summaryrefslogtreecommitdiff
path: root/erts/emulator/asmjit/core/radefs_p.h
blob: 426ac2926db3a8ccdf6b069e1f2d93f91a3417f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib

#ifndef ASMJIT_CORE_RADEFS_P_H_INCLUDED
#define ASMJIT_CORE_RADEFS_P_H_INCLUDED

#include "../core/api-config.h"
#include "../core/archtraits.h"
#include "../core/compilerdefs.h"
#include "../core/logger.h"
#include "../core/operand.h"
#include "../core/support.h"
#include "../core/type.h"
#include "../core/zone.h"
#include "../core/zonevector.h"

ASMJIT_BEGIN_NAMESPACE

//! \cond INTERNAL
//! \addtogroup asmjit_ra
//! \{

#ifndef ASMJIT_NO_LOGGING
# define ASMJIT_RA_LOG_FORMAT(...)  \
  do {                              \
    if (logger)                     \
      logger->logf(__VA_ARGS__);    \
  } while (0)
# define ASMJIT_RA_LOG_COMPLEX(...) \
  do {                              \
    if (logger) {                   \
      __VA_ARGS__                   \
    }                               \
  } while (0)
#else
# define ASMJIT_RA_LOG_FORMAT(...) ((void)0)
# define ASMJIT_RA_LOG_COMPLEX(...) ((void)0)
#endif

class BaseRAPass;
class RABlock;
class BaseNode;
struct RAStackSlot;

typedef ZoneVector<RABlock*> RABlocks;
typedef ZoneVector<RAWorkReg*> RAWorkRegs;

//! Maximum number of consecutive registers aggregated from all supported backends.
static constexpr uint32_t kMaxConsecutiveRegs = 4;

//! Provides architecture constraints used by register allocator.
class RAConstraints {
public:
  //! \name Members
  //! \{

  Support::Array<RegMask, Globals::kNumVirtGroups> _availableRegs {};

  //! \}

  ASMJIT_NOINLINE Error init(Arch arch) noexcept {
    switch (arch) {
      case Arch::kX86:
      case Arch::kX64: {
        uint32_t registerCount = arch == Arch::kX86 ? 8 : 16;
        _availableRegs[RegGroup::kGp] = Support::lsbMask<RegMask>(registerCount) & ~Support::bitMask(4u);
        _availableRegs[RegGroup::kVec] = Support::lsbMask<RegMask>(registerCount);
        _availableRegs[RegGroup::kExtraVirt2] = Support::lsbMask<RegMask>(8);
        _availableRegs[RegGroup::kExtraVirt3] = Support::lsbMask<RegMask>(8);
        return kErrorOk;
      }

      case Arch::kAArch64: {
        _availableRegs[RegGroup::kGp] = 0xFFFFFFFFu & ~Support::bitMask(18, 31u);
        _availableRegs[RegGroup::kVec] = 0xFFFFFFFFu;
        _availableRegs[RegGroup::kExtraVirt2] = 0;
        _availableRegs[RegGroup::kExtraVirt3] = 0;
        return kErrorOk;
      }

      default:
        return DebugUtils::errored(kErrorInvalidArch);
    }
  }

  inline RegMask availableRegs(RegGroup group) const noexcept { return _availableRegs[group]; }
};

enum class RAStrategyType : uint8_t {
  kSimple  = 0,
  kComplex = 1
};
ASMJIT_DEFINE_ENUM_COMPARE(RAStrategyType)

enum class RAStrategyFlags : uint8_t {
  kNone = 0
};
ASMJIT_DEFINE_ENUM_FLAGS(RAStrategyFlags)

//! Register allocation strategy.
//!
//! The idea is to select the best register allocation strategy for each virtual register group based on the
//! complexity of the code.
struct RAStrategy {
  //! \name Members
  //! \{

  RAStrategyType _type = RAStrategyType::kSimple;
  RAStrategyFlags _flags = RAStrategyFlags::kNone;

  //! \}

  //! \name Accessors
  //! \{

  inline void reset() noexcept {
    _type = RAStrategyType::kSimple;
    _flags = RAStrategyFlags::kNone;
  }

  inline RAStrategyType type() const noexcept { return _type; }
  inline void setType(RAStrategyType type) noexcept { _type = type; }

  inline bool isSimple() const noexcept { return _type == RAStrategyType::kSimple; }
  inline bool isComplex() const noexcept { return _type >= RAStrategyType::kComplex; }

  inline RAStrategyFlags flags() const noexcept { return _flags; }
  inline bool hasFlag(RAStrategyFlags flag) const noexcept { return Support::test(_flags, flag); }
  inline void addFlags(RAStrategyFlags flags) noexcept { _flags |= flags; }

  //! \}
};

//! Count of virtual or physical registers per group.
//!
//! \note This class uses 8-bit integers to represent counters, it's only used in places where this is sufficient,
//! for example total count of machine's physical registers, count of virtual registers per instruction, etc...
//! There is also `RALiveCount`, which uses 32-bit integers and is indeed much safer.
struct RARegCount {
  //! \name Members
  //! \{

  union {
    uint8_t _regs[4];
    uint32_t _packed;
  };

  //! \}

  //! \name Construction & Destruction
  //! \{

  //! Resets all counters to zero.
  inline void reset() noexcept { _packed = 0; }

  //! \}

  //! \name Overloaded Operators
  //! \{

  inline uint8_t& operator[](RegGroup group) noexcept {
    ASMJIT_ASSERT(group <= RegGroup::kMaxVirt);
    return _regs[size_t(group)];
  }

  inline const uint8_t& operator[](RegGroup group) const noexcept {
    ASMJIT_ASSERT(group <= RegGroup::kMaxVirt);
    return _regs[size_t(group)];
  }

  inline bool operator==(const RARegCount& other) const noexcept { return _packed == other._packed; }
  inline bool operator!=(const RARegCount& other) const noexcept { return _packed != other._packed; }

  //! \}

  //! \name Accessors
  //! \{

  //! Returns the count of registers by the given register `group`.
  inline uint32_t get(RegGroup group) const noexcept {
    ASMJIT_ASSERT(group <= RegGroup::kMaxVirt);

    uint32_t shift = Support::byteShiftOfDWordStruct(uint32_t(group));
    return (_packed >> shift) & uint32_t(0xFF);
  }

  //! Sets the register count by a register `group`.
  inline void set(RegGroup group, uint32_t n) noexcept {
    ASMJIT_ASSERT(group <= RegGroup::kMaxVirt);
    ASMJIT_ASSERT(n <= 0xFF);

    uint32_t shift = Support::byteShiftOfDWordStruct(uint32_t(group));
    _packed = (_packed & ~uint32_t(0xFF << shift)) + (n << shift);
  }

  //! Adds the register count by a register `group`.
  inline void add(RegGroup group, uint32_t n = 1) noexcept {
    ASMJIT_ASSERT(group <= RegGroup::kMaxVirt);
    ASMJIT_ASSERT(0xFF - uint32_t(_regs[size_t(group)]) >= n);

    uint32_t shift = Support::byteShiftOfDWordStruct(uint32_t(group));
    _packed += n << shift;
  }

  //! \}
};

//! Provides mapping that can be used to fast index architecture register groups.
struct RARegIndex : public RARegCount {
  //! Build register indexes based on the given `count` of registers.
  ASMJIT_FORCE_INLINE void buildIndexes(const RARegCount& count) noexcept {
    uint32_t x = uint32_t(count._regs[0]);
    uint32_t y = uint32_t(count._regs[1]) + x;
    uint32_t z = uint32_t(count._regs[2]) + y;

    ASMJIT_ASSERT(y <= 0xFF);
    ASMJIT_ASSERT(z <= 0xFF);
    _packed = Support::bytepack32_4x8(0, x, y, z);
  }
};

//! Registers mask.
struct RARegMask {
  //! \name Members
  //! \{

  Support::Array<RegMask, Globals::kNumVirtGroups> _masks;

  //! \}

  //! \name Construction & Destruction
  //! \{

  inline void init(const RARegMask& other) noexcept { _masks = other._masks; }
  //! Reset all register masks to zero.
  inline void reset() noexcept { _masks.fill(0); }

  //! \}

  //! \name Overloaded Operators
  //! \{

  inline bool operator==(const RARegMask& other) const noexcept { return _masks == other._masks; }
  inline bool operator!=(const RARegMask& other) const noexcept { return _masks != other._masks; }

  template<typename Index>
  inline uint32_t& operator[](const Index& index) noexcept { return _masks[index]; }

  template<typename Index>
  inline const uint32_t& operator[](const Index& index) const noexcept { return _masks[index]; }

  //! \}

  //! \name Utilities
  //! \{

  //! Tests whether all register masks are zero (empty).
  inline bool empty() const noexcept {
    return _masks.aggregate<Support::Or>() == 0;
  }

  inline bool has(RegGroup group, RegMask mask = 0xFFFFFFFFu) const noexcept {
    return (_masks[group] & mask) != 0;
  }

  template<class Operator>
  inline void op(const RARegMask& other) noexcept {
    _masks.combine<Operator>(other._masks);
  }

  template<class Operator>
  inline void op(RegGroup group, uint32_t input) noexcept {
    _masks[group] = Operator::op(_masks[group], input);
  }

  //! \}
};

//! Information associated with each instruction, propagated to blocks, loops, and the whole function. This
//! information can be used to do minor decisions before the register allocator tries to do its job. For
//! example to use fast register allocation inside a block or loop it cannot have clobbered and/or fixed
//! registers, etc...
class RARegsStats {
public:
  //! \name Constants
  //! \{

  enum Index : uint32_t {
    kIndexUsed       = 0,
    kIndexFixed      = 8,
    kIndexClobbered  = 16
  };

  enum Mask : uint32_t {
    kMaskUsed        = 0xFFu << kIndexUsed,
    kMaskFixed       = 0xFFu << kIndexFixed,
    kMaskClobbered   = 0xFFu << kIndexClobbered
  };

  //! \}

  //! \name Members
  //! \{

  uint32_t _packed = 0;

  //! \}

  //! \name Accessors
  //! \{

  inline void reset() noexcept { _packed = 0; }
  inline void combineWith(const RARegsStats& other) noexcept { _packed |= other._packed; }

  inline bool hasUsed() const noexcept { return (_packed & kMaskUsed) != 0u; }
  inline bool hasUsed(RegGroup group) const noexcept { return (_packed & Support::bitMask(kIndexUsed + uint32_t(group))) != 0u; }
  inline void makeUsed(RegGroup group) noexcept { _packed |= Support::bitMask(kIndexUsed + uint32_t(group)); }

  inline bool hasFixed() const noexcept { return (_packed & kMaskFixed) != 0u; }
  inline bool hasFixed(RegGroup group) const noexcept { return (_packed & Support::bitMask(kIndexFixed + uint32_t(group))) != 0u; }
  inline void makeFixed(RegGroup group) noexcept { _packed |= Support::bitMask(kIndexFixed + uint32_t(group)); }

  inline bool hasClobbered() const noexcept { return (_packed & kMaskClobbered) != 0u; }
  inline bool hasClobbered(RegGroup group) const noexcept { return (_packed & Support::bitMask(kIndexClobbered + uint32_t(group))) != 0u; }
  inline void makeClobbered(RegGroup group) noexcept { _packed |= Support::bitMask(kIndexClobbered + uint32_t(group)); }

  //! \}
};

//! Count of live registers, per group.
class RALiveCount {
public:
  //! \name Members
  //! \{

  Support::Array<uint32_t, Globals::kNumVirtGroups> n {};

  //! \}

  //! \name Construction & Destruction
  //! \{

  inline RALiveCount() noexcept = default;
  inline RALiveCount(const RALiveCount& other) noexcept = default;

  inline void init(const RALiveCount& other) noexcept { n = other.n; }
  inline void reset() noexcept { n.fill(0); }

  //! \}

  //! \name Overloaded Operators
  //! \{

  inline RALiveCount& operator=(const RALiveCount& other) noexcept = default;

  inline uint32_t& operator[](RegGroup group) noexcept { return n[group]; }
  inline const uint32_t& operator[](RegGroup group) const noexcept { return n[group]; }

  //! \}

  //! \name Utilities
  //! \{

  template<class Operator>
  inline void op(const RALiveCount& other) noexcept { n.combine<Operator>(other.n); }

  //! \}
};

struct RALiveInterval {
  //! \name Constants
  //! \{

  enum : uint32_t {
    kNaN = 0,
    kInf = 0xFFFFFFFFu
  };

  //! \}

  //! \name Members
  //! \{

  uint32_t a, b;

  //! \}

  //! \name Construction & Destruction
  //! \{

  inline RALiveInterval() noexcept : a(0), b(0) {}
  inline RALiveInterval(uint32_t a, uint32_t b) noexcept : a(a), b(b) {}
  inline RALiveInterval(const RALiveInterval& other) noexcept : a(other.a), b(other.b) {}

  inline void init(uint32_t aVal, uint32_t bVal) noexcept {
    a = aVal;
    b = bVal;
  }
  inline void init(const RALiveInterval& other) noexcept { init(other.a, other.b); }
  inline void reset() noexcept { init(0, 0); }

  //! \}

  //! \name Overloaded Operators
  //! \{

  inline RALiveInterval& operator=(const RALiveInterval& other) = default;

  //! \}

  //! \name Accessors
  //! \{

  inline bool isValid() const noexcept { return a < b; }
  inline uint32_t width() const noexcept { return b - a; }

  //! \}
};

//! Live span with payload of type `T`.
template<typename T>
class RALiveSpan : public RALiveInterval, public T {
public:
  //! \name Types
  //! \{

  typedef T DataType;

  //! \}

  //! \name Construction & Destruction
  //! \{

  inline RALiveSpan() noexcept : RALiveInterval(), T() {}
  inline RALiveSpan(const RALiveSpan<T>& other) noexcept : RALiveInterval(other), T() {}
  inline RALiveSpan(const RALiveInterval& interval, const T& data) noexcept : RALiveInterval(interval), T(data) {}
  inline RALiveSpan(uint32_t a, uint32_t b) noexcept : RALiveInterval(a, b), T() {}
  inline RALiveSpan(uint32_t a, uint32_t b, const T& data) noexcept : RALiveInterval(a, b), T(data) {}

  inline void init(const RALiveSpan<T>& other) noexcept {
    RALiveInterval::init(static_cast<const RALiveInterval&>(other));
    T::init(static_cast<const T&>(other));
  }

  inline void init(const RALiveSpan<T>& span, const T& data) noexcept {
    RALiveInterval::init(static_cast<const RALiveInterval&>(span));
    T::init(data);
  }

  inline void init(const RALiveInterval& interval, const T& data) noexcept {
    RALiveInterval::init(interval);
    T::init(data);
  }

  //! \}

  //! \name Overloaded Operators
  //! \{

  inline RALiveSpan& operator=(const RALiveSpan& other) {
    init(other);
    return *this;
  }

  //! \}
};

//! Vector of `RALiveSpan<T>` with additional convenience API.
template<typename T>
class RALiveSpans {
public:
  ASMJIT_NONCOPYABLE(RALiveSpans)

  typedef typename T::DataType DataType;
  ZoneVector<T> _data;

  //! \name Construction & Destruction
  //! \{

  inline RALiveSpans() noexcept : _data() {}

  inline void reset() noexcept { _data.reset(); }
  inline void release(ZoneAllocator* allocator) noexcept { _data.release(allocator); }

  //! \}

  //! \name Accessors
  //! \{

  inline bool empty() const noexcept { return _data.empty(); }
  inline uint32_t size() const noexcept { return _data.size(); }

  inline T* data() noexcept { return _data.data(); }
  inline const T* data() const noexcept { return _data.data(); }

  inline bool isOpen() const noexcept {
    uint32_t size = _data.size();
    return size > 0 && _data[size - 1].b == RALiveInterval::kInf;
  }

  //! \}

  //! \name Utilities
  //! \{

  inline void swap(RALiveSpans<T>& other) noexcept { _data.swap(other._data); }

  //! Open the current live span.
  ASMJIT_FORCE_INLINE Error openAt(ZoneAllocator* allocator, uint32_t start, uint32_t end) noexcept {
    bool wasOpen;
    return openAt(allocator, start, end, wasOpen);
  }

  ASMJIT_FORCE_INLINE Error openAt(ZoneAllocator* allocator, uint32_t start, uint32_t end, bool& wasOpen) noexcept {
    uint32_t size = _data.size();
    wasOpen = false;

    if (size > 0) {
      T& last = _data[size - 1];
      if (last.b >= start) {
        wasOpen = last.b > start;
        last.b = end;
        return kErrorOk;
      }
    }

    return _data.append(allocator, T(start, end));
  }

  ASMJIT_FORCE_INLINE void closeAt(uint32_t end) noexcept {
    ASMJIT_ASSERT(!empty());

    uint32_t size = _data.size();
    _data[size - 1].b = end;
  }

  //! Returns the sum of width of all spans.
  //!
  //! \note Don't overuse, this iterates over all spans so it's O(N). It should be only called once and then cached.
  inline uint32_t width() const noexcept {
    uint32_t width = 0;
    for (const T& span : _data)
      width += span.width();
    return width;
  }

  inline T& operator[](uint32_t index) noexcept { return _data[index]; }
  inline const T& operator[](uint32_t index) const noexcept { return _data[index]; }

  inline bool intersects(const RALiveSpans<T>& other) const noexcept {
    return intersects(*this, other);
  }

  ASMJIT_FORCE_INLINE Error nonOverlappingUnionOf(ZoneAllocator* allocator, const RALiveSpans<T>& x, const RALiveSpans<T>& y, const DataType& yData) noexcept {
    uint32_t finalSize = x.size() + y.size();
    ASMJIT_PROPAGATE(_data.reserve(allocator, finalSize));

    T* dstPtr = _data.data();
    const T* xSpan = x.data();
    const T* ySpan = y.data();

    const T* xEnd = xSpan + x.size();
    const T* yEnd = ySpan + y.size();

    // Loop until we have intersection or either `xSpan == xEnd` or `ySpan == yEnd`, which means that there is no
    // intersection. We advance either `xSpan` or `ySpan` depending on their ranges.
    if (xSpan != xEnd && ySpan != yEnd) {
      uint32_t xa, ya;
      xa = xSpan->a;
      for (;;) {
        while (ySpan->b <= xa) {
          dstPtr->init(*ySpan, yData);
          dstPtr++;
          if (++ySpan == yEnd)
            goto Done;
        }

        ya = ySpan->a;
        while (xSpan->b <= ya) {
          *dstPtr++ = *xSpan;
          if (++xSpan == xEnd)
            goto Done;
        }

        // We know that `xSpan->b > ySpan->a`, so check if `ySpan->b > xSpan->a`.
        xa = xSpan->a;
        if (ySpan->b > xa)
          return 0xFFFFFFFFu;
      }
    }

  Done:
    while (xSpan != xEnd) {
      *dstPtr++ = *xSpan++;
    }

    while (ySpan != yEnd) {
      dstPtr->init(*ySpan, yData);
      dstPtr++;
      ySpan++;
    }

    _data._setEndPtr(dstPtr);
    return kErrorOk;
  }

  static ASMJIT_FORCE_INLINE bool intersects(const RALiveSpans<T>& x, const RALiveSpans<T>& y) noexcept {
    const T* xSpan = x.data();
    const T* ySpan = y.data();

    const T* xEnd = xSpan + x.size();
    const T* yEnd = ySpan + y.size();

    // Loop until we have intersection or either `xSpan == xEnd` or `ySpan == yEnd`, which means that there is no
    // intersection. We advance either `xSpan` or `ySpan` depending on their end positions.
    if (xSpan == xEnd || ySpan == yEnd)
      return false;

    uint32_t xa, ya;
    xa = xSpan->a;

    for (;;) {
      while (ySpan->b <= xa)
        if (++ySpan == yEnd)
          return false;

      ya = ySpan->a;
      while (xSpan->b <= ya)
        if (++xSpan == xEnd)
          return false;

      // We know that `xSpan->b > ySpan->a`, so check if `ySpan->b > xSpan->a`.
      xa = xSpan->a;
      if (ySpan->b > xa)
        return true;
    }
  }

  //! \}
};

//! Statistics about a register liveness.
class RALiveStats {
public:
  uint32_t _width = 0;
  float _freq = 0.0f;
  float _priority = 0.0f;

  //! \name Accessors
  //! \{

  inline uint32_t width() const noexcept { return _width; }
  inline float freq() const noexcept { return _freq; }
  inline float priority() const noexcept { return _priority; }

  //! \}
};

struct LiveRegData {
  uint32_t id;

  inline explicit LiveRegData(uint32_t id = BaseReg::kIdBad) noexcept : id(id) {}
  inline LiveRegData(const LiveRegData& other) noexcept : id(other.id) {}

  inline void init(const LiveRegData& other) noexcept { id = other.id; }

  inline bool operator==(const LiveRegData& other) const noexcept { return id == other.id; }
  inline bool operator!=(const LiveRegData& other) const noexcept { return id != other.id; }
};

typedef RALiveSpan<LiveRegData> LiveRegSpan;
typedef RALiveSpans<LiveRegSpan> LiveRegSpans;

//! Flags used by \ref RATiedReg.
//!
//! Register access information is encoded in 4 flags in total:
//!
//!   - `kRead`  - Register is Read    (ReadWrite if combined with `kWrite`).
//!   - `kWrite` - Register is Written (ReadWrite if combined with `kRead`).
//!   - `kUse`   - Encoded as Read or ReadWrite.
//!   - `kOut`   - Encoded as WriteOnly.
//!
//! Let's describe all of these on two X86 instructions:
//!
//!   - ADD x{R|W|Use},  x{R|Use}              -> {x:R|W|Use            }
//!   - LEA x{  W|Out}, [x{R|Use} + x{R|Out}]  -> {x:R|W|Use|Out        }
//!   - ADD x{R|W|Use},  y{R|Use}              -> {x:R|W|Use     y:R|Use}
//!   - LEA x{  W|Out}, [x{R|Use} + y{R|Out}]  -> {x:R|W|Use|Out y:R|Use}
//!
//! It should be obvious from the example above how these flags get created. Each operand contains READ/WRITE
//! information, which is then merged to RATiedReg's flags. However, we also need to represent the possitility
//! to view the operation as two independent operations - USE and OUT, because the register allocator first
//! allocates USE registers, and then assigns OUT registers independently of USE registers.
enum class RATiedFlags : uint32_t {
  //! No flags.
  kNone = 0,

  // Access Flags
  // ------------

  //! Register is read.
  kRead = uint32_t(OpRWFlags::kRead),
  //! Register is written.
  kWrite = uint32_t(OpRWFlags::kWrite),
  //! Register both read and written.
  kRW = uint32_t(OpRWFlags::kRW),

  // Use / Out Flags
  // ---------------

  //! Register has a USE slot (read/rw).
  kUse = 0x00000004u,
  //! Register has an OUT slot (write-only).
  kOut = 0x00000008u,
  //! Register in USE slot can be patched to memory.
  kUseRM = 0x00000010u,
  //! Register in OUT slot can be patched to memory.
  kOutRM = 0x00000020u,

  //! Register has a fixed USE slot.
  kUseFixed = 0x00000040u,
  //! Register has a fixed OUT slot.
  kOutFixed = 0x00000080u,
  //! Register USE slot has been allocated.
  kUseDone = 0x00000100u,
  //! Register OUT slot has been allocated.
  kOutDone = 0x00000200u,

  // Consecutive Flags / Data
  // ------------------------

  kUseConsecutive = 0x00000400u,
  kOutConsecutive = 0x00000800u,
  kLeadConsecutive = 0x00001000u,
  kConsecutiveData = 0x00006000u,

  // Liveness Flags
  // --------------

  //! Register must be duplicated (function call only).
  kDuplicate = 0x00010000u,
  //! Last occurrence of this VirtReg in basic block.
  kLast = 0x00020000u,
  //! Kill this VirtReg after use.
  kKill = 0x00040000u,

  // X86 Specific Flags
  // ------------------

  // Architecture specific flags are used during RATiedReg building to ensure that architecture-specific constraints
  // are handled properly. These flags are not really needed after RATiedReg[] is built and copied to `RAInst`.

  //! This RATiedReg references GPB-LO or GPB-HI.
  kX86_Gpb = 0x01000000u,

  // Instruction Flags (Never used by RATiedReg)
  // -------------------------------------------

  //! Instruction is transformable to another instruction if necessary.
  //!
  //! This is flag that is only used by \ref RAInst to inform register allocator that the instruction has some
  //! constraints that can only be solved by transforming the instruction into another instruction, most likely
  //! by changing its InstId.
  kInst_IsTransformable = 0x80000000u
};
ASMJIT_DEFINE_ENUM_FLAGS(RATiedFlags)

static_assert(uint32_t(RATiedFlags::kRead ) == 0x1, "RATiedFlags::kRead must be 0x1");
static_assert(uint32_t(RATiedFlags::kWrite) == 0x2, "RATiedFlags::kWrite must be 0x2");
static_assert(uint32_t(RATiedFlags::kRW   ) == 0x3, "RATiedFlags::kRW must be 0x3");

//! Tied register merges one ore more register operand into a single entity. It contains information about its access
//! (Read|Write) and allocation slots (Use|Out) that are used by the register allocator and liveness analysis.
struct RATiedReg {
  //! \name Members
  //! \{

  //! WorkReg id.
  uint32_t _workId;
  //! WorkReg id that is an immediate consecutive parent of this register, or Globals::kInvalidId if it has no parent.
  uint32_t _consecutiveParent;
  //! Allocation flags.
  RATiedFlags _flags;

  union {
    struct {
      //! How many times the VirtReg is referenced in all operands.
      uint8_t _refCount;
      //! Size of a memory operand in case that it's use instead of the register.
      uint8_t _rmSize;
      //! Physical register for use operation (ReadOnly / ReadWrite).
      uint8_t _useId;
      //! Physical register for out operation (WriteOnly).
      uint8_t _outId;
    };
    //! Packed data.
    uint32_t _packed;
  };

  //! Registers where inputs {R|X} can be allocated to.
  RegMask _useRegMask;
  //! Registers where outputs {W} can be allocated to.
  RegMask _outRegMask;
  //! Indexes used to rewrite USE regs.
  uint32_t _useRewriteMask;
  //! Indexes used to rewrite OUT regs.
  uint32_t _outRewriteMask;

  //! \}

  //! \name Statics
  //! \{

  static inline RATiedFlags consecutiveDataToFlags(uint32_t offset) noexcept {
    ASMJIT_ASSERT(offset < 4);
    constexpr uint32_t kOffsetShift = Support::ConstCTZ<uint32_t(RATiedFlags::kConsecutiveData)>::value;
    return (RATiedFlags)(offset << kOffsetShift);
  }

  static inline uint32_t consecutiveDataFromFlags(RATiedFlags flags) noexcept {
    constexpr uint32_t kOffsetShift = Support::ConstCTZ<uint32_t(RATiedFlags::kConsecutiveData)>::value;
    return uint32_t(flags & RATiedFlags::kConsecutiveData) >> kOffsetShift;
  }

  //! \}

  //! \name Construction & Destruction
  //! \{

  inline void init(uint32_t workId, RATiedFlags flags, RegMask useRegMask, uint32_t useId, uint32_t useRewriteMask, RegMask outRegMask, uint32_t outId, uint32_t outRewriteMask, uint32_t rmSize = 0, uint32_t consecutiveParent = Globals::kInvalidId) noexcept {
    _workId = workId;
    _consecutiveParent = consecutiveParent;
    _flags = flags;
    _refCount = 1;
    _rmSize = uint8_t(rmSize);
    _useId = uint8_t(useId);
    _outId = uint8_t(outId);
    _useRegMask = useRegMask;
    _outRegMask = outRegMask;
    _useRewriteMask = useRewriteMask;
    _outRewriteMask = outRewriteMask;
  }

  //! \}

  //! \name Accessors
  //! \{

  //! Returns the associated WorkReg id.
  inline uint32_t workId() const noexcept { return _workId; }

  inline bool hasConsecutiveParent() const noexcept { return _consecutiveParent != Globals::kInvalidId; }
  inline uint32_t consecutiveParent() const noexcept { return _consecutiveParent; }
  inline uint32_t consecutiveData() const noexcept { return consecutiveDataFromFlags(_flags); }

  //! Returns TiedReg flags.
  inline RATiedFlags flags() const noexcept { return _flags; }
  //! Checks if the given `flag` is set.
  inline bool hasFlag(RATiedFlags flag) const noexcept { return Support::test(_flags, flag); }
  //! Adds tied register flags.
  inline void addFlags(RATiedFlags flags) noexcept { _flags |= flags; }

  //! Tests whether the register is read (writes `true` also if it's Read/Write).
  inline bool isRead() const noexcept { return hasFlag(RATiedFlags::kRead); }
  //! Tests whether the register is written (writes `true` also if it's Read/Write).
  inline bool isWrite() const noexcept { return hasFlag(RATiedFlags::kWrite); }
  //! Tests whether the register is read only.
  inline bool isReadOnly() const noexcept { return (_flags & RATiedFlags::kRW) == RATiedFlags::kRead; }
  //! Tests whether the register is write only.
  inline bool isWriteOnly() const noexcept { return (_flags & RATiedFlags::kRW) == RATiedFlags::kWrite; }
  //! Tests whether the register is read and written.
  inline bool isReadWrite() const noexcept { return (_flags & RATiedFlags::kRW) == RATiedFlags::kRW; }

  //! Tests whether the tied register has use operand (Read/ReadWrite).
  inline bool isUse() const noexcept { return hasFlag(RATiedFlags::kUse); }
  //! Tests whether the tied register has out operand (Write).
  inline bool isOut() const noexcept { return hasFlag(RATiedFlags::kOut); }

  //! Tests whether the tied register has \ref RATiedFlags::kLeadConsecutive flag set.
  inline bool isLeadConsecutive() const noexcept { return hasFlag(RATiedFlags::kLeadConsecutive); }
  //! Tests whether the tied register has \ref RATiedFlags::kUseConsecutive flag set.
  inline bool isUseConsecutive() const noexcept { return hasFlag(RATiedFlags::kUseConsecutive); }
  //! Tests whether the tied register has \ref RATiedFlags::kOutConsecutive flag set.
  inline bool isOutConsecutive() const noexcept { return hasFlag(RATiedFlags::kOutConsecutive); }

  //! Tests whether the tied register has any consecutive flag.
  inline bool hasAnyConsecutiveFlag() const noexcept { return hasFlag(RATiedFlags::kLeadConsecutive | RATiedFlags::kUseConsecutive | RATiedFlags::kOutConsecutive); }

  //! Tests whether the USE slot can be patched to memory operand.
  inline bool hasUseRM() const noexcept { return hasFlag(RATiedFlags::kUseRM); }
  //! Tests whether the OUT slot can be patched to memory operand.
  inline bool hasOutRM() const noexcept { return hasFlag(RATiedFlags::kOutRM); }

  inline uint32_t rmSize() const noexcept { return _rmSize; }

  inline void makeReadOnly() noexcept {
    _flags = (_flags & ~(RATiedFlags::kOut | RATiedFlags::kWrite)) | RATiedFlags::kUse;
    _useRewriteMask |= _outRewriteMask;
    _outRewriteMask = 0;
  }

  inline void makeWriteOnly() noexcept {
    _flags = (_flags & ~(RATiedFlags::kUse | RATiedFlags::kRead)) | RATiedFlags::kOut;
    _outRewriteMask |= _useRewriteMask;
    _useRewriteMask = 0;
  }

  //! Tests whether the register would duplicate.
  inline bool isDuplicate() const noexcept { return hasFlag(RATiedFlags::kDuplicate); }

  //! Tests whether the register (and the instruction it's part of) appears last in the basic block.
  inline bool isLast() const noexcept { return hasFlag(RATiedFlags::kLast); }
  //! Tests whether the register should be killed after USEd and/or OUTed.
  inline bool isKill() const noexcept { return hasFlag(RATiedFlags::kKill); }

  //! Tests whether the register is OUT or KILL (used internally by local register allocator).
  inline bool isOutOrKill() const noexcept { return hasFlag(RATiedFlags::kOut | RATiedFlags::kKill); }

  //! Returns a register mask that describes allocable USE registers (Read/ReadWrite access).
  inline RegMask useRegMask() const noexcept { return _useRegMask; }
  //! Returns a register mask that describes allocable OUT registers (WriteOnly access).
  inline RegMask outRegMask() const noexcept { return _outRegMask; }

  inline uint32_t refCount() const noexcept { return _refCount; }
  inline void addRefCount(uint32_t n = 1) noexcept { _refCount = uint8_t(_refCount + n); }

  //! Tests whether the register must be allocated to a fixed physical register before it's used.
  inline bool hasUseId() const noexcept { return _useId != BaseReg::kIdBad; }
  //! Tests whether the register must be allocated to a fixed physical register before it's written.
  inline bool hasOutId() const noexcept { return _outId != BaseReg::kIdBad; }

  //! Returns a physical register id used for 'use' operation.
  inline uint32_t useId() const noexcept { return _useId; }
  //! Returns a physical register id used for 'out' operation.
  inline uint32_t outId() const noexcept { return _outId; }

  inline uint32_t useRewriteMask() const noexcept { return _useRewriteMask; }
  inline uint32_t outRewriteMask() const noexcept { return _outRewriteMask; }

  //! Sets a physical register used for 'use' operation.
  inline void setUseId(uint32_t index) noexcept { _useId = uint8_t(index); }
  //! Sets a physical register used for 'out' operation.
  inline void setOutId(uint32_t index) noexcept { _outId = uint8_t(index); }

  inline bool isUseDone() const noexcept { return hasFlag(RATiedFlags::kUseDone); }
  inline bool isOutDone() const noexcept { return hasFlag(RATiedFlags::kUseDone); }

  inline void markUseDone() noexcept { addFlags(RATiedFlags::kUseDone); }
  inline void markOutDone() noexcept { addFlags(RATiedFlags::kUseDone); }

  //! \}
};

//! Flags used by \ref RAWorkReg.
enum class RAWorkRegFlags : uint32_t {
  //! No flags.
  kNone = 0,

  //! This register has already been allocated.
  kAllocated = 0x00000001u,
  //! Has been coalesced to another WorkReg.
  kCoalesced = 0x00000002u,

  //! Set when this register is used as a LEAD consecutive register at least once.
  kLeadConsecutive = 0x00000004u,
  //! Used to mark consecutive registers during processing.
  kProcessedConsecutive = 0x00000008u,

  //! Stack slot has to be allocated.
  kStackUsed = 0x00000010u,
  //! Stack allocation is preferred.
  kStackPreferred = 0x00000020u,
  //! Marked for stack argument reassignment.
  kStackArgToStack = 0x00000040u
};
ASMJIT_DEFINE_ENUM_FLAGS(RAWorkRegFlags)

//! Work register provides additional data of \ref VirtReg that is used by register allocator.
//!
//! In general when a virtual register is found by register allocator it maps it to \ref RAWorkReg
//! and then only works with it. The reason for such mapping is that users can create many virtual
//! registers, which are not used inside a register allocation scope (which is currently always a
//! function). So register allocator basically scans the function for virtual registers and maps
//! them into WorkRegs, which receive a temporary ID (workId), which starts from zero. This WorkId
//! is then used in bit-arrays and other mappings.
class RAWorkReg {
public:
  ASMJIT_NONCOPYABLE(RAWorkReg)

  //! \name Constants
  //! \{

  enum : uint32_t {
    kIdNone = 0xFFFFFFFFu
  };

  enum : uint32_t {
    kNoArgIndex = 0xFFu
  };

  //! \}

  //! \name Members
  //! \{

  //! RAPass specific ID used during analysis and allocation.
  uint32_t _workId = 0;
  //! Copy of ID used by \ref VirtReg.
  uint32_t _virtId = 0;

  //! Permanent association with \ref VirtReg.
  VirtReg* _virtReg = nullptr;
  //! Temporary association with \ref RATiedReg.
  RATiedReg* _tiedReg = nullptr;
  //! Stack slot associated with the register.
  RAStackSlot* _stackSlot = nullptr;

  //! Copy of a signature used by \ref VirtReg.
  OperandSignature _signature {};
  //! RAPass specific flags used during analysis and allocation.
  RAWorkRegFlags _flags = RAWorkRegFlags::kNone;

  //! Constains all USE ids collected from all instructions.
  //!
  //! If this mask is non-zero and not a power of two, it means that the register is used multiple times in
  //! instructions where it requires to have a different use ID. This means that in general it's not possible
  //! to keep this register in a single home.
  RegMask _useIdMask = 0;
  //! Preferred mask of registers (if non-zero) to allocate this register to.
  //!
  //! If this mask is zero it means that either there is no intersection of preferred registers collected from all
  //! TiedRegs or there is no preference at all (the register can be allocated to any register all the time).
  RegMask _preferredMask = 0xFFFFFFFFu;
  //! Consecutive mask, which was collected from all instructions where this register was used as a lead consecutive
  //! register.
  RegMask _consecutiveMask = 0xFFFFFFFFu;
  //! IDs of all physical registers that are clobbered during the lifetime of this WorkReg.
  //!
  //! This mask should be updated by `RAPass::buildLiveness()`, because it's global and should
  //! be updated after unreachable code has been removed.
  RegMask _clobberSurvivalMask = 0;
  //! IDs of all physical registers this WorkReg has been allocated to.
  RegMask _allocatedMask = 0;

  //! A byte-mask where each bit represents one valid byte of the register.
  uint64_t _regByteMask = 0;

  //! Argument index (or `kNoArgIndex` if none).
  uint8_t _argIndex = kNoArgIndex;
  //! Argument value index in the pack (0 by default).
  uint8_t _argValueIndex = 0;
  //! Global home register ID (if any, assigned by RA).
  uint8_t _homeRegId = BaseReg::kIdBad;
  //! Global hint register ID (provided by RA or user).
  uint8_t _hintRegId = BaseReg::kIdBad;

  //! Live spans of the `VirtReg`.
  LiveRegSpans _liveSpans {};
  //! Live statistics.
  RALiveStats _liveStats {};

  //! All nodes that read/write this VirtReg/WorkReg.
  ZoneVector<BaseNode*> _refs {};
  //! All nodes that write to this VirtReg/WorkReg.
  ZoneVector<BaseNode*> _writes {};

  //! Contains work IDs of all immediate consecutive registers of this register.
  //!
  //! \note This bit array only contains immediate consecutives. This means that if this is a register that is
  //! followed by 3 more registers, then it would still have only a single immediate. The rest registers would
  //! have immediate consecutive registers as well, except the last one.
  ZoneBitVector _immediateConsecutives {};

  //! \}

  //! \name Construction & Destruction
  //! \{

  inline RAWorkReg(VirtReg* vReg, uint32_t workId) noexcept
    : _workId(workId),
      _virtId(vReg->id()),
      _virtReg(vReg),
      _signature(vReg->signature()) {}

  //! \}

  //! \name Accessors
  //! \{

  inline uint32_t workId() const noexcept { return _workId; }
  inline uint32_t virtId() const noexcept { return _virtId; }

  inline const char* name() const noexcept { return _virtReg->name(); }
  inline uint32_t nameSize() const noexcept { return _virtReg->nameSize(); }

  inline TypeId typeId() const noexcept { return _virtReg->typeId(); }

  inline RAWorkRegFlags flags() const noexcept { return _flags; }
  inline bool hasFlag(RAWorkRegFlags flag) const noexcept { return Support::test(_flags, flag); }
  inline void addFlags(RAWorkRegFlags flags) noexcept { _flags |= flags; }

  inline bool isAllocated() const noexcept { return hasFlag(RAWorkRegFlags::kAllocated); }
  inline void markAllocated() noexcept { addFlags(RAWorkRegFlags::kAllocated); }

  inline bool isLeadConsecutive() const noexcept { return hasFlag(RAWorkRegFlags::kLeadConsecutive); }
  inline void markLeadConsecutive() noexcept { addFlags(RAWorkRegFlags::kLeadConsecutive); }

  inline bool isProcessedConsecutive() const noexcept { return hasFlag(RAWorkRegFlags::kProcessedConsecutive); }
  inline void markProcessedConsecutive() noexcept { addFlags(RAWorkRegFlags::kProcessedConsecutive); }

  inline bool isStackUsed() const noexcept { return hasFlag(RAWorkRegFlags::kStackUsed); }
  inline void markStackUsed() noexcept { addFlags(RAWorkRegFlags::kStackUsed); }

  inline bool isStackPreferred() const noexcept { return hasFlag(RAWorkRegFlags::kStackPreferred); }
  inline void markStackPreferred() noexcept { addFlags(RAWorkRegFlags::kStackPreferred); }

  //! Tests whether this RAWorkReg has been coalesced with another one (cannot be used anymore).
  inline bool isCoalesced() const noexcept { return hasFlag(RAWorkRegFlags::kCoalesced); }

  inline OperandSignature signature() const noexcept { return _signature; }
  inline RegType type() const noexcept { return _signature.regType(); }
  inline RegGroup group() const noexcept { return _signature.regGroup(); }

  inline VirtReg* virtReg() const noexcept { return _virtReg; }

  inline bool hasTiedReg() const noexcept { return _tiedReg != nullptr; }
  inline RATiedReg* tiedReg() const noexcept { return _tiedReg; }
  inline void setTiedReg(RATiedReg* tiedReg) noexcept { _tiedReg = tiedReg; }
  inline void resetTiedReg() noexcept { _tiedReg = nullptr; }

  inline bool hasStackSlot() const noexcept { return _stackSlot != nullptr; }
  inline RAStackSlot* stackSlot() const noexcept { return _stackSlot; }

  inline LiveRegSpans& liveSpans() noexcept { return _liveSpans; }
  inline const LiveRegSpans& liveSpans() const noexcept { return _liveSpans; }

  inline RALiveStats& liveStats() noexcept { return _liveStats; }
  inline const RALiveStats& liveStats() const noexcept { return _liveStats; }

  inline bool hasArgIndex() const noexcept { return _argIndex != kNoArgIndex; }
  inline uint32_t argIndex() const noexcept { return _argIndex; }
  inline uint32_t argValueIndex() const noexcept { return _argValueIndex; }

  inline void setArgIndex(uint32_t argIndex, uint32_t valueIndex) noexcept {
    _argIndex = uint8_t(argIndex);
    _argValueIndex = uint8_t(valueIndex);
  }

  inline bool hasHomeRegId() const noexcept { return _homeRegId != BaseReg::kIdBad; }
  inline uint32_t homeRegId() const noexcept { return _homeRegId; }
  inline void setHomeRegId(uint32_t physId) noexcept { _homeRegId = uint8_t(physId); }

  inline bool hasHintRegId() const noexcept { return _hintRegId != BaseReg::kIdBad; }
  inline uint32_t hintRegId() const noexcept { return _hintRegId; }
  inline void setHintRegId(uint32_t physId) noexcept { _hintRegId = uint8_t(physId); }

  inline RegMask useIdMask() const noexcept { return _useIdMask; }
  inline bool hasUseIdMask() const noexcept { return _useIdMask != 0u; }
  inline bool hasMultipleUseIds() const noexcept { return _useIdMask != 0u && !Support::isPowerOf2(_useIdMask); }
  inline void addUseIdMask(RegMask mask) noexcept { _useIdMask |= mask; }

  inline RegMask preferredMask() const noexcept { return _preferredMask; }
  inline bool hasPrereffedMask() const noexcept { return _preferredMask != 0xFFFFFFFFu; }
  inline void restrictPreferredMask(RegMask mask) noexcept { _preferredMask &= mask; }

  inline RegMask consecutiveMask() const noexcept { return _consecutiveMask; }
  inline bool hasConsecutiveMask() const noexcept { return _consecutiveMask != 0xFFFFFFFFu; }
  inline void restrictConsecutiveMask(RegMask mask) noexcept { _consecutiveMask &= mask; }

  inline RegMask clobberSurvivalMask() const noexcept { return _clobberSurvivalMask; }
  inline void addClobberSurvivalMask(RegMask mask) noexcept { _clobberSurvivalMask |= mask; }

  inline RegMask allocatedMask() const noexcept { return _allocatedMask; }
  inline void addAllocatedMask(RegMask mask) noexcept { _allocatedMask |= mask; }

  inline uint64_t regByteMask() const noexcept { return _regByteMask; }
  inline void setRegByteMask(uint64_t mask) noexcept { _regByteMask = mask; }

  inline bool hasImmediateConsecutives() const noexcept { return !_immediateConsecutives.empty(); }
  inline const ZoneBitVector& immediateConsecutives() const noexcept { return _immediateConsecutives; }

  inline Error addImmediateConsecutive(ZoneAllocator* allocator, uint32_t workId) noexcept {
    if (_immediateConsecutives.size() <= workId)
      ASMJIT_PROPAGATE(_immediateConsecutives.resize(allocator, workId + 1));

    _immediateConsecutives.setBit(workId, true);
    return kErrorOk;
  }

  //! \}
};

//! \}
//! \endcond

ASMJIT_END_NAMESPACE

#endif // ASMJIT_CORE_RADEFS_P_H_INCLUDED