1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
|
;;; calc-alg.el --- algebraic functions for Calc -*- lexical-binding:t -*-
;; Copyright (C) 1990-1993, 2001-2021 Free Software Foundation, Inc.
;; Author: David Gillespie <daveg@synaptics.com>
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;;; Code:
;; This file is autoloaded from calc-ext.el.
(require 'calc-ext)
(require 'calc-macs)
;;; Algebra commands.
(defvar math-simplify-only)
(defun calc-alg-evaluate (arg)
(interactive "p")
(calc-slow-wrapper
(calc-with-default-simplification
(let ((math-simplify-only nil))
(calc-modify-simplify-mode arg)
(calc-enter-result 1 "dsmp" (calc-top 1))))))
(defvar calc-simplify-mode)
(defun calc-modify-simplify-mode (arg)
(if (= (math-abs arg) 2)
(setq calc-simplify-mode 'alg)
(if (>= (math-abs arg) 3)
(setq calc-simplify-mode 'ext)))
(if (< arg 0)
(setq calc-simplify-mode (list calc-simplify-mode))))
(defun calc-simplify ()
(interactive)
(calc-slow-wrapper
(let ((top (calc-top-n 1)))
(if (calc-is-inverse)
(setq top
(let ((calc-simplify-mode nil))
(math-normalize (math-trig-rewrite top)))))
(if (calc-is-hyperbolic)
(setq top
(let ((calc-simplify-mode nil))
(math-normalize (math-hyperbolic-trig-rewrite top)))))
(calc-with-default-simplification
(calc-enter-result 1 "simp" (math-simplify top))))))
(defun calc-simplify-extended ()
(interactive)
(calc-slow-wrapper
(calc-with-default-simplification
(calc-enter-result 1 "esmp" (math-simplify-extended (calc-top-n 1))))))
(defvar math-expand-formulas)
(defun calc-expand-formula (arg)
(interactive "p")
(calc-slow-wrapper
(calc-with-default-simplification
(let ((math-simplify-only nil))
(calc-modify-simplify-mode arg)
(calc-enter-result 1 "expf"
(if (> arg 0)
(let ((math-expand-formulas t))
(calc-top-n 1))
(let ((top (calc-top-n 1)))
(or (math-expand-formula top)
top))))))))
(defun calc-factor (arg)
(interactive "P")
(calc-slow-wrapper
(calc-unary-op "fctr" (if (calc-is-hyperbolic)
'calcFunc-factors 'calcFunc-factor)
arg)))
(defun calc-expand (n)
(interactive "P")
(calc-slow-wrapper
(calc-enter-result 1 "expa"
(append (list 'calcFunc-expand
(calc-top-n 1))
(and n (list (prefix-numeric-value n)))))))
;;; Write out powers (a*b*...)^n as a*b*...*a*b*...
(defun calcFunc-powerexpand (expr)
(math-normalize (math-map-tree 'math-powerexpand expr)))
(defun math-powerexpand (expr)
(if (eq (car-safe expr) '^)
(let ((n (nth 2 expr)))
(cond ((and (integerp n)
(> n 0))
(let ((i 1)
(a (nth 1 expr))
(prod (nth 1 expr)))
(while (< i n)
(setq prod (math-mul prod a))
(setq i (1+ i)))
prod))
((and (integerp n)
(< n 0))
(let ((i -1)
(a (math-pow (nth 1 expr) -1))
(prod (math-pow (nth 1 expr) -1)))
(while (> i n)
(setq prod (math-mul a prod))
(setq i (1- i)))
prod))
(t
expr)))
expr))
(defun calc-powerexpand ()
(interactive)
(calc-slow-wrapper
(calc-enter-result 1 "pexp"
(calcFunc-powerexpand (calc-top-n 1)))))
(defun calc-collect (&optional var)
(interactive "sCollect terms involving: ")
(calc-slow-wrapper
(if (or (equal var "") (equal var "$") (null var))
(calc-enter-result 2 "clct" (cons 'calcFunc-collect
(calc-top-list-n 2)))
(let ((var (math-read-expr var)))
(if (eq (car-safe var) 'error)
(error "Bad format in expression: %s" (nth 1 var)))
(calc-enter-result 1 "clct" (list 'calcFunc-collect
(calc-top-n 1)
var))))))
(defun calc-apart (arg)
(interactive "P")
(calc-slow-wrapper
(calc-unary-op "aprt" 'calcFunc-apart arg)))
(defun calc-normalize-rat (arg)
(interactive "P")
(calc-slow-wrapper
(calc-unary-op "nrat" 'calcFunc-nrat arg)))
(defun calc-poly-gcd (arg)
(interactive "P")
(calc-slow-wrapper
(calc-binary-op "pgcd" 'calcFunc-pgcd arg)))
(defvar calc-poly-div-remainder)
(defun calc-poly-div (arg)
(interactive "P")
(calc-slow-wrapper
(let ((calc-poly-div-remainder nil))
(calc-binary-op "pdiv" 'calcFunc-pdiv arg)
(if (and calc-poly-div-remainder (null arg))
(progn
(calc-clear-command-flag 'clear-message)
(calc-record calc-poly-div-remainder "prem")
(if (not (Math-zerop calc-poly-div-remainder))
(message "(Remainder was %s)"
(math-format-flat-expr calc-poly-div-remainder 0))
(message "(No remainder)")))))))
(defun calc-poly-rem (arg)
(interactive "P")
(calc-slow-wrapper
(calc-binary-op "prem" 'calcFunc-prem arg)))
(defun calc-poly-div-rem (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-hyperbolic)
(calc-binary-op "pdvr" 'calcFunc-pdivide arg)
(calc-binary-op "pdvr" 'calcFunc-pdivrem arg))))
(defun calc-substitute (&optional oldname newname)
(interactive "sSubstitute old: ")
(calc-slow-wrapper
(let (old new (num 1) expr)
(if (or (equal oldname "") (equal oldname "$") (null oldname))
(setq new (calc-top-n 1)
old (calc-top-n 2)
expr (calc-top-n 3)
num 3)
(or newname
(progn (calc-unread-command ?\C-a)
(setq newname (read-string (concat "Substitute old: "
oldname
", new: ")
oldname))))
(if (or (equal newname "") (equal newname "$") (null newname))
(setq new (calc-top-n 1)
expr (calc-top-n 2)
num 2)
(setq new (if (stringp newname) (math-read-expr newname) newname))
(if (eq (car-safe new) 'error)
(error "Bad format in expression: %s" (nth 1 new)))
(setq expr (calc-top-n 1)))
(setq old (if (stringp oldname) (math-read-expr oldname) oldname))
(if (eq (car-safe old) 'error)
(error "Bad format in expression: %s" (nth 1 old)))
(or (math-expr-contains expr old)
(error "No occurrences found")))
(calc-enter-result num "sbst" (math-expr-subst expr old new)))))
(defun calc-has-rules (name)
(setq name (calc-var-value name))
(and (consp name)
(memq (car name) '(vec calcFunc-assign calcFunc-condition))
name))
;; math-eval-rules-cache and math-eval-rules-cache-other are
;; declared in calc.el, but are used here by math-recompile-eval-rules.
(defvar math-eval-rules-cache)
(defvar math-eval-rules-cache-other)
(defun math-recompile-eval-rules ()
(setq math-eval-rules-cache (and (calc-has-rules 'var-EvalRules)
(math-compile-rewrites
'(var EvalRules var-EvalRules)))
math-eval-rules-cache-other (assq nil math-eval-rules-cache)
math-eval-rules-cache-tag (calc-var-value 'var-EvalRules)))
;;; Try to expand a formula according to its definition.
(defun math-expand-formula (expr)
(and (consp expr)
(symbolp (car expr))
(or (get (car expr) 'calc-user-defn)
(get (car expr) 'math-expandable))
(let ((res (let ((math-expand-formulas t))
(apply (car expr) (cdr expr)))))
(and (not (eq (car-safe res) (car expr)))
res))))
;;; True if A comes before B in a canonical ordering of expressions. [P X X]
(defun math-beforep (a b) ; [Public]
(cond ((and (Math-realp a) (Math-realp b))
(let ((comp (math-compare a b)))
(or (eq comp -1)
(and (eq comp 0)
(not (equal a b))
(> (length (memq (car-safe a)
'(nil frac float)))
(length (memq (car-safe b)
'(nil frac float))))))))
((equal b '(neg (var inf var-inf))) nil)
((equal a '(neg (var inf var-inf))) t)
((equal a '(var inf var-inf)) nil)
((equal b '(var inf var-inf)) t)
((Math-realp a)
(if (and (eq (car-safe b) 'intv) (math-intv-constp b))
(if (or (math-beforep a (nth 2 b)) (Math-equal a (nth 2 b)))
t
nil)
t))
((Math-realp b)
(if (and (eq (car-safe a) 'intv) (math-intv-constp a))
(if (math-beforep (nth 2 a) b)
t
nil)
nil))
((and (eq (car a) 'intv) (eq (car b) 'intv)
(math-intv-constp a) (math-intv-constp b))
(let ((comp (math-compare (nth 2 a) (nth 2 b))))
(cond ((eq comp -1) t)
((eq comp 1) nil)
((and (memq (nth 1 a) '(2 3)) (memq (nth 1 b) '(0 1))) t)
((and (memq (nth 1 a) '(0 1)) (memq (nth 1 b) '(2 3))) nil)
((eq (setq comp (math-compare (nth 3 a) (nth 3 b))) -1) t)
((eq comp 1) nil)
((and (memq (nth 1 a) '(0 2)) (memq (nth 1 b) '(1 3))) t)
(t nil))))
((not (eq (not (Math-objectp a)) (not (Math-objectp b))))
(Math-objectp a))
((eq (car a) 'var)
(if (eq (car b) 'var)
(string-lessp (nth 1 a) (nth 1 b))
(not (Math-numberp b))))
((eq (car b) 'var) (Math-numberp a))
((eq (car a) (car b))
(while (and (setq a (cdr a) b (cdr b)) a
(equal (car a) (car b))))
(and b
(or (null a)
(math-beforep (car a) (car b)))))
(t (string-lessp (car a) (car b)))))
(defvar math-living-dangerously)
(defsubst math-simplify-extended (a)
(let ((math-living-dangerously t))
(math-simplify a)))
(defalias 'calcFunc-esimplify #'math-simplify-extended)
;;; Rewrite the trig functions in a form easier to simplify.
(defun math-trig-rewrite (fn)
"Rewrite trigonometric functions in terms of sines and cosines."
(cond
((not (consp fn))
fn)
((eq (car-safe fn) 'calcFunc-sec)
(list '/ 1 (cons 'calcFunc-cos (math-trig-rewrite (cdr fn)))))
((eq (car-safe fn) 'calcFunc-csc)
(list '/ 1 (cons 'calcFunc-sin (math-trig-rewrite (cdr fn)))))
((eq (car-safe fn) 'calcFunc-tan)
(let ((newfn (math-trig-rewrite (cdr fn))))
(list '/ (cons 'calcFunc-sin newfn)
(cons 'calcFunc-cos newfn))))
((eq (car-safe fn) 'calcFunc-cot)
(let ((newfn (math-trig-rewrite (cdr fn))))
(list '/ (cons 'calcFunc-cos newfn)
(cons 'calcFunc-sin newfn))))
(t
(mapcar #'math-trig-rewrite fn))))
(defun math-hyperbolic-trig-rewrite (fn)
"Rewrite hyperbolic functions in terms of sinhs and coshs."
(cond
((not (consp fn))
fn)
((eq (car-safe fn) 'calcFunc-sech)
(list '/ 1 (cons 'calcFunc-cosh (math-hyperbolic-trig-rewrite (cdr fn)))))
((eq (car-safe fn) 'calcFunc-csch)
(list '/ 1 (cons 'calcFunc-sinh (math-hyperbolic-trig-rewrite (cdr fn)))))
((eq (car-safe fn) 'calcFunc-tanh)
(let ((newfn (math-hyperbolic-trig-rewrite (cdr fn))))
(list '/ (cons 'calcFunc-sinh newfn)
(cons 'calcFunc-cosh newfn))))
((eq (car-safe fn) 'calcFunc-coth)
(let ((newfn (math-hyperbolic-trig-rewrite (cdr fn))))
(list '/ (cons 'calcFunc-cosh newfn)
(cons 'calcFunc-sinh newfn))))
(t
(mapcar #'math-hyperbolic-trig-rewrite fn))))
;; math-top-only is local to math-simplify, but is used by
;; math-simplify-step, which is called by math-simplify.
(defvar math-top-only)
(defun calc-input-angle-units (input)
(cond ((math-expr-contains input '(var deg var-deg)) 'deg)
((math-expr-contains input '(var rad var-rad)) 'rad)
((math-expr-contains input '(var hms var-hms)) 'hms)
(t nil)))
;; math-normalize-error is declared in calc.el.
(defvar math-normalize-error)
(defvar math-simplifying)
(defvar calc-angle-mode)
(defun math-simplify (top-expr)
(let ((math-simplifying t)
(calc-angle-mode (if (calc-input-angle-units top-expr)
'rad
calc-angle-mode))
(math-top-only (consp calc-simplify-mode))
(simp-rules (append (and (calc-has-rules 'var-AlgSimpRules)
'((var AlgSimpRules var-AlgSimpRules)))
(and math-living-dangerously
(calc-has-rules 'var-ExtSimpRules)
'((var ExtSimpRules var-ExtSimpRules)))
(and math-simplifying-units
(calc-has-rules 'var-UnitSimpRules)
'((var UnitSimpRules var-UnitSimpRules)))
(and math-integrating
(calc-has-rules 'var-IntegSimpRules)
'((var IntegSimpRules var-IntegSimpRules)))))
res)
(if math-top-only
(let ((r simp-rules))
(setq res (math-simplify-step (math-normalize top-expr))
calc-simplify-mode '(nil)
top-expr (math-normalize res))
(while r
(setq top-expr (math-rewrite top-expr (car r)
'(neg (var inf var-inf)))
r (cdr r))))
(calc-with-default-simplification
(while (let ((r simp-rules))
(setq res (math-normalize top-expr))
(if (not math-normalize-error)
(progn
(while r
(setq res (math-rewrite res (car r))
r (cdr r)))
(not (equal top-expr (setq res (math-simplify-step res)))))))
(setq top-expr res)))))
top-expr)
(defalias 'calcFunc-simplify #'math-simplify)
;; The following has a "bug" in that if any recursive simplifications
;; occur only the first handler will be tried; this doesn't really
;; matter, since math-simplify-step is iterated to a fixed point anyway.
(defun math-simplify-step (a)
(if (Math-primp a)
a
(let ((aa (if (or math-top-only
(memq (car a) '(calcFunc-quote calcFunc-condition
calcFunc-evalto)))
a
(cons (car a) (mapcar #'math-simplify-step (cdr a))))))
(and (symbolp (car aa))
(let ((handler (get (car aa) 'math-simplify)))
(and handler
(while (and handler
(equal (setq aa (or (funcall (car handler) aa)
aa))
a))
(setq handler (cdr handler))))))
aa)))
(defmacro math-defsimplify (funcs &rest code)
"Define the simplification code for functions FUNCS.
Code can refer to the expression to simplify via lexical variable `expr'
and should return the simplified expression to use (or nil)."
(declare (indent 1) (debug (sexp body)))
(cons 'progn
(mapcar #'(lambda (func)
`(put ',func 'math-simplify
(nconc
(get ',func 'math-simplify)
(list
#'(lambda (expr) ,@code)))))
(if (symbolp funcs) (list funcs) funcs))))
(math-defsimplify (+ -)
(cond ((and (memq (car-safe (nth 1 expr)) '(+ -))
(Math-numberp (nth 2 (nth 1 expr)))
(not (Math-numberp (nth 2 expr))))
(let ((x (nth 2 expr))
(op (car expr)))
(setcar (cdr (cdr expr)) (nth 2 (nth 1 expr)))
(setcar expr (car (nth 1 expr)))
(setcar (cdr (cdr (nth 1 expr))) x)
(setcar (nth 1 expr) op)))
((and (eq (car expr) '+)
(Math-numberp (nth 1 expr))
(not (Math-numberp (nth 2 expr))))
(let ((x (nth 2 expr)))
(setcar (cdr (cdr expr)) (nth 1 expr))
(setcar (cdr expr) x))))
(let ((aa expr)
aaa temp)
(while (memq (car-safe (setq aaa (nth 1 aa))) '(+ -))
(if (setq temp (math-combine-sum (nth 2 aaa) (nth 2 expr)
(eq (car aaa) '-)
(eq (car expr) '-) t))
(progn
(setcar (cdr (cdr expr)) temp)
(setcar expr '+)
(setcar (cdr (cdr aaa)) 0)))
(setq aa (nth 1 aa)))
(if (setq temp (math-combine-sum aaa (nth 2 expr)
nil (eq (car expr) '-) t))
(progn
(setcar (cdr (cdr expr)) temp)
(setcar expr '+)
(setcar (cdr aa) 0)))
expr))
(math-defsimplify *
(if (eq (car-safe (nth 2 expr)) '*)
(and (math-beforep (nth 1 (nth 2 expr)) (nth 1 expr))
(or (math-known-scalarp (nth 1 expr) t)
(math-known-scalarp (nth 1 (nth 2 expr)) t))
(let ((x (nth 1 expr)))
(setcar (cdr expr) (nth 1 (nth 2 expr)))
(setcar (cdr (nth 2 expr)) x)))
(and (math-beforep (nth 2 expr) (nth 1 expr))
(or (math-known-scalarp (nth 1 expr) t)
(math-known-scalarp (nth 2 expr) t))
(let ((x (nth 2 expr)))
(setcar (cdr (cdr expr)) (nth 1 expr))
(setcar (cdr expr) x))))
(let ((aa expr)
aaa temp
(safe t) (scalar (math-known-scalarp (nth 1 expr))))
(if (and (Math-ratp (nth 1 expr))
(setq temp (math-common-constant-factor (nth 2 expr))))
(progn
(setcar (cdr (cdr expr))
(math-cancel-common-factor (nth 2 expr) temp))
(setcar (cdr expr) (math-mul (nth 1 expr) temp))))
(while (and (eq (car-safe (setq aaa (nth 2 aa))) '*)
safe)
(if (setq temp (math-combine-prod (nth 1 expr)
(nth 1 aaa) nil nil t))
(progn
(setcar (cdr expr) temp)
(setcar (cdr aaa) 1)))
(setq safe (or scalar (math-known-scalarp (nth 1 aaa) t))
aa (nth 2 aa)))
(if (and (setq temp (math-combine-prod aaa (nth 1 expr) nil nil t))
safe)
(progn
(setcar (cdr expr) temp)
(setcar (cdr (cdr aa)) 1)))
(if (and (eq (car-safe (nth 1 expr)) 'frac)
(memq (nth 1 (nth 1 expr)) '(1 -1)))
(math-div (math-mul (nth 2 expr)
(nth 1 (nth 1 expr)))
(nth 2 (nth 1 expr)))
expr)))
(math-defsimplify /
(math-simplify-divide expr))
(defvar math--simplify-divide-expr)
(defun math-simplify-divide (expr)
(let ((np (cdr expr))
(nover nil)
(nn (and (or (eq (car expr) '/)
(not (Math-realp (nth 2 expr))))
(math-common-constant-factor (nth 2 expr))))
n op)
(if nn
(progn
(setq n (and (or (eq (car expr) '/)
(not (Math-realp (nth 1 expr))))
(math-common-constant-factor (nth 1 expr))))
(if (and (eq (car-safe nn) 'frac) (eq (nth 1 nn) 1) (not n))
(unless (and (eq (car-safe expr) 'calcFunc-eq)
(eq (car-safe (nth 1 expr)) 'var)
(not (math-expr-contains (nth 2 expr)
(nth 1 expr))))
(setcar (cdr expr)
(math-mul (nth 2 nn) (nth 1 expr)))
(setcar (cdr (cdr expr))
(math-cancel-common-factor (nth 2 expr) nn))
(if (and (math-negp nn)
(setq op (assq (car expr) calc-tweak-eqn-table)))
(setcar expr (nth 1 op))))
(if (and n (not (eq (setq n (math-frac-gcd n nn)) 1)))
(progn
(setcar (cdr expr)
(math-cancel-common-factor (nth 1 expr) n))
(setcar (cdr (cdr expr))
(math-cancel-common-factor (nth 2 expr) n))
(if (and (math-negp n)
(setq op (assq (car expr)
calc-tweak-eqn-table)))
(setcar expr (nth 1 op))))))))
(let ((math--simplify-divide-expr expr)) ;For use in math-simplify-divisor
(if (and (eq (car-safe (car np)) '/)
(math-known-scalarp (nth 2 expr) t))
(progn
(setq np (cdr (nth 1 expr)))
(while (eq (car-safe (setq n (car np))) '*)
(and (math-known-scalarp (nth 2 n) t)
(math-simplify-divisor (cdr n) (cdr (cdr expr)) nil t))
(setq np (cdr (cdr n))))
(math-simplify-divisor np (cdr (cdr expr)) nil t)
(setq nover t
np (cdr (cdr (nth 1 expr))))))
(while (eq (car-safe (setq n (car np))) '*)
(and (math-known-scalarp (nth 2 n) t)
(math-simplify-divisor (cdr n) (cdr (cdr expr)) nover t))
(setq np (cdr (cdr n))))
(math-simplify-divisor np (cdr (cdr expr)) nover t)
expr)))
;; The variables math-simplify-divisor-nover and math-simplify-divisor-dover
;; are local variables for math-simplify-divisor, but are used by
;; math-simplify-one-divisor.
(defvar math-simplify-divisor-nover)
(defvar math-simplify-divisor-dover)
(defun math-simplify-divisor (np dp nover dover)
(cond ((eq (car-safe (car dp)) '/)
(math-simplify-divisor np (cdr (car dp))
nover dover)
(and (math-known-scalarp (nth 1 (car dp)) t)
(math-simplify-divisor np (cdr (cdr (car dp)))
nover (not dover))))
((or (or (eq (car math--simplify-divide-expr) '/)
(let ((signs (math-possible-signs (car np))))
(or (memq signs '(1 4))
(and (memq (car math--simplify-divide-expr)
'(calcFunc-eq calcFunc-neq))
(eq signs 5))
math-living-dangerously)))
(math-numberp (car np)))
(let (d
(safe t)
(math-simplify-divisor-nover nover)
(math-simplify-divisor-dover dover)
(scalar (math-known-scalarp (car np))))
(while (and (eq (car-safe (setq d (car dp))) '*)
safe)
(math-simplify-one-divisor np (cdr d))
(setq safe (or scalar (math-known-scalarp (nth 1 d) t))
dp (cdr (cdr d))))
(if safe
(math-simplify-one-divisor np dp))))))
(defun math-simplify-one-divisor (np dp)
(let ((temp (math-combine-prod (car np) (car dp) math-simplify-divisor-nover
math-simplify-divisor-dover t))
op)
(if temp
(progn
(and (not (memq (car math--simplify-divide-expr)
'(/ calcFunc-eq calcFunc-neq)))
(math-known-negp (car dp))
(setq op (assq (car math--simplify-divide-expr)
calc-tweak-eqn-table))
(setcar math--simplify-divide-expr (nth 1 op)))
(setcar np (if math-simplify-divisor-nover (math-div 1 temp) temp))
(setcar dp 1))
(and math-simplify-divisor-dover (not math-simplify-divisor-nover)
(eq (car math--simplify-divide-expr) '/)
(eq (car-safe (car dp)) 'calcFunc-sqrt)
(Math-integerp (nth 1 (car dp)))
(progn
(setcar np (math-mul (car np)
(list 'calcFunc-sqrt (nth 1 (car dp)))))
(setcar dp (nth 1 (car dp))))))))
(defun math-common-constant-factor (expr)
(if (Math-realp expr)
(if (Math-ratp expr)
(and (not (memq expr '(0 1 -1)))
(math-abs expr))
(if (math-ratp (setq expr (math-to-simple-fraction expr)))
(math-common-constant-factor expr)))
(if (memq (car expr) '(+ - cplx sdev))
(let ((f1 (math-common-constant-factor (nth 1 expr)))
(f2 (math-common-constant-factor (nth 2 expr))))
(and f1 f2
(not (eq (setq f1 (math-frac-gcd f1 f2)) 1))
f1))
(if (memq (car expr) '(* polar))
(math-common-constant-factor (nth 1 expr))
(if (eq (car expr) '/)
(or (math-common-constant-factor (nth 1 expr))
(and (Math-integerp (nth 2 expr))
(list 'frac 1 (math-abs (nth 2 expr))))))))))
(defun math-cancel-common-factor (expr val)
(if (memq (car-safe expr) '(+ - cplx sdev))
(progn
(setcar (cdr expr) (math-cancel-common-factor (nth 1 expr) val))
(setcar (cdr (cdr expr)) (math-cancel-common-factor (nth 2 expr) val))
expr)
(if (eq (car-safe expr) '*)
(math-mul (math-cancel-common-factor (nth 1 expr) val) (nth 2 expr))
(math-div expr val))))
(defun math-frac-gcd (a b)
(if (Math-zerop a)
b
(if (Math-zerop b)
a
(if (and (Math-integerp a)
(Math-integerp b))
(math-gcd a b)
(and (Math-integerp a) (setq a (list 'frac a 1)))
(and (Math-integerp b) (setq b (list 'frac b 1)))
(math-make-frac (math-gcd (nth 1 a) (nth 1 b))
(math-gcd (nth 2 a) (nth 2 b)))))))
(defvar calc-prefer-frac)
(math-defsimplify %
(and (Math-realp (nth 2 expr))
(Math-posp (nth 2 expr))
(let ((lin (math-is-linear (nth 1 expr)))
t1)
(or (and lin
(or (math-negp (car lin))
(not (Math-lessp (car lin) (nth 2 expr))))
(list '%
(list '+
(math-mul (nth 1 lin) (nth 2 lin))
(math-mod (car lin) (nth 2 expr)))
(nth 2 expr)))
(and lin
(not (math-equal-int (nth 1 lin) 1))
(math-num-integerp (nth 1 lin))
(math-num-integerp (nth 2 expr))
(setq t1 (calcFunc-gcd (nth 1 lin) (nth 2 expr)))
(not (math-equal-int t1 1))
(list '*
t1
(list '%
(list '+
(math-mul (math-div (nth 1 lin) t1)
(nth 2 lin))
(let ((calc-prefer-frac t))
(math-div (car lin) t1)))
(math-div (nth 2 expr) t1))))
(and (math-equal-int (nth 2 expr) 1)
(math-known-integerp (if lin
(math-mul (nth 1 lin) (nth 2 lin))
(nth 1 expr)))
(if lin (math-mod (car lin) 1) 0))))))
(math-defsimplify (calcFunc-eq calcFunc-neq calcFunc-lt
calcFunc-gt calcFunc-leq calcFunc-geq)
(if (= (length expr) 3)
(math-simplify-ineq expr)))
(defun math-simplify-ineq (expr)
(let ((np (cdr expr))
n)
(while (memq (car-safe (setq n (car np))) '(+ -))
(math-simplify-add-term (cdr (cdr n)) (cdr (cdr expr))
(eq (car n) '-) nil)
(setq np (cdr n)))
(math-simplify-add-term np (cdr (cdr expr)) nil
(eq np (cdr expr)))
(math-simplify-divide expr)
(let ((signs (math-possible-signs (cons '- (cdr expr)))))
(or (cond ((eq (car expr) 'calcFunc-eq)
(or (and (eq signs 2) 1)
(and (memq signs '(1 4 5)) 0)))
((eq (car expr) 'calcFunc-neq)
(or (and (eq signs 2) 0)
(and (memq signs '(1 4 5)) 1)))
((eq (car expr) 'calcFunc-lt)
(or (and (eq signs 1) 1)
(and (memq signs '(2 4 6)) 0)))
((eq (car expr) 'calcFunc-gt)
(or (and (eq signs 4) 1)
(and (memq signs '(1 2 3)) 0)))
((eq (car expr) 'calcFunc-leq)
(or (and (eq signs 4) 0)
(and (memq signs '(1 2 3)) 1)))
((eq (car expr) 'calcFunc-geq)
(or (and (eq signs 1) 0)
(and (memq signs '(2 4 6)) 1))))
expr))))
(defun math-simplify-add-term (np dp minus lplain)
(or (math-vectorp (car np))
(let ((rplain t)
n d temp)
(while (memq (car-safe (setq n (car np) d (car dp))) '(+ -))
(setq rplain nil)
(if (setq temp (math-combine-sum n (nth 2 d)
minus (eq (car d) '+) t))
(if (or lplain (eq (math-looks-negp temp) minus))
(progn
(setcar np (setq n (if minus (math-neg temp) temp)))
(setcar (cdr (cdr d)) 0))
(progn
(setcar np 0)
(setcar (cdr (cdr d)) (setq n (if (eq (car d) '+)
(math-neg temp)
temp))))))
(setq dp (cdr d)))
(if (setq temp (math-combine-sum n d minus t t))
(if (or lplain
(and (not rplain)
(eq (math-looks-negp temp) minus)))
(progn
(setcar np (setq n (if minus (math-neg temp) temp)))
(setcar dp 0))
(progn
(setcar np 0)
(setcar dp (setq n (math-neg temp)))))))))
(math-defsimplify calcFunc-sin
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
(nth 1 (nth 1 expr)))
(and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-sin (math-neg (nth 1 expr)))))
(and (eq calc-angle-mode 'rad)
(let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
(and n
(math-known-sin (car n) (nth 1 n) 120 0))))
(and (eq calc-angle-mode 'deg)
(let ((n (math-integer-plus (nth 1 expr))))
(and n
(math-known-sin (car n) (nth 1 n) '(frac 2 3) 0))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
(list 'calcFunc-sqrt (math-sub 1 (math-sqr
(nth 1 (nth 1 expr))))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
(math-div (nth 1 (nth 1 expr))
(list 'calcFunc-sqrt
(math-add 1 (math-sqr
(nth 1 (nth 1 expr)))))))
(let ((m (math-should-expand-trig (nth 1 expr))))
(and m (integerp (car m))
(let ((n (car m)) (a (nth 1 m)))
(list '+
(list '* (list 'calcFunc-sin (list '* (1- n) a))
(list 'calcFunc-cos a))
(list '* (list 'calcFunc-cos (list '* (1- n) a))
(list 'calcFunc-sin a))))))))
(math-defsimplify calcFunc-cos
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
(nth 1 (nth 1 expr)))
(and (math-looks-negp (nth 1 expr))
(list 'calcFunc-cos (math-neg (nth 1 expr))))
(and (eq calc-angle-mode 'rad)
(let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
(and n
(math-known-sin (car n) (nth 1 n) 120 300))))
(and (eq calc-angle-mode 'deg)
(let ((n (math-integer-plus (nth 1 expr))))
(and n
(math-known-sin (car n) (nth 1 n) '(frac 2 3) 300))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
(list 'calcFunc-sqrt
(math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
(math-div 1
(list 'calcFunc-sqrt
(math-add 1
(math-sqr (nth 1 (nth 1 expr)))))))
(let ((m (math-should-expand-trig (nth 1 expr))))
(and m (integerp (car m))
(let ((n (car m)) (a (nth 1 m)))
(list '-
(list '* (list 'calcFunc-cos (list '* (1- n) a))
(list 'calcFunc-cos a))
(list '* (list 'calcFunc-sin (list '* (1- n) a))
(list 'calcFunc-sin a))))))))
(math-defsimplify calcFunc-sec
(or (and (math-looks-negp (nth 1 expr))
(list 'calcFunc-sec (math-neg (nth 1 expr))))
(and (eq calc-angle-mode 'rad)
(let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
(and n
(let ((s (math-known-sin (car n) (nth 1 n) 120 300)))
(and s (math-div 1 s))))))
(and (eq calc-angle-mode 'deg)
(let ((n (math-integer-plus (nth 1 expr))))
(and n
(let ((s (math-known-sin (car n) (nth 1 n) '(frac 2 3) 300)))
(and s (math-div 1 s))))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
(math-div
1
(list 'calcFunc-sqrt
(math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
(math-div
1
(nth 1 (nth 1 expr))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
(list 'calcFunc-sqrt
(math-add 1
(math-sqr (nth 1 (nth 1 expr))))))))
(math-defsimplify calcFunc-csc
(or (and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-csc (math-neg (nth 1 expr)))))
(and (eq calc-angle-mode 'rad)
(let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
(and n
(let ((s (math-known-sin (car n) (nth 1 n) 120 0)))
(and s (math-div 1 s))))))
(and (eq calc-angle-mode 'deg)
(let ((n (math-integer-plus (nth 1 expr))))
(and n
(let ((s (math-known-sin (car n) (nth 1 n) '(frac 2 3) 0)))
(and s (math-div 1 s))))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
(math-div 1 (nth 1 (nth 1 expr))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
(math-div
1
(list 'calcFunc-sqrt (math-sub 1 (math-sqr
(nth 1 (nth 1 expr)))))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
(math-div (list 'calcFunc-sqrt
(math-add 1 (math-sqr
(nth 1 (nth 1 expr)))))
(nth 1 (nth 1 expr))))))
(defun math-should-expand-trig (x &optional hyperbolic)
(let ((m (math-is-multiple x)))
(and math-living-dangerously
m (or (and (integerp (car m)) (> (car m) 1))
(equal (car m) '(frac 1 2)))
(or math-integrating
(memq (car-safe (nth 1 m))
(if hyperbolic
'(calcFunc-arcsinh calcFunc-arccosh calcFunc-arctanh)
'(calcFunc-arcsin calcFunc-arccos calcFunc-arctan)))
(and (eq (car-safe (nth 1 m)) 'calcFunc-ln)
(eq hyperbolic 'exp)))
m)))
(defun math-known-sin (plus n mul off)
(setq n (math-mul n mul))
(and (math-num-integerp n)
(setq n (math-mod (math-add (math-trunc n) off) 240))
(if (>= n 120)
(and (setq n (math-known-sin plus (- n 120) 1 0))
(math-neg n))
(if (> n 60)
(setq n (- 120 n)))
(if (math-zerop plus)
(and (or calc-symbolic-mode
(memq n '(0 20 60)))
(cdr (assq n
'( (0 . 0)
(10 . (/ (calcFunc-sqrt
(- 2 (calcFunc-sqrt 3))) 2))
(12 . (/ (- (calcFunc-sqrt 5) 1) 4))
(15 . (/ (calcFunc-sqrt
(- 2 (calcFunc-sqrt 2))) 2))
(20 . (/ 1 2))
(24 . (* (^ (/ 1 2) (/ 3 2))
(calcFunc-sqrt
(- 5 (calcFunc-sqrt 5)))))
(30 . (/ (calcFunc-sqrt 2) 2))
(36 . (/ (+ (calcFunc-sqrt 5) 1) 4))
(40 . (/ (calcFunc-sqrt 3) 2))
(45 . (/ (calcFunc-sqrt
(+ 2 (calcFunc-sqrt 2))) 2))
(48 . (* (^ (/ 1 2) (/ 3 2))
(calcFunc-sqrt
(+ 5 (calcFunc-sqrt 5)))))
(50 . (/ (calcFunc-sqrt
(+ 2 (calcFunc-sqrt 3))) 2))
(60 . 1)))))
(cond ((eq n 0) (math-normalize (list 'calcFunc-sin plus)))
((eq n 60) (math-normalize (list 'calcFunc-cos plus)))
(t nil))))))
(math-defsimplify calcFunc-tan
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
(nth 1 (nth 1 expr)))
(and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-tan (math-neg (nth 1 expr)))))
(and (eq calc-angle-mode 'rad)
(let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
(and n
(math-known-tan (car n) (nth 1 n) 120))))
(and (eq calc-angle-mode 'deg)
(let ((n (math-integer-plus (nth 1 expr))))
(and n
(math-known-tan (car n) (nth 1 n) '(frac 2 3)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
(math-div (nth 1 (nth 1 expr))
(list 'calcFunc-sqrt
(math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
(math-div (list 'calcFunc-sqrt
(math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))
(nth 1 (nth 1 expr))))
(let ((m (math-should-expand-trig (nth 1 expr))))
(and m
(if (equal (car m) '(frac 1 2))
(math-div (math-sub 1 (list 'calcFunc-cos (nth 1 m)))
(list 'calcFunc-sin (nth 1 m)))
(math-div (list 'calcFunc-sin (nth 1 expr))
(list 'calcFunc-cos (nth 1 expr))))))))
(math-defsimplify calcFunc-cot
(or (and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-cot (math-neg (nth 1 expr)))))
(and (eq calc-angle-mode 'rad)
(let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
(and n
(let ((tn (math-known-tan (car n) (nth 1 n) 120)))
(and tn (math-div 1 tn))))))
(and (eq calc-angle-mode 'deg)
(let ((n (math-integer-plus (nth 1 expr))))
(and n
(let ((tn (math-known-tan (car n) (nth 1 n) '(frac 2 3))))
(and tn (math-div 1 tn))))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
(math-div (list 'calcFunc-sqrt
(math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))
(nth 1 (nth 1 expr))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
(math-div (nth 1 (nth 1 expr))
(list 'calcFunc-sqrt
(math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
(math-div 1 (nth 1 (nth 1 expr))))))
(defun math-known-tan (plus n mul)
(setq n (math-mul n mul))
(and (math-num-integerp n)
(setq n (math-mod (math-trunc n) 120))
(if (> n 60)
(and (setq n (math-known-tan plus (- 120 n) 1))
(math-neg n))
(if (math-zerop plus)
(and (or calc-symbolic-mode
(memq n '(0 30 60)))
(cdr (assq n '( (0 . 0)
(10 . (- 2 (calcFunc-sqrt 3)))
(12 . (calcFunc-sqrt
(- 1 (* (/ 2 5) (calcFunc-sqrt 5)))))
(15 . (- (calcFunc-sqrt 2) 1))
(20 . (/ (calcFunc-sqrt 3) 3))
(24 . (calcFunc-sqrt
(- 5 (* 2 (calcFunc-sqrt 5)))))
(30 . 1)
(36 . (calcFunc-sqrt
(+ 1 (* (/ 2 5) (calcFunc-sqrt 5)))))
(40 . (calcFunc-sqrt 3))
(45 . (+ (calcFunc-sqrt 2) 1))
(48 . (calcFunc-sqrt
(+ 5 (* 2 (calcFunc-sqrt 5)))))
(50 . (+ 2 (calcFunc-sqrt 3)))
(60 . (var uinf var-uinf))))))
(cond ((eq n 0) (math-normalize (list 'calcFunc-tan plus)))
((eq n 60) (math-normalize (list '/ -1
(list 'calcFunc-tan plus))))
(t nil))))))
(math-defsimplify calcFunc-sinh
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
(nth 1 (nth 1 expr)))
(and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-sinh (math-neg (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
math-living-dangerously
(list 'calcFunc-sqrt
(math-sub (math-sqr (nth 1 (nth 1 expr))) 1)))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
math-living-dangerously
(math-div (nth 1 (nth 1 expr))
(list 'calcFunc-sqrt
(math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
(let ((m (math-should-expand-trig (nth 1 expr) t)))
(and m (integerp (car m))
(let ((n (car m)) (a (nth 1 m)))
(if (> n 1)
(list '+
(list '* (list 'calcFunc-sinh (list '* (1- n) a))
(list 'calcFunc-cosh a))
(list '* (list 'calcFunc-cosh (list '* (1- n) a))
(list 'calcFunc-sinh a)))))))))
(math-defsimplify calcFunc-cosh
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
(nth 1 (nth 1 expr)))
(and (math-looks-negp (nth 1 expr))
(list 'calcFunc-cosh (math-neg (nth 1 expr))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
math-living-dangerously
(list 'calcFunc-sqrt
(math-add (math-sqr (nth 1 (nth 1 expr))) 1)))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
math-living-dangerously
(math-div 1
(list 'calcFunc-sqrt
(math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
(let ((m (math-should-expand-trig (nth 1 expr) t)))
(and m (integerp (car m))
(let ((n (car m)) (a (nth 1 m)))
(if (> n 1)
(list '+
(list '* (list 'calcFunc-cosh (list '* (1- n) a))
(list 'calcFunc-cosh a))
(list '* (list 'calcFunc-sinh (list '* (1- n) a))
(list 'calcFunc-sinh a)))))))))
(math-defsimplify calcFunc-tanh
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
(nth 1 (nth 1 expr)))
(and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-tanh (math-neg (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
math-living-dangerously
(math-div (nth 1 (nth 1 expr))
(list 'calcFunc-sqrt
(math-add (math-sqr (nth 1 (nth 1 expr))) 1))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
math-living-dangerously
(math-div (list 'calcFunc-sqrt
(math-sub (math-sqr (nth 1 (nth 1 expr))) 1))
(nth 1 (nth 1 expr))))
(let ((m (math-should-expand-trig (nth 1 expr) t)))
(and m
(if (equal (car m) '(frac 1 2))
(math-div (math-sub (list 'calcFunc-cosh (nth 1 m)) 1)
(list 'calcFunc-sinh (nth 1 m)))
(math-div (list 'calcFunc-sinh (nth 1 expr))
(list 'calcFunc-cosh (nth 1 expr))))))))
(math-defsimplify calcFunc-sech
(or (and (math-looks-negp (nth 1 expr))
(list 'calcFunc-sech (math-neg (nth 1 expr))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
math-living-dangerously
(math-div
1
(list 'calcFunc-sqrt
(math-add (math-sqr (nth 1 (nth 1 expr))) 1))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
math-living-dangerously
(math-div 1 (nth 1 (nth 1 expr))) 1)
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
math-living-dangerously
(list 'calcFunc-sqrt
(math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))))
(math-defsimplify calcFunc-csch
(or (and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-csch (math-neg (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
math-living-dangerously
(math-div 1 (nth 1 (nth 1 expr))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
math-living-dangerously
(math-div
1
(list 'calcFunc-sqrt
(math-sub (math-sqr (nth 1 (nth 1 expr))) 1))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
math-living-dangerously
(math-div (list 'calcFunc-sqrt
(math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))
(nth 1 (nth 1 expr))))))
(math-defsimplify calcFunc-coth
(or (and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-coth (math-neg (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
math-living-dangerously
(math-div (list 'calcFunc-sqrt
(math-add (math-sqr (nth 1 (nth 1 expr))) 1))
(nth 1 (nth 1 expr))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
math-living-dangerously
(math-div (nth 1 (nth 1 expr))
(list 'calcFunc-sqrt
(math-sub (math-sqr (nth 1 (nth 1 expr))) 1))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
math-living-dangerously
(math-div 1 (nth 1 (nth 1 expr))))))
(math-defsimplify calcFunc-arcsin
(or (and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-arcsin (math-neg (nth 1 expr)))))
(and (eq (nth 1 expr) 1)
(math-quarter-circle t))
(and (equal (nth 1 expr) '(frac 1 2))
(math-div (math-half-circle t) 6))
(and math-living-dangerously
(eq (car-safe (nth 1 expr)) 'calcFunc-sin)
(nth 1 (nth 1 expr)))
(and math-living-dangerously
(eq (car-safe (nth 1 expr)) 'calcFunc-cos)
(math-sub (math-quarter-circle t)
(nth 1 (nth 1 expr))))))
(math-defsimplify calcFunc-arccos
(or (and (eq (nth 1 expr) 0)
(math-quarter-circle t))
(and (eq (nth 1 expr) -1)
(math-half-circle t))
(and (equal (nth 1 expr) '(frac 1 2))
(math-div (math-half-circle t) 3))
(and (equal (nth 1 expr) '(frac -1 2))
(math-div (math-mul (math-half-circle t) 2) 3))
(and math-living-dangerously
(eq (car-safe (nth 1 expr)) 'calcFunc-cos)
(nth 1 (nth 1 expr)))
(and math-living-dangerously
(eq (car-safe (nth 1 expr)) 'calcFunc-sin)
(math-sub (math-quarter-circle t)
(nth 1 (nth 1 expr))))))
(math-defsimplify calcFunc-arctan
(or (and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-arctan (math-neg (nth 1 expr)))))
(and (eq (nth 1 expr) 1)
(math-div (math-half-circle t) 4))
(and math-living-dangerously
(eq (car-safe (nth 1 expr)) 'calcFunc-tan)
(nth 1 (nth 1 expr)))))
(math-defsimplify calcFunc-arcsinh
(or (and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-arcsinh (math-neg (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
(or math-living-dangerously
(math-known-realp (nth 1 (nth 1 expr))))
(nth 1 (nth 1 expr)))))
(math-defsimplify calcFunc-arccosh
(and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh)
(or math-living-dangerously
(math-known-realp (nth 1 (nth 1 expr))))
(nth 1 (nth 1 expr))))
(math-defsimplify calcFunc-arctanh
(or (and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-arctanh (math-neg (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-tanh)
(or math-living-dangerously
(math-known-realp (nth 1 (nth 1 expr))))
(nth 1 (nth 1 expr)))))
(math-defsimplify calcFunc-sqrt
(math-simplify-sqrt expr))
(defun math-simplify-sqrt (expr)
(or (and (eq (car-safe (nth 1 expr)) 'frac)
(math-div (list 'calcFunc-sqrt
(math-mul (nth 1 (nth 1 expr))
(nth 2 (nth 1 expr))))
(nth 2 (nth 1 expr))))
(let ((fac (if (math-objectp (nth 1 expr))
(math-squared-factor (nth 1 expr))
(math-common-constant-factor (nth 1 expr)))))
(and fac (not (eq fac 1))
(math-mul (math-normalize (list 'calcFunc-sqrt fac))
(math-normalize
(list 'calcFunc-sqrt
(math-cancel-common-factor
(nth 1 expr) fac))))))
(and math-living-dangerously
(or (and (eq (car-safe (nth 1 expr)) '-)
(math-equal-int (nth 1 (nth 1 expr)) 1)
(eq (car-safe (nth 2 (nth 1 expr))) '^)
(math-equal-int (nth 2 (nth 2 (nth 1 expr))) 2)
(or (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr))))
'calcFunc-sin)
(list 'calcFunc-cos
(nth 1 (nth 1 (nth 2 (nth 1 expr))))))
(and (eq (car-safe (nth 1 (nth 2 (nth 1 expr))))
'calcFunc-cos)
(list 'calcFunc-sin
(nth 1 (nth 1 (nth 2
(nth 1 expr))))))))
(and (eq (car-safe (nth 1 expr)) '-)
(math-equal-int (nth 2 (nth 1 expr)) 1)
(eq (car-safe (nth 1 (nth 1 expr))) '^)
(math-equal-int (nth 2 (nth 1 (nth 1 expr))) 2)
(and (eq (car-safe (nth 1 (nth 1 (nth 1 expr))))
'calcFunc-cosh)
(list 'calcFunc-sinh
(nth 1 (nth 1 (nth 1 (nth 1 expr)))))))
(and (eq (car-safe (nth 1 expr)) '+)
(let ((a (nth 1 (nth 1 expr)))
(b (nth 2 (nth 1 expr))))
(and (or (and (math-equal-int a 1)
(setq a b b (nth 1 (nth 1 expr))))
(math-equal-int b 1))
(eq (car-safe a) '^)
(math-equal-int (nth 2 a) 2)
(or (and (eq (car-safe (nth 1 a)) 'calcFunc-sinh)
(list 'calcFunc-cosh (nth 1 (nth 1 a))))
(and (eq (car-safe (nth 1 a)) 'calcFunc-csch)
(list 'calcFunc-coth (nth 1 (nth 1 a))))
(and (eq (car-safe (nth 1 a)) 'calcFunc-tan)
(list '/ 1 (list 'calcFunc-cos
(nth 1 (nth 1 a)))))
(and (eq (car-safe (nth 1 a)) 'calcFunc-cot)
(list '/ 1 (list 'calcFunc-sin
(nth 1 (nth 1 a)))))))))
(and (eq (car-safe (nth 1 expr)) '^)
(list '^
(nth 1 (nth 1 expr))
(math-div (nth 2 (nth 1 expr)) 2)))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt)
(list '^ (nth 1 (nth 1 expr)) (math-div 1 4)))
(and (memq (car-safe (nth 1 expr)) '(* /))
(list (car (nth 1 expr))
(list 'calcFunc-sqrt (nth 1 (nth 1 expr)))
(list 'calcFunc-sqrt (nth 2 (nth 1 expr)))))
(and (memq (car-safe (nth 1 expr)) '(+ -))
(not (math-any-floats (nth 1 expr)))
(let ((f (calcFunc-factors (calcFunc-expand
(nth 1 expr)))))
(and (math-vectorp f)
(or (> (length f) 2)
(> (nth 2 (nth 1 f)) 1))
(let ((out 1) (rest 1) (sums 1) fac pow)
(while (setq f (cdr f))
(setq fac (nth 1 (car f))
pow (nth 2 (car f)))
(if (> pow 1)
(setq out (math-mul out (math-pow
fac (/ pow 2)))
pow (% pow 2)))
(if (> pow 0)
(if (memq (car-safe fac) '(+ -))
(setq sums (math-mul-thru sums fac))
(setq rest (math-mul rest fac)))))
(and (not (and (eq out 1) (memq rest '(1 -1))))
(math-mul
out
(list 'calcFunc-sqrt
(math-mul sums rest))))))))))))
;;; Rather than factoring x into primes, just check for the first ten primes.
(defun math-squared-factor (x)
(if (Math-integerp x)
(let ((prsqr '(4 9 25 49 121 169 289 361 529 841))
(fac 1)
res)
(while prsqr
(if (eq (cdr (setq res (math-idivmod x (car prsqr)))) 0)
(setq x (car res)
fac (math-mul fac (car prsqr)))
(setq prsqr (cdr prsqr))))
fac)))
(math-defsimplify calcFunc-exp
(math-simplify-exp (nth 1 expr)))
(defun math-simplify-exp (x)
(or (and (eq (car-safe x) 'calcFunc-ln)
(nth 1 x))
(and math-living-dangerously
(or (and (eq (car-safe x) 'calcFunc-arcsinh)
(math-add (nth 1 x)
(list 'calcFunc-sqrt
(math-add (math-sqr (nth 1 x)) 1))))
(and (eq (car-safe x) 'calcFunc-arccosh)
(math-add (nth 1 x)
(list 'calcFunc-sqrt
(math-sub (math-sqr (nth 1 x)) 1))))
(and (eq (car-safe x) 'calcFunc-arctanh)
(math-div (list 'calcFunc-sqrt (math-add 1 (nth 1 x)))
(list 'calcFunc-sqrt (math-sub 1 (nth 1 x)))))
(let ((m (math-should-expand-trig x 'exp)))
(and m (integerp (car m))
(list '^ (list 'calcFunc-exp (nth 1 m)) (car m))))))
(and calc-symbolic-mode
(math-known-imagp x)
(let* ((ip (calcFunc-im x))
(n (math-linear-in ip '(var pi var-pi)))
s c)
(and n
(setq s (math-known-sin (car n) (nth 1 n) 120 0))
(setq c (math-known-sin (car n) (nth 1 n) 120 300))
(list '+ c (list '* s '(var i var-i))))))))
(math-defsimplify calcFunc-ln
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp)
(or math-living-dangerously
(math-known-realp (nth 1 (nth 1 expr))))
(nth 1 (nth 1 expr)))
(and (eq (car-safe (nth 1 expr)) '^)
(equal (nth 1 (nth 1 expr)) '(var e var-e))
(or math-living-dangerously
(math-known-realp (nth 2 (nth 1 expr))))
(nth 2 (nth 1 expr)))
(and calc-symbolic-mode
(math-known-negp (nth 1 expr))
(math-add (list 'calcFunc-ln (math-neg (nth 1 expr)))
'(* (var pi var-pi) (var i var-i))))
(and calc-symbolic-mode
(math-known-imagp (nth 1 expr))
(let* ((ip (calcFunc-im (nth 1 expr)))
(ips (math-possible-signs ip)))
(or (and (memq ips '(4 6))
(math-add (list 'calcFunc-ln ip)
'(/ (* (var pi var-pi) (var i var-i)) 2)))
(and (memq ips '(1 3))
(math-sub (list 'calcFunc-ln (math-neg ip))
'(/ (* (var pi var-pi) (var i var-i)) 2))))))))
(math-defsimplify ^
(or (and math-living-dangerously
(or (and (eq (car-safe (nth 1 expr)) '^)
(list '^
(nth 1 (nth 1 expr))
(math-mul (nth 2 expr)
(nth 2 (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt)
(list '^
(nth 1 (nth 1 expr))
(math-div (nth 2 expr) 2)))
(and (memq (car-safe (nth 1 expr)) '(* /))
(list (car (nth 1 expr))
(list '^ (nth 1 (nth 1 expr))
(nth 2 expr))
(list '^ (nth 2 (nth 1 expr))
(nth 2 expr))))))
(and (math-equal-int (nth 1 expr) 10)
(eq (car-safe (nth 2 expr)) 'calcFunc-log10)
(nth 1 (nth 2 expr)))
(and (equal (nth 1 expr) '(var e var-e))
(math-simplify-exp (nth 2 expr)))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-exp)
(not math-integrating)
(list 'calcFunc-exp (math-mul (nth 1 (nth 1 expr))
(nth 2 expr))))
(and (equal (nth 1 expr) '(var i var-i))
(math-imaginary-i)
(math-num-integerp (nth 2 expr))
(let ((x (math-mod (math-trunc (nth 2 expr)) 4)))
(cond ((eq x 0) 1)
((eq x 1) (nth 1 expr))
((eq x 2) -1)
((eq x 3) (math-neg (nth 1 expr))))))
(and math-integrating
(integerp (nth 2 expr))
(>= (nth 2 expr) 2)
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-cos)
(math-mul (math-pow (nth 1 expr)
(- (nth 2 expr) 2))
(math-sub 1
(math-sqr
(list 'calcFunc-sin
(nth 1 (nth 1 expr)))))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh)
(math-mul (math-pow (nth 1 expr)
(- (nth 2 expr) 2))
(math-add 1
(math-sqr
(list 'calcFunc-sinh
(nth 1 (nth 1 expr)))))))))
(and (eq (car-safe (nth 2 expr)) 'frac)
(Math-ratp (nth 1 expr))
(Math-posp (nth 1 expr))
(if (equal (nth 2 expr) '(frac 1 2))
(list 'calcFunc-sqrt (nth 1 expr))
(let ((flr (math-floor (nth 2 expr))))
(and (not (Math-zerop flr))
(list '* (list '^ (nth 1 expr) flr)
(list '^ (nth 1 expr)
(math-sub (nth 2 expr) flr)))))))
(and (eq (math-quarter-integer (nth 2 expr)) 2)
(let ((temp (math-simplify-sqrt expr)))
(and temp
(list '^ temp (math-mul (nth 2 expr) 2)))))))
(math-defsimplify calcFunc-log10
(and (eq (car-safe (nth 1 expr)) '^)
(math-equal-int (nth 1 (nth 1 expr)) 10)
(or math-living-dangerously
(math-known-realp (nth 2 (nth 1 expr))))
(nth 2 (nth 1 expr))))
(math-defsimplify calcFunc-erf
(or (and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-erf (math-neg (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-conj)
(list 'calcFunc-conj
(list 'calcFunc-erf (nth 1 (nth 1 expr)))))))
(math-defsimplify calcFunc-erfc
(or (and (math-looks-negp (nth 1 expr))
(math-sub 2 (list 'calcFunc-erfc (math-neg (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-conj)
(list 'calcFunc-conj
(list 'calcFunc-erfc (nth 1 (nth 1 expr)))))))
(defun math-linear-in (expr term &optional always)
(if (math-expr-contains expr term)
(let* ((calc-prefer-frac t)
(p (math-is-polynomial expr term 1)))
(and (cdr p)
p))
(and always (list expr 0))))
(defun math-multiple-of (expr term)
(let ((p (math-linear-in expr term)))
(and p
(math-zerop (car p))
(nth 1 p))))
; not perfect, but it'll do
(defun math-integer-plus (expr)
(cond ((Math-integerp expr)
(list 0 expr))
((and (memq (car expr) '(+ -))
(Math-integerp (nth 1 expr)))
(list (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))
(nth 1 expr)))
((and (memq (car expr) '(+ -))
(Math-integerp (nth 2 expr)))
(list (nth 1 expr)
(if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))))
(t nil)))
(defun math-is-linear (expr &optional always)
(let ((offset nil)
(coef nil))
(if (eq (car-safe expr) '+)
(if (Math-objectp (nth 1 expr))
(setq offset (nth 1 expr)
expr (nth 2 expr))
(if (Math-objectp (nth 2 expr))
(setq offset (nth 2 expr)
expr (nth 1 expr))))
(if (eq (car-safe expr) '-)
(if (Math-objectp (nth 1 expr))
(setq offset (nth 1 expr)
expr (math-neg (nth 2 expr)))
(if (Math-objectp (nth 2 expr))
(setq offset (math-neg (nth 2 expr))
expr (nth 1 expr))))))
(setq coef (math-is-multiple expr always))
(if offset
(list offset (or (car coef) 1) (or (nth 1 coef) expr))
(if coef
(cons 0 coef)))))
(defun math-is-multiple (expr &optional always)
(or (if (eq (car-safe expr) '*)
(if (Math-objectp (nth 1 expr))
(list (nth 1 expr) (nth 2 expr)))
(if (eq (car-safe expr) '/)
(if (and (Math-objectp (nth 1 expr))
(not (math-equal-int (nth 1 expr) 1)))
(list (nth 1 expr) (math-div 1 (nth 2 expr)))
(if (Math-objectp (nth 2 expr))
(list (math-div 1 (nth 2 expr)) (nth 1 expr))
(let ((res (math-is-multiple (nth 1 expr))))
(if res
(list (car res)
(math-div (nth 2 (nth 1 expr)) (nth 2 expr)))
(setq res (math-is-multiple (nth 2 expr)))
(if res
(list (math-div 1 (car res))
(math-div (nth 1 expr)
(nth 2 (nth 2 expr)))))))))
(if (eq (car-safe expr) 'neg)
(list -1 (nth 1 expr)))))
(if (Math-objvecp expr)
(and (eq always 1)
(list expr 1))
(and always
(list 1 expr)))))
(defun calcFunc-lin (expr &optional var)
(if var
(let ((res (math-linear-in expr var t)))
(or res (math-reject-arg expr "Linear term expected"))
(list 'vec (car res) (nth 1 res) var))
(let ((res (math-is-linear expr t)))
(or res (math-reject-arg expr "Linear term expected"))
(cons 'vec res))))
(defun calcFunc-linnt (expr &optional var)
(if var
(let ((res (math-linear-in expr var)))
(or res (math-reject-arg expr "Linear term expected"))
(list 'vec (car res) (nth 1 res) var))
(let ((res (math-is-linear expr)))
(or res (math-reject-arg expr "Linear term expected"))
(cons 'vec res))))
(defun calcFunc-islin (expr &optional var)
(if (and (Math-objvecp expr) (not var))
0
(calcFunc-lin expr var)
1))
(defun calcFunc-islinnt (expr &optional var)
(if (Math-objvecp expr)
0
(calcFunc-linnt expr var)
1))
;;; Simple operations on expressions.
;;; Return number of occurrences of thing in expr, or nil if none.
(defun math-expr-contains-count (expr thing)
(cond ((equal expr thing) 1)
((Math-primp expr) nil)
(t
(let ((num 0))
(while (setq expr (cdr expr))
(setq num (+ num (or (math-expr-contains-count
(car expr) thing) 0))))
(and (> num 0)
num)))))
(defun math-expr-contains (expr thing)
(cond ((equal expr thing) 1)
((Math-primp expr) nil)
(t
(while (and (setq expr (cdr expr))
(not (math-expr-contains (car expr) thing))))
expr)))
;;; Return non-nil if any variable of thing occurs in expr.
(defun math-expr-depends (expr thing)
(if (Math-primp thing)
(and (eq (car-safe thing) 'var)
(math-expr-contains expr thing))
(while (and (setq thing (cdr thing))
(not (math-expr-depends expr (car thing)))))
thing))
;;; Substitute all occurrences of old for new in expr (non-destructive).
;; The variables math-expr-subst-old and math-expr-subst-new are local
;; for math-expr-subst, but used by math-expr-subst-rec.
(defvar math-expr-subst-old)
(defvar math-expr-subst-new)
(defun math-expr-subst (expr old new)
(let ((math-expr-subst-old old)
(math-expr-subst-new new))
(math-expr-subst-rec expr)))
(defalias 'calcFunc-subst #'math-expr-subst)
(defun math-expr-subst-rec (expr)
(cond ((equal expr math-expr-subst-old) math-expr-subst-new)
((Math-primp expr) expr)
((memq (car expr) '(calcFunc-deriv
calcFunc-tderiv))
(if (= (length expr) 2)
(if (equal (nth 1 expr) math-expr-subst-old)
(append expr (list math-expr-subst-new))
expr)
(list (car expr) (nth 1 expr)
(math-expr-subst-rec (nth 2 expr)))))
(t
(cons (car expr)
(mapcar #'math-expr-subst-rec (cdr expr))))))
;;; Various measures of the size of an expression.
(defun math-expr-weight (expr)
(if (Math-primp expr)
1
(let ((w 1))
(while (setq expr (cdr expr))
(setq w (+ w (math-expr-weight (car expr)))))
w)))
(defun math-expr-height (expr)
(if (Math-primp expr)
0
(let ((h 0))
(while (setq expr (cdr expr))
(setq h (max h (math-expr-height (car expr)))))
(1+ h))))
;;; Polynomial operations (to support the integrator and solve-for).
(defun calcFunc-collect (expr base)
(let ((p (math-is-polynomial expr base 50 t)))
(if (cdr p)
(math-build-polynomial-expr (mapcar #'math-normalize p) base)
(car p))))
;;; If expr is of the form "a + bx + cx^2 + ...", return the list (a b c ...),
;;; else return nil if not in polynomial form. If "loose" (math-is-poly-loose),
;;; coefficients may contain x, e.g., sin(x) + cos(x) x^2 is a loose polynomial in x.
;; These variables are local to math-is-polynomial, but are used by
;; math-is-poly-rec.
(defvar math-is-poly-degree)
(defvar math-is-poly-loose)
(defvar math-var)
(defvar math-poly-base-variable)
(defun math-is-polynomial (expr var &optional degree loose)
(let* ((math-poly-base-variable (if loose
(if (eq loose 'gen) var '(var XXX XXX))
math-poly-base-variable))
(math-var var)
(math-is-poly-loose loose)
(math-is-poly-degree degree)
(poly (math-is-poly-rec expr math-poly-neg-powers)))
(and (or (null degree)
(<= (length poly) (1+ degree)))
poly)))
(defun math-is-poly-rec (expr negpow)
(math-poly-simplify
(or (cond ((or (equal expr math-var)
(eq (car-safe expr) '^))
(let ((pow 1)
(expr expr))
(or (equal expr math-var)
(setq pow (nth 2 expr)
expr (nth 1 expr)))
(or (eq math-poly-mult-powers 1)
(setq pow (let ((m (math-is-multiple pow 1)))
(and (eq (car-safe (car m)) 'cplx)
(Math-zerop (nth 1 (car m)))
(setq m (list (nth 2 (car m))
(math-mul (nth 1 m)
'(var i var-i)))))
(and (if math-poly-mult-powers
(equal math-poly-mult-powers
(nth 1 m))
(setq math-poly-mult-powers (nth 1 m)))
(or (equal expr math-var)
(eq math-poly-mult-powers 1))
(car m)))))
(if (consp pow)
(progn
(setq pow (math-to-simple-fraction pow))
(and (eq (car-safe pow) 'frac)
math-poly-frac-powers
(equal expr math-var)
(setq math-poly-frac-powers
(calcFunc-lcm math-poly-frac-powers
(nth 2 pow))))))
(or (memq math-poly-frac-powers '(1 nil))
(setq pow (math-mul pow math-poly-frac-powers)))
(if (integerp pow)
(if (and (= pow 1)
(equal expr math-var))
(list 0 1)
(if (natnump pow)
(let ((p1 (if (equal expr math-var)
(list 0 1)
(math-is-poly-rec expr nil)))
(n pow)
(accum (list 1)))
(and p1
(or (null math-is-poly-degree)
(<= (* (1- (length p1)) n) math-is-poly-degree))
(progn
(while (>= n 1)
(setq accum (math-poly-mul accum p1)
n (1- n)))
accum)))
(and negpow
(math-is-poly-rec expr nil)
(setq math-poly-neg-powers
(cons (math-pow expr (- pow))
math-poly-neg-powers))
(list (list '^ expr pow))))))))
((Math-objectp expr)
(list expr))
((memq (car expr) '(+ -))
(let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
(and p1
(let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
(and p2
(math-poly-mix p1 1 p2
(if (eq (car expr) '+) 1 -1)))))))
((eq (car expr) 'neg)
(mapcar #'math-neg (math-is-poly-rec (nth 1 expr) negpow)))
((eq (car expr) '*)
(let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
(and p1
(let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
(and p2
(or (null math-is-poly-degree)
(<= (- (+ (length p1) (length p2)) 2)
math-is-poly-degree))
(math-poly-mul p1 p2))))))
((eq (car expr) '/)
(and (or (not (math-poly-depends (nth 2 expr) math-var))
(and negpow
(math-is-poly-rec (nth 2 expr) nil)
(setq math-poly-neg-powers
(cons (nth 2 expr) math-poly-neg-powers))))
(not (Math-zerop (nth 2 expr)))
(let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
(mapcar (function (lambda (x) (math-div x (nth 2 expr))))
p1))))
((and (eq (car expr) 'calcFunc-exp)
(equal math-var '(var e var-e)))
(math-is-poly-rec (list '^ math-var (nth 1 expr)) negpow))
((and (eq (car expr) 'calcFunc-sqrt)
math-poly-frac-powers)
(math-is-poly-rec (list '^ (nth 1 expr) '(frac 1 2)) negpow))
(t nil))
(and (or (not (math-poly-depends expr math-var))
math-is-poly-loose)
(not (eq (car expr) 'vec))
(list expr)))))
;;; Check if expr is a polynomial in var; if so, return its degree.
(defun math-polynomial-p (expr var)
(cond ((equal expr var) 1)
((Math-primp expr) 0)
((memq (car expr) '(+ -))
(let ((p1 (math-polynomial-p (nth 1 expr) var))
p2)
(and p1 (setq p2 (math-polynomial-p (nth 2 expr) var))
(max p1 p2))))
((eq (car expr) '*)
(let ((p1 (math-polynomial-p (nth 1 expr) var))
p2)
(and p1 (setq p2 (math-polynomial-p (nth 2 expr) var))
(+ p1 p2))))
((eq (car expr) 'neg)
(math-polynomial-p (nth 1 expr) var))
((and (eq (car expr) '/)
(not (math-poly-depends (nth 2 expr) var)))
(math-polynomial-p (nth 1 expr) var))
((and (eq (car expr) '^)
(natnump (nth 2 expr)))
(let ((p1 (math-polynomial-p (nth 1 expr) var)))
(and p1 (* p1 (nth 2 expr)))))
((math-poly-depends expr var) nil)
(t 0)))
(defun math-poly-depends (expr var)
(if math-poly-base-variable
(math-expr-contains expr math-poly-base-variable)
(math-expr-depends expr var)))
;; The variables math-poly-base-const-ok and math-poly-base-pred are
;; local to math-polynomial-base, but are used by math-polynomial-base-rec.
(defvar math-poly-base-const-ok)
(defvar math-poly-base-pred)
(defun math-polynomial-base (top-expr &optional pred)
"Find the variable (or sub-expression) which is the base of polynomial expr."
(let ((math-poly-base-pred
(or pred (function (lambda (base) (math-polynomial-p
top-expr base))))))
(or (let ((math-poly-base-const-ok nil))
(math-polynomial-base-rec top-expr))
(let ((math-poly-base-const-ok t))
(math-polynomial-base-rec top-expr)))))
(defun math-polynomial-base-rec (mpb-expr)
(and (not (Math-objvecp mpb-expr))
(or (and (memq (car mpb-expr) '(+ - *))
(or (math-polynomial-base-rec (nth 1 mpb-expr))
(math-polynomial-base-rec (nth 2 mpb-expr))))
(and (memq (car mpb-expr) '(/ neg))
(math-polynomial-base-rec (nth 1 mpb-expr)))
(and (eq (car mpb-expr) '^)
(math-polynomial-base-rec (nth 1 mpb-expr)))
(and (eq (car mpb-expr) 'calcFunc-exp)
(math-polynomial-base-rec '(var e var-e)))
(and (or math-poly-base-const-ok (math-expr-contains-vars mpb-expr))
(funcall math-poly-base-pred mpb-expr)
mpb-expr))))
(defun math-expr-contains-vars (expr)
"Return non-nil if expr refers to any variables."
(or (eq (car-safe expr) 'var)
(and (not (Math-primp expr))
(progn
(while (and (setq expr (cdr expr))
(not (math-expr-contains-vars (car expr)))))
expr))))
(defun math-poly-simplify (p)
"Simplify a polynomial in list form by stripping off high-end zeros.
This always leaves the constant part, i.e., nil->nil and non-nil->non-nil."
(and p
(if (Math-zerop (nth (1- (length p)) p))
(let ((pp (copy-sequence p)))
(while (and (cdr pp)
(Math-zerop (nth (1- (length pp)) pp)))
(setcdr (nthcdr (- (length pp) 2) pp) nil))
pp)
p)))
;;; Compute ac*a + bc*b for polynomials in list form a, b and
;;; coefficients ac, bc. Result may be unsimplified.
(defun math-poly-mix (a ac b bc)
(and (or a b)
(cons (math-add (math-mul (or (car a) 0) ac)
(math-mul (or (car b) 0) bc))
(math-poly-mix (cdr a) ac (cdr b) bc))))
(defun math-poly-zerop (a)
(or (null a)
(and (null (cdr a)) (Math-zerop (car a)))))
(defun math-poly-mul (a b)
"Multiply two polynomials in list form."
(and a b
(math-poly-mix b (car a)
(math-poly-mul (cdr a) (cons 0 b)) 1)))
(defun math-build-polynomial-expr (p var)
"Build an expression from a polynomial list."
(if p
(if (Math-numberp var)
(math-with-extra-prec 1
(let* ((rp (reverse p))
(accum (car rp)))
(while (setq rp (cdr rp))
(setq accum (math-add (car rp) (math-mul accum var))))
accum))
(let* ((rp (reverse p))
(n (1- (length rp)))
(accum (math-mul (car rp) (math-pow var n))))
(while (setq rp (cdr rp))
(setq n (1- n))
(or (math-zerop (car rp))
(setq accum (list (if (math-looks-negp (car rp)) '- '+)
accum
(math-mul (if (math-looks-negp (car rp))
(math-neg (car rp))
(car rp))
(math-pow var n))))))
accum))
0))
(defun math-to-simple-fraction (f)
(or (and (eq (car-safe f) 'float)
(or (and (>= (nth 2 f) 0)
(math-scale-int (nth 1 f) (nth 2 f)))
(and (integerp (nth 1 f))
(> (nth 1 f) -1000)
(< (nth 1 f) 1000)
(math-make-frac (nth 1 f)
(math-scale-int 1 (- (nth 2 f)))))))
f))
(provide 'calc-alg)
;;; calc-alg.el ends here
|