p15) br.cond.spnt   __libm_error_region        
}
;;

{ .mfi
      getf.sig       GR_N_fix = FR_N_signif          // Get N from significand
      nop.f          0
      shl            GR_ShftPi = GR_IndxPlusBias, 8
     
}
{ .mfi
      shladd         GR_ShftXBi = GR_IndxPlusBias, 4, GR_ShftXBi_bias
      nop.f          0
      nop.i          0
}
;;

{ .mmi
      add            GR_ERFC_S_TB = GR_ERFC_S_TB, GR_ShftXBi    //poin.to S[i]
      add            GR_ERFC_XC_TB = GR_ERFC_XC_TB, GR_ShftXBi //poin.to XC[i]
      sub            GR_ShftPi = GR_ShftPi, GR_ShftPi_bias            // 256*i
}
;;

{ .mfi
      ldfe           FR_Xc  = [GR_ERFC_XC_TB]
      fma.s1         FR_Xpdx_hi = FR_AbsArg, f1, FR_dx              //  x + dx
      add            GR_ShftA14 = 0xE0, GR_ShftPi     // pointer shift for A14

 
}
{ .mfi
      ldfe           FR_S  = [GR_ERFC_S_TB]
      fnma.s1        FR_r = FR_L_hi, FR_float_N, FR_norm_x//r= -L_hi*float_N+x
      add            GR_ShftA15 = 0xF0, GR_ShftPi     // pointer shift for A15
}
;;

{ .mfi
      add            GR_P_POINT_1 = GR_ERFC_P_TB, GR_ShftA14 // pointer to A14
      fcmp.gt.s1     p9,p10 = FR_AbsArg, FR_dx      //p9: x > dx, p10: x <= dx
      extr.u         GR_M1 = GR_N_fix, 6, 6               // Extract index M_1
}
{ .mfi
      add            GR_P_POINT_2 = GR_ERFC_P_TB, GR_ShftA15 // pointer to A15
      nop.f          0
      nop.i          0

}
;;

{ .mfi              
      ldfe           FR_A14 = [GR_P_POINT_1], -32
      nop.f          0                  
      extr.u         GR_M2 = GR_N_fix, 0, 6               // Extract index M_2
}
{ .mfi              
      ldfe           FR_A15 = [GR_P_POINT_2], -32
      nop.f          0            
      shladd         GR_ad_W1 = GR_M1,3,GR_ad_W1                // Point to W1
}
;;

{ .mfi
      ldfe           FR_A12 = [GR_P_POINT_1], -64
      nop.f          0
      extr           GR_K = GR_N_fix, 12, 32         // Extract limite range K
}
{ .mfi
      ldfe           FR_A13 = [GR_P_POINT_2], -64
      nop.f          0
      shladd         GR_ad_T1 = GR_M1,2,GR_ad_T1                // Point to T1
}
;;    

{ .mfi
      ldfe           FR_A8 = [GR_P_POINT_1], 32
      nop.f          0
      add            GR_exp_2_k = GR_exp_bias, GR_K    // Form exponent of 2^k
}
{ .mfi
      ldfe           FR_A9 = [GR_P_POINT_2], 32
      nop.f          0
      shladd         GR_ad_W2 = GR_M2,3,GR_ad_W2                // Point to W2
}
;;
  
{ .mfi
      ldfe           FR_A10 = [GR_P_POINT_1], -96   
      nop.f          0
      shladd         GR_ad_T2 = GR_M2,2,GR_ad_T2                // Point to T2
}
{ .mfi
      ldfe           FR_A11 = [GR_P_POINT_2], -96    
      fnma.s1        FR_r = FR_L_lo, FR_float_N, FR_r //r = -L_lo*float_N + r
      nop.i          0
}
;;   

{ .mfi              
      ldfe           FR_A4 = [GR_P_POINT_1], 32
(p10) fms.s1         FR_Tmp = FR_dx,f1, FR_Xpdx_hi   //for lo  of  x+dx, x<=dx
      nop.i          0
}
{ .mfi              
      ldfe           FR_A5 = [GR_P_POINT_2], 32
(p9)  fms.s1         FR_Tmp = FR_AbsArg, f1, FR_Xpdx_hi //for lo of x+dx, x>dx
      nop.i          0
}
;;

{ .mfi       
      ldfe           FR_A6 = [GR_P_POINT_1], -64     
      frcpa.s1       FR_U,p11 = f1, FR_Xpdx_hi          //  hi of  1 /(x + dx)
      nop.i          0
}
{ .mfi      
      ldfe           FR_A7 = [GR_P_POINT_2], -64  
      nop.f          0
      nop.i          0
}
;;

{ .mfi
      ldfe           FR_A2 = [GR_P_POINT_1], -32
      nop.f          0            
      nop.i          0       
}
{ .mfi
      ldfe           FR_A3 = [GR_P_POINT_2], -32
      nop.f          0      
      nop.i          0       
}
;;

{ .mfi      
      ldfe           FR_A0 = [GR_P_POINT_1], 224
      nop.f          0
      nop.i          0
}
{ .mfi
      ldfe           FR_A1 = [GR_P_POINT_2]
      fms.s1         FR_LocArg = FR_AbsArg, f1, FR_Xc       // xloc = x - x[i]
      nop.i          0
}
;;

{ .mfi
      ldfd           FR_W1 = [GR_ad_W1],0                            // Get W1
      nop.f          0            
      nop.i          0       
}
{ .mfi
      ldfd           FR_W2 = [GR_ad_W2],0                            // Get W2
      fma.s1         FR_poly = FR_r, FR_C3, FR_C2        // poly = r * A3 + A2
      nop.i          0       
}
;;

{ .mfi
      ldfs           FR_T1 = [GR_ad_T1],0                            // Get T1
(p10) fma.s1         FR_Xpdx_lo = FR_AbsArg,f1, FR_Tmp//lo of x + dx , x <= dx
      nop.i          0 
}
{ .mfi
      ldfs           FR_T2 = [GR_ad_T2],0                            // Get T2
(p9)  fma.s1         FR_Xpdx_lo = FR_dx,f1, FR_Tmp   // lo  of  x + dx, x > dx
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fnma.s1        FR_Tmp1 = FR_Xpdx_hi, FR_U, FR_2        //  N-R, iter. N1
      nop.i          0 
}
{ .mfi
      nop.m          0
      fmpy.s1        FR_rsq = FR_r, FR_r                        // rsq = r * r
      nop.i          0 
}
;;

{ .mfi
      setf.exp       FR_scale = GR_exp_2_k                  // Set scale = 2^k
      fma.s1         FR_P15_1_1 = FR_LocArg, FR_LocArg, f0          // xloc ^2
      nop.i          0
}
{ .mfi
      nop.m          0 
      fma.s1         FR_P15_0_1 = FR_A15, FR_LocArg, FR_A14 
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_P15_1_2 = FR_A13, FR_LocArg, FR_A12 
      nop.i          0 
}
{ .mfi
      nop.m          0
      fma.s1         FR_poly = FR_r, FR_poly, FR_C1    // poly = r * poly + A1
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_P15_2_1 = FR_A9, FR_LocArg, FR_A8 
      nop.i          0 
}
{ .mfi
      nop.m          0
      fma.s1         FR_P15_2_2 = FR_A11, FR_LocArg, FR_A10 
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_U = FR_U, FR_Tmp1, f0                //  N-R, iter. N1
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_P15_3_1 = FR_A5, FR_LocArg, FR_A4
      nop.i          0                   
}
{ .mfi
      nop.m          0
      fma.s1         FR_P15_3_2 = FR_A7, FR_LocArg, FR_A6
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_P15_4_2 = FR_A3, FR_LocArg, FR_A2
      nop.i          0
}
{ .mfi
      nop.m          0
      fma.s1         FR_W = FR_W1, FR_W2, FR_W2            // W = W1 * W2 + W2
      nop.i          0
}
;; 
                      
{ .mfi
      nop.m          0
      fmpy.s1        FR_T = FR_T1, FR_T2                        // T = T1 * T2
      nop.i          0
}
{ .mfi
      nop.m          0
      fma.s1         FR_P15_7_1 = FR_P15_0_1, FR_P15_1_1, FR_P15_1_2
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_P15_7_2 = FR_P15_1_1, FR_P15_1_1, f0         // xloc^4
      nop.i          0
}
{ .mfi
      nop.m          0
      fma.s1         FR_P15_8_1 = FR_P15_1_1, FR_P15_2_2, FR_P15_2_1
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fnma.s1        FR_Tmp = FR_Xpdx_hi, FR_U, FR_2         //  N-R, iter. N2
      nop.i          0
}

{ .mfi
      nop.m          0
      fma.s1         FR_poly = FR_rsq, FR_poly, FR_r  // poly = rsq * poly + r
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_P15_9_1 = FR_P15_1_1, FR_P15_4_2, FR_A0
      nop.i          0
}
{ .mfi
      nop.m          0
      fma.s1         FR_P15_9_2 = FR_P15_1_1, FR_P15_3_2, FR_P15_3_1
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_W = FR_W, f1, FR_W1                      // W = W + W1
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_T_scale = FR_T, FR_scale, f0    // T_scale = T * scale
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_P15_13_1 = FR_P15_7_2, FR_P15_7_1, FR_P15_8_1
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_U = FR_U, FR_Tmp, f0                 //  N-R, iter. N2
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_P15_14_1 = FR_P15_7_2, FR_P15_9_2, FR_P15_9_1
      nop.i          0
}
{ .mfi
      nop.m          0
      fma.s1         FR_P15_14_2 = FR_P15_7_2, FR_P15_7_2, f0        // xloc^8
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_M =  FR_T_scale, FR_S, f0 
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fnma.s1        FR_Tmp = FR_Xpdx_hi, FR_U, FR_2         //  N-R, iter. N3
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_Q = FR_P15_14_2, FR_P15_13_1, FR_P15_14_1
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fms.s1         FR_H = FR_W, f1, FR_xsq_lo              // H = W - xsq_lo
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_U = FR_U, FR_Tmp, f0                 //  N-R, iter. N3
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_Q = FR_A1, FR_LocArg, FR_Q         
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fnma.s1        FR_Tmp = FR_Xpdx_hi, FR_U, f1                   // for du
      nop.i          0 
}
{ .mfi
      nop.m          0
      fma.s1         FR_R = FR_H, FR_poly, FR_poly  
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_res_pos_x_hi = FR_M, FR_U, f0                 //  M *U
      nop.i          0
 
}
;;  

{ .mfi
      nop.m          0
      fma.s1         FR_R = FR_R, f1, FR_H            // R = H + P(r) + H*P(r)
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fma.s0         FR_Tmpf = f8, f1, f0                          //  flag  d
      nop.i          0 
}
;;

{ .mfi
      nop.m          0
      fnma.s1        FR_dU = FR_Xpdx_lo, FR_U, FR_Tmp 
      nop.i          0 
}
;;

// p7: we begin to calculate y(x) = 2 - erfcl(-x) in multi precision
// for -6.5 <= x < 0
{ .mfi
      nop.m          0
      fms.s1         FR_res_pos_x_lo = FR_M, FR_U, FR_res_pos_x_hi 
      nop.i          0                      
 
}
{ .mfi
      nop.m          0
(p7)  fnma.s1        FR_Tmp1 = FR_res_pos_x_hi, f1, FR_2           //p7: x < 0
      nop.i          0                      
 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_G = FR_R, FR_Q, FR_Q    
      nop.i          0
 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_Tmp = FR_R, f1, FR_dU                       //  R + du
      nop.i          0
 
}
;;

{ .mfi
      nop.m          0
(p7)  fnma.s1        FR_Tmp2 = FR_Tmp1, f1, FR_2                   //p7: x < 0
      nop.i          0                      
 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_G = FR_G, f1, FR_Tmp    
      nop.i          0
 
}
;;

{ .mfi
      nop.m          0
(p7)  fnma.s1        FR_Tmp2 = FR_res_pos_x_hi, f1, FR_Tmp2        //p7: x < 0
      nop.i          0                      
 
}
;;

{ .mfi
      nop.m          0
      fma.s1         FR_V = FR_G, FR_res_pos_x_hi, f0          // V = G * M *U
      nop.i          0
 
}
;;

{ .mfi
      nop.m          0
(p7)  fma.s1         FR_res_pos_x_lo = FR_res_pos_x_lo, f1, FR_V   //p7: x < 0
      nop.i          0                      
 
}
;;

{ .mfi
      nop.m          0
(p7)  fnma.s1        FR_Tmp2 = FR_res_pos_x_lo, f1, FR_Tmp2        //p7: x < 0
      nop.i          0                      
 
}
;;


//p6: result for     0 < x < = POS_ARG_ASYMP 
//p7: result for   - NEG_ARG_ASYMP  <= x < 0
//p8: exit   for   - NEG_ARG_ASYMP  <=   x < UnfBound

ERFC_RESULT:                 
.pred.rel "mutex",p6,p7
{ .mfi
      nop.m          0
(p6)  fma.s0         f8 = FR_M, FR_U, FR_V                       // p6: x >= 0
      nop.i          0         
}
{ .mfb
      mov            GR_Parameter_TAG = 207
(p7)  fma.s0         f8 = FR_Tmp2, f1, FR_Tmp1                    // p7: x < 0
(p8)  br.ret.sptk    b0                                      
};;

GLOBAL_LIBM_END(erfcl)

// call via (p15) br.cond.spnt   __libm_error_region
//          for  x > POS_ARG_ASYMP
// or
//
// after .endp erfcl for UnfBound < = x < = POS_ARG_ASYMP

LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
        add   GR_Parameter_Y=-32,sp                       // Parameter 2 value
        nop.f 0
.save   ar.pfs,GR_SAVE_PFS
        mov  GR_SAVE_PFS=ar.pfs                                 // Save ar.pfs
}
{ .mfi
.fframe 64 
        add sp=-64,sp                                      // Create new stack
        nop.f 0
        mov GR_SAVE_GP=gp                                           // Save gp
};;
{ .mmi
        stfe [GR_Parameter_Y] = FR_Y,16          // STORE Parameter 2 on stack
        add GR_Parameter_X = 16,sp                      // Parameter 1 address
.save   b0, GR_SAVE_B0                      
        mov GR_SAVE_B0=b0                                           // Save b0
};;
.body
{ .mib
        stfe [GR_Parameter_X] = FR_X             // STORE Parameter 1 on stack
        add   GR_Parameter_RESULT = 0,GR_Parameter_Y    // Parameter 3 address
        nop.b 0        
}
{ .mib
        stfe [GR_Parameter_Y] = FR_RESULT        // STORE Parameter 3 on stack
        add   GR_Parameter_Y = -16,GR_Parameter_Y  
        br.call.sptk b0=__libm_error_support#  // Call error handling function
};;
{ .mmi
        nop.m 0
        nop.m 0
        add   GR_Parameter_RESULT = 48,sp
};;
{ .mmi
        ldfe  f8 = [GR_Parameter_RESULT]        // Get return result off stack
.restore sp
        add   sp = 64,sp                              // Restore stack pointer
        mov   b0 = GR_SAVE_B0                        // Restore return address
};;
{ .mib
        mov   gp = GR_SAVE_GP                                    // Restore gp
        mov   ar.pfs = GR_SAVE_PFS                           // Restore ar.pfs
        br.ret.sptk     b0                                           // Return
};; 

LOCAL_LIBM_END(__libm_error_region)
.type   __libm_error_support#,@function
.global __libm_error_support#