summaryrefslogtreecommitdiff
path: root/lib/compiler/src/beam_jump.erl
blob: 0ca75504cf8c8f01448fd169ce038a3e88bb6e78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1999-2023. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%%% Purpose : Optimise jumps and remove unreachable code.

-module(beam_jump).

-export([module/2,
	 remove_unused_labels/1]).

%%% The following optimisations are done:
%%%
%%% (1) This code with two identical instruction sequences
%%% 
%%%     L1: <Instruction sequence>
%%%     L2:
%%%          . . .
%%%     L3: <Instruction sequence>
%%%     L4:
%%%
%%%     can be replaced with
%%% 
%%%     L1: jump L3
%%%     L2:
%%%          . . .
%%%     L3: <Instruction sequence>
%%%     L4
%%%     
%%%     Note: The instruction sequence must end with an instruction
%%%     such as a jump that never transfers control to the instruction
%%%     following it.
%%%
%%% (2) Short sequences starting with a label and ending in case_end, if_end,
%%%     and badmatch, and function calls that cause an exit (such as calls
%%%     to exit/1) are moved to the end of the function, but only if the
%%%     the block is not entered via a fallthrough. The purpose of this move
%%%     is to allow further optimizations at the place from which the
%%%     code was moved (a jump around the block could be replaced with a
%%%     fallthrough).
%%%
%%% (3) Any unreachable code is removed.  Unreachable code is code
%%%     after jump, call_last and other instructions which never
%%%     transfer control to the following instruction.  Code is
%%%     unreachable up to the next *referenced* label.  Note that the
%%%     optimisations below might generate more possibilities for
%%%     removing unreachable code.
%%%
%%% (4) This code:
%%%	L1:	jump L2
%%%          . . .
%%%     L2: ...
%%%
%%%    will be changed to
%%%
%%%    jump L2
%%%          . . .
%%%    L2: ...
%%%
%%%    and all preceding uses of L1 renamed to L2.
%%%    If the jump is unreachable, it will be removed according to (1).
%%%
%%% (5) In
%%%
%%%	 jump L1
%%%      L1:
%%%
%%%	 the jump (but not the label) will be removed.
%%%
%%% (6) If test instructions are used to skip a single jump instruction,
%%%      the test is inverted and the jump is eliminated (provided that
%%%      the test can be inverted).  Example:
%%%
%%%      is_eq L1 {x,1} {x,2}
%%%      jump L2
%%%      L1:
%%%
%%%      will be changed to
%%%
%%%      is_ne L2 {x,1} {x,2}
%%%      L1:
%%%
%%%      Because there may be backward references to the label L1
%%%      (for instance from the wait_timeout/1 instruction), we will
%%%      always keep the label. (beam_clean will remove any unused
%%%      labels.)
%%%
%%% (7)  Replace a jump to a return instruction with a return instruction.
%%%      Similarly, replace a jump to deallocate + return with those
%%%      instructions.
%%%
%%% Note: This modules depends on (almost) all branches and jumps only
%%% going forward, so that we can remove instructions (including definition
%%% of labels) after any label that has not been referenced by the code
%%% preceding the labels. Regarding the few instructions that have backward
%%% references to labels, we assume that they only transfer control back
%%% to an instruction that has already been executed. That is, code such as
%%%
%%%         jump L_entry
%%%
%%%      L_again:
%%%           .
%%%           .
%%%           .
%%%      L_entry:
%%%           .
%%%           .
%%%           .
%%%         jump L_again;
%%%           
%%% is NOT allowed (and such code is never generated by the code generator).
%%%
%%% Terminology note: The optimisation done here is called unreachable-code
%%% removal, NOT dead-code elimination.  Dead code elimination means the
%%% removal of instructions that are executed, but have no visible effect
%%% on the program state.
%%% 

-import(lists, [foldl/3,keymember/3,mapfoldl/3,reverse/1,reverse/2]).

-type instruction() :: beam_utils:instruction().

-include("beam_asm.hrl").

-spec module(beam_utils:module_code(), [compile:option()]) ->
                    {'ok',beam_utils:module_code()}.

module({Mod,Exp,Attr,Fs0,Lc0}, _Opt) ->
    {Fs,Lc} = mapfoldl(fun function/2, Lc0, Fs0),
    {ok,{Mod,Exp,Attr,Fs,Lc}}.

%% function(Function) -> Function'
%%  Optimize jumps and branches.
%%
%%  NOTE: This function assumes that there are no labels inside blocks.
function({function,Name,Arity,CLabel,Asm0}, Lc0) ->
    try
        Asm1 = eliminate_moves(Asm0),
        {Asm2,Lc} = insert_labels(Asm1, Lc0, []),
        Asm3 = share(Asm2),
        Asm4 = move(Asm3),
        Asm5 = opt(Asm4, CLabel),
        Asm6 = unshare(Asm5),
        Asm = remove_unused_labels(Asm6),
        {{function,Name,Arity,CLabel,Asm},Lc}
    catch
        Class:Error:Stack ->
	    io:fwrite("Function: ~w/~w\n", [Name,Arity]),
	    erlang:raise(Class, Error, Stack)
    end.

%%%
%%% Scan instructions in execution order and remove redundant 'move'
%%% instructions. 'move' instructions are redundant if we know that
%%% the register already contains the value being assigned, as in the
%%% following code:
%%%
%%%           select_val Register FailLabel [... Literal => L1...]
%%%                      .
%%%                      .
%%%                      .
%%%   L1:     move Literal Register
%%%

eliminate_moves(Is) ->
    eliminate_moves(Is, #{}, []).

eliminate_moves([{select,select_val,Reg,{f,Fail},List}=I|Is], D0, Acc) ->
    D1 = add_unsafe_label(Fail, D0),
    D = update_value_dict(List, Reg, D1),
    eliminate_moves(Is, D, [I|Acc]);
eliminate_moves([{test,is_eq_exact,_,[Reg0,Val]}=I,
                 {block,BlkIs0}|Is], D0, Acc) ->
    D = update_unsafe_labels(I, D0),
    Reg = unpack_typed_reg(Reg0),
    RegVal = {Reg,Val},
    BlkIs = eliminate_moves_blk(BlkIs0, RegVal),
    eliminate_moves([{block,BlkIs}|Is], D, [I|Acc]);
eliminate_moves([{test,is_nonempty_list,Fail,[Reg]}=I|Is], D0, Acc) ->
    case is_proper_list(Reg, Acc) of
        true ->
            D = update_value_dict([nil,Fail], Reg, D0),
            eliminate_moves(Is, D, [I|Acc]);
        false ->
            D = update_unsafe_labels(I, D0),
            eliminate_moves(Is, D, [I|Acc])
    end;
eliminate_moves([{label,Lbl},{block,BlkIs0}=Blk|Is], D, Acc0) ->
    Acc = [{label,Lbl}|Acc0],
    case {no_fallthrough(Acc0),D} of
        {true,#{Lbl:={_,_}=RegVal}} ->
            BlkIs = eliminate_moves_blk(BlkIs0, RegVal),
            eliminate_moves([{block,BlkIs}|Is], D, Acc);
        {_,_} ->
            eliminate_moves([Blk|Is], D, Acc)
    end;
eliminate_moves([{call,_,_}=I|Is], D, Acc) ->
    eliminate_moves_call(Is, D, [I | Acc]);
eliminate_moves([{call_ext,_,_}=I|Is], D, Acc) ->
    eliminate_moves_call(Is, D, [I | Acc]);
eliminate_moves([{block,[]}|Is], D, Acc) ->
    %% Empty blocks can prevent further jump optimizations.
    eliminate_moves(Is, D, Acc);
eliminate_moves([I|Is], D0, Acc) ->
    D = update_unsafe_labels(I, D0),
    eliminate_moves(Is, D, [I|Acc]);
eliminate_moves([], _, Acc) -> reverse(Acc).

eliminate_moves_call([{'%',{var_info,{x,0},Info}}=Anno,
                      {block,BlkIs0}=Blk | Is], D, Acc0) ->
    Acc = [Anno | Acc0],
    RetType = proplists:get_value(type, Info, none),
    case beam_types:get_singleton_value(RetType) of
        {ok, Value} ->
            RegVal = {{x,0}, value_to_literal(Value)},
            BlkIs = eliminate_moves_blk(BlkIs0, RegVal),
            eliminate_moves([{block,BlkIs}|Is], D, Acc);
        error ->
            eliminate_moves(Is, D, [Blk | Acc])
    end;
eliminate_moves_call(Is, D, Acc) ->
    eliminate_moves(Is, D, Acc).

eliminate_moves_blk([{set,[Dst],[_],move}|_]=Is, {_,Dst}) ->
    Is;
eliminate_moves_blk([{set,[Dst],[Lit],move}|Is], {Dst,Lit}) ->
    %% Remove redundant 'move' instruction.
    Is;
eliminate_moves_blk([{set,[Dst],[_],move}|_]=Is, {Dst,_}) ->
    Is;
eliminate_moves_blk([{set,[_],[_],move}=I|Is], {_,_}=RegVal) ->
    [I|eliminate_moves_blk(Is, RegVal)];
eliminate_moves_blk(Is, _) -> Is.

no_fallthrough([{'%',_} | Is]) ->
    no_fallthrough(Is);
no_fallthrough([I|_]) ->
    is_unreachable_after(I).

is_proper_list(Reg, [{'%',{var_info,Reg,Info}}|_]) ->
    case proplists:get_value(type, Info) of
        #t_list{terminator=nil} ->
            true;
        _ ->
            %% Unknown type or not a proper list.
            false
    end;
is_proper_list(Reg, [{'%',{var_info,_,_}}|Is]) ->
    is_proper_list(Reg, Is);
is_proper_list(_, _) -> false.

value_to_literal([]) -> nil;
value_to_literal(A) when is_atom(A) -> {atom,A};
value_to_literal(F) when is_float(F) -> {float,F};
value_to_literal(I) when is_integer(I) -> {integer,I};
value_to_literal(Other) -> {literal,Other}.

update_value_dict([Lit,{f,Lbl}|T], Reg0, D0) ->
    Reg = unpack_typed_reg(Reg0),
    D = case D0 of
            #{Lbl:=unsafe} -> D0;
            #{Lbl:={Reg,Lit}} -> D0;
            #{Lbl:=_} -> D0#{Lbl:=unsafe};
            #{} -> D0#{Lbl=>{Reg,Lit}}
        end,
    update_value_dict(T, Reg, D);
update_value_dict([], _, D) -> D.

unpack_typed_reg(#tr{r=Reg}) -> Reg;
unpack_typed_reg(Reg) -> Reg.

add_unsafe_label(L, D) ->
    D#{L=>unsafe}.

update_unsafe_labels(I, D) ->
    Ls = instr_labels(I),
    update_unsafe_labels_1(Ls, D).

update_unsafe_labels_1([L|Ls], D) ->
    update_unsafe_labels_1(Ls, D#{L=>unsafe});
update_unsafe_labels_1([], D) -> D.

%%%
%%% It seems to be useful to insert extra labels after certain
%%% test instructions. This used to be done by beam_dead.
%%%

insert_labels([{test,Op,_,_}=I|Is], Lc, Acc) ->
    Useful = case Op of
                 is_lt -> true;
                 is_ge -> true;
                 is_eq_exact -> true;
                 is_ne_exact -> true;
                 _ -> false
             end,
    case Useful of
	false -> insert_labels(Is, Lc, [I|Acc]);
	true -> insert_labels(Is, Lc+1, [{label,Lc},I|Acc])
    end;
insert_labels([I|Is], Lc, Acc) ->
    insert_labels(Is, Lc, [I|Acc]);
insert_labels([], Lc, Acc) ->
    {reverse(Acc),Lc}.

%%%
%%% (1) We try to share the code for identical code segments by replacing all
%%% occurrences except the last with jumps to the last occurrence.
%%%
%%% We must not share code that raises an exception from outside a
%%% try/catch block with code inside a try/catch block and vice versa,
%%% because beam_validator will probably flag it as unsafe
%%% (ambiguous_catch_try_state). The same goes for a plain catch.
%%%

share(Is0) ->
    Is1 = eliminate_fallthroughs(Is0, []),
    Is2 = find_fixpoint(fun(Is) ->
                                share_1(Is)
                        end, Is1),
    reverse(Is2).

share_1(Is) ->
    Safe = classify_labels(Is),
    share_1(Is, Safe, #{}, #{}, [], []).

%% Note that we examine the instructions in reverse execution order.
share_1([{label,L}=Lbl|Is], Safe, Dict0, Lbls0, [_|_]=Seq0, Acc) ->
    Seq = maybe_add_scope(Seq0, L, Safe),

    %% If there are try/catch or catch instructions in this function,
    %% any line instructions in the sequence now include a scope.
    case Dict0 of
        #{Seq := Label} ->
            %% This sequence of instructions has been seen previously.
            %% The scope identifiers added to line instructions ensure
            %% that two sequence will not be equal unless sharing is
            %% also safe.
            Lbls = Lbls0#{L => Label},
            share_1(Is, Safe, Dict0, Lbls, [],
                    [[Lbl,{jump,{f,Label}}]|Acc]);
        #{} ->
            %% This is first time we have seen this sequence of instructions.
            %% Find out whether it is safe to share the sequence.
            case (map_size(Safe) =:= 0 orelse
                  is_shareable(Seq)) andalso
                unambigous_deallocation(Seq)
            of
                true ->
                    %% Either this function does not contain any try/catch
                    %% instructions, in which case it is always safe to share
                    %% exception-raising instructions such as if_end and
                    %% case_end, or it this sequence does not include
                    %% any problematic instructions.
                    Dict = Dict0#{Seq => L},
                    share_1(Is, Safe, Dict, Lbls0, [], [[Lbl|Seq]|Acc]);
                false ->
                    %% The sequence includes an inappropriate instruction
                    %% that may case beam_validator to complain about
                    %% an ambiguous try/catch state.
                    share_1(Is, Safe, Dict0, Lbls0, [], [[Lbl|Seq]|Acc])
            end
    end;
share_1([{func_info,_,_,_}|_]=Is0, _Safe, _, Lbls, [], Acc0) ->
    %% Replace jumps to jumps with a jump to the final destination
    %% (jump threading). This optimization is done in the main
    %% optimization pass of this module, but we do it here too because
    %% it can give more opportunities for sharing code.
    F = case Lbls =:= #{} of
            true ->
                fun lists:reverse/2;
            false ->
                fun(Is, Acc) ->
                        beam_utils:replace_labels(Is, Acc, Lbls,
                                                  fun(Old) -> Old end)
                end
        end,
    foldl(F, Is0, Acc0);
share_1([{'catch',_,_}=I|Is], Safe, Dict, _Lbls0, Seq, Acc) ->
    %% Disable the jump threading optimization because it may be unsafe.
    share_1(Is, Safe, Dict, #{}, [I|Seq], Acc);
share_1([{'try',_,_}=I|Is], Safe, Dict, _Lbls, Seq, Acc) ->
    %% Disable the jump threading optimization because it may be unsafe.
    share_1(Is, Safe, Dict, #{}, [I|Seq], Acc);
share_1([{jump,{f,To}}=I,{label,From}=Lbl|Is], Safe, Dict0, Lbls0, _Seq, Acc) ->
    Lbls = Lbls0#{From => To},
    share_1(Is, Safe, Dict0, Lbls, [], [[Lbl,I]|Acc]);
share_1([I|Is], Safe, Dict, Lbls, Seq, Acc) ->
    case is_unreachable_after(I) of
	false ->
	    share_1(Is, Safe, Dict, Lbls, [I|Seq], Acc);
	true ->
	    share_1(Is, Safe, Dict, Lbls, [I], Acc)
    end.

unambigous_deallocation([{bs_init,_,bs_init_writable,_,_,_}|Is]) ->
    %% beam_validator requires that the size of the stack frame is
    %% unambigously known when certain instructions are used.
    %%
    %% That means that we must be careful when sharing them.
    %%
    %% To ensure that the frame size is unambigous, only allow sharing
    %% of calls if the call is followed by instructions that
    %% indicates the size of the stack frame.
    find_deallocation(Is);
unambigous_deallocation([{call_ext,_,_}|Is]) ->
    find_deallocation(Is);
unambigous_deallocation([{call,_,_}|Is]) ->
    find_deallocation(Is);
unambigous_deallocation([_|Is]) ->
    unambigous_deallocation(Is);
unambigous_deallocation([]) ->
    true.

find_deallocation([{block,_}|Is]) ->
    find_deallocation(Is);
find_deallocation([{bs_init,_,bs_init_writable,_,_,_}|Is]) ->
    find_deallocation(Is);
find_deallocation([{call,_,_}|Is]) ->
    find_deallocation(Is);
find_deallocation([{call_ext,_,_}|Is]) ->
    find_deallocation(Is);
find_deallocation([{deallocate,_}|_]) ->
    true;
find_deallocation([{init_yregs,_}|Is]) ->
    find_deallocation(Is);
find_deallocation([{line,_}|Is]) ->
    find_deallocation(Is);
find_deallocation([return]) ->
    true;
find_deallocation(_) ->
    false.

%% If the label has a scope set, assign it to any line instruction
%% in the sequence.
maybe_add_scope(Seq, L, Safe) ->
    case Safe of
        #{L := Scope} -> add_scope(Seq, Scope);
        #{} -> Seq
    end.

add_scope([{line,Loc}=I|Is], Scope) ->
    case keymember(scope, 1, Loc) of
        false ->
            [{line,[{scope,Scope}|Loc]}|add_scope(Is, Scope)];
        true ->
            [I|add_scope(Is, Scope)]
    end;
add_scope([I|Is], Scope) ->
    [I|add_scope(Is, Scope)];
add_scope([], _Scope) -> [].

is_shareable([{badmatch,_}|_]) -> false;
is_shareable([build_stacktrace|_]) -> false;
is_shareable([{case_end,_}|_]) -> false;
is_shareable([{'catch',_,_}|_]) -> false;
is_shareable([{catch_end,_}|_]) -> false;
is_shareable([if_end|_]) -> false;
is_shareable([{'try',_,_}|_]) -> false;
is_shareable([{try_case,_}|_]) -> false;
is_shareable([{try_end,_}|_]) -> false;
is_shareable([_|Is]) -> is_shareable(Is);
is_shareable([]) -> true.

%%
%% Classify labels according to where the instructions that branch to
%% the labels are located. Each label is assigned a set of scope
%% identifiers (but usually just one). If two labels have different
%% scope identfiers, sharing a sequence that raises an exception
%% between the labels may not be safe, because one label is inside a
%% try/catch, and the other label is outside. Note that we don't care
%% where the labels themselves are located, only from where the
%% branches to them are located.
%%
%% If there is more than one scope in the function (that is, if there
%% try/catch or catch in the function), the scope identifiers will be
%% added to the line instructions. Recording the scope in the line
%% instructions makes beam_jump idempotent, ensuring that beam_jump
%% will not do any unsafe optimizations when when compiling from a .S
%% file.
%%

classify_labels(Is) ->
    classify_labels(Is, 0, #{}).

classify_labels([{'catch',_,_}|Is], Scope, Safe) ->
    classify_labels(Is, Scope+1, Safe);
classify_labels([{catch_end,_}|Is], Scope, Safe) ->
    classify_labels(Is, Scope+1, Safe);
classify_labels([{'try',_,_}|Is], Scope, Safe) ->
    classify_labels(Is, Scope+1, Safe);
classify_labels([{'try_end',_}|Is], Scope, Safe) ->
    classify_labels(Is, Scope+1, Safe);
classify_labels([{'try_case',_}|Is], Scope, Safe) ->
    classify_labels(Is, Scope+1, Safe);
classify_labels([{'try_case_end',_}|Is], Scope, Safe) ->
    classify_labels(Is, Scope+1, Safe);
classify_labels([I|Is], Scope, Safe0) ->
    Labels = instr_labels(I),
    Safe = foldl(fun(L, A) ->
                         case A of
                             #{L := [Scope]} -> A;
                             #{L := Other} -> A#{L => ordsets:add_element(Scope, Other)};
                             #{} -> A#{L => [Scope]}
                         end
                 end, Safe0, Labels),
    classify_labels(Is, Scope, Safe);
classify_labels([], Scope, Safe) ->
    case Scope of
        0 ->
            %% No try/catch or catch in this function. We don't
            %% need the collected information.
            #{};
        _ ->
            Safe
    end.

%% Eliminate all fallthroughs. Return the result reversed.

eliminate_fallthroughs([{label,L}=Lbl|Is], [I|_]=Acc) ->
    case is_unreachable_after(I) of
	false ->
	    %% Eliminate fallthrough.
	    eliminate_fallthroughs(Is, [Lbl,{jump,{f,L}}|Acc]);
	true ->
	    eliminate_fallthroughs(Is, [Lbl|Acc])
    end;
eliminate_fallthroughs([I|Is], Acc) ->
    eliminate_fallthroughs(Is, [I|Acc]);
eliminate_fallthroughs([], Acc) -> Acc.

%%%
%%% (2) Move short code sequences ending in an instruction that causes an exit
%%% to the end of the function.
%%%
%%% Implementation note: Since share/1 eliminated fallthroughs to labels,
%%% we don't have to test whether instructions before labels may fail through.
%%%
move(Is) ->
    move_1(Is, [], []).

move_1([I|Is], Ends, Acc0) ->
    case is_exit_instruction(I) of
	false ->
	    move_1(Is, Ends, [I|Acc0]);
	true ->
	    case extract_seq(Acc0, [I]) of
		no ->
		    move_1(Is, Ends, [I|Acc0]);
		{yes,End,Acc} ->
		    move_1(Is, [End|Ends], Acc)
	    end
    end;
move_1([], Ends, Acc) -> reverse(Acc, lists:append(reverse(Ends))).

extract_seq([{line,_}=Line|Is], Acc) ->
    extract_seq(Is, [Line|Acc]);
extract_seq([{block,_}=Bl|Is], Acc) ->
    extract_seq_1(Is, [Bl|Acc]);
extract_seq([{label,_}|_]=Is, Acc) ->
    extract_seq_1(Is, Acc);
extract_seq(_, _) -> no.

extract_seq_1([{line,_}=Line|Is], Acc) ->
    extract_seq_1(Is, [Line|Acc]);
extract_seq_1([{label,_},{func_info,_,_,_}|_], _) ->
    no;
extract_seq_1([{label,Lbl},{jump,{f,Lbl}}|_], _) ->
    %% Don't move a sequence which have a fallthrough entering it.
    no;
extract_seq_1([{label,_}=Lbl|Is], Acc) ->
    {yes,[Lbl|Acc],Is};
extract_seq_1(_, _) -> no.

%%%
%%% (3) (4) (5) (6) Jump and unreachable code optimizations.
%%%

-record(st,
	{
	  entry :: beam_asm:label(), %Entry label (must not be moved).
	  replace :: #{beam_asm:label() := beam_asm:label()}, %Labels to replace.
	  labels :: sets:set()         %Set of referenced labels.
	}).

opt(Is0, CLabel) ->
    find_fixpoint(fun(Is) ->
			  Lbls = initial_labels(Is),
			  St = #st{entry=CLabel,replace=#{},labels=Lbls},
			  opt(Is, [], St)
		  end, Is0).

find_fixpoint(OptFun, Is0) ->
    case OptFun(Is0) of
	Is0 -> Is0;
	Is -> find_fixpoint(OptFun, Is)
    end.

opt([{test,is_eq_exact,{f,L},_}|[{jump,{f,L}}|_]=Is], Acc, St) ->
    %% The is_eq_exact test is not needed.
    opt(Is, Acc, St);
opt([{test,Test0,{f,L}=Lbl,Ops}=I0|[{jump,To}|Is]=Is0], Acc, St) ->
    case is_label_defined(Is, L) of
	false ->
            I = is_lt_to_is_ge(I0),
	    opt(Is0, [I|Acc], label_used(Lbl, St));
	true ->
	    case invert_test(Test0) of
		not_possible ->
                    I = is_lt_to_is_ge(I0),
		    opt(Is0, [I|Acc], label_used(Lbl, St));
		Test ->
		    %% Invert the test and remove the jump.
		    opt([{test,Test,To,Ops}|Is], Acc, St)
	    end
    end;
opt([{test,_,{f,_}=Lbl,_}=I0|Is], Acc, St) ->
    I = is_lt_to_is_ge(I0),
    opt(Is, [I|Acc], label_used(Lbl, St));
opt([{test,_,{f,_}=Lbl,_,_,_}=I|Is], Acc, St) ->
    opt(Is, [I|Acc], label_used(Lbl, St));
opt([{select,select_val,R,F,Vls0}|Is], Acc, St) ->
    case prune_redundant_values(Vls0, F) of
        [] ->
            %% No values left. Must convert to plain jump.
            I = {jump,F},
            opt([I|Is], Acc, St);
        [{atom,_}=Value,Lbl] ->
            %% Single value left. Convert to regular test.
            Is1 = [{test,is_eq_exact,F,[R,Value]},{jump,Lbl}|Is],
            opt(Is1, Acc, St);
        [{integer,_}=Value,Lbl] ->
            %% Single value left. Convert to regular test.
            Is1 = [{test,is_eq_exact,F,[R,Value]},{jump,Lbl}|Is],
            opt(Is1, Acc, St);
        [{atom,B1},Lbl,{atom,B2},Lbl] when B1 =:= not B2 ->
            %% Replace with is_boolean test.
            Is1 = [{test,is_boolean,F,[R]},{jump,Lbl}|Is],
            opt(Is1, Acc, St);
        [_|_]=Vls ->
            I = {select,select_val,R,F,Vls},
            skip_unreachable(Is, [I|Acc], label_used([F|Vls], St))
    end;
opt([{select,_,_R,Fail,Vls}=I|Is], Acc, St) ->
    skip_unreachable(Is, [I|Acc], label_used([Fail|Vls], St));
opt([{label,From}=I,{label,To}|Is], Acc, #st{replace=Replace}=St) ->
    opt([I|Is], Acc, St#st{replace=Replace#{To => From}});
opt([{jump,{f,_}=X}|[{label,_},{jump,X}|_]=Is], Acc, St) ->
    opt(Is, Acc, St);
opt([{jump,{f,Lbl}}|[{label,Lbl}|_]=Is], Acc, St) ->
    opt(Is, Acc, St);
opt([{jump,{f,L}=Lbl}=I|Is], Acc0, St0) ->
    %% Replace all labels before this jump instruction into the
    %% location of the jump's target.
    {Acc,St} = collect_labels(Acc0, L, St0),
    skip_unreachable(Is, [I|Acc], label_used(Lbl, St));
%% Optimization: quickly handle some common instructions that don't
%% have any failure labels and where is_unreachable_after(I) =:= false.
opt([{block,_}=I|Is], Acc, St) ->
    opt(Is, [I|Acc], St);
opt([{call,_,_}=I|Is], Acc, St) ->
    opt(Is, [I|Acc], St);
opt([{deallocate,_}=I|Is], Acc, St) ->
    opt(Is, [I|Acc], St);
%% All other instructions.
opt([I|Is], Acc, #st{labels=Used0}=St0) ->
    Used = ulbl(I, Used0),
    St = St0#st{labels=Used},
    case is_unreachable_after(I) of
	true  -> skip_unreachable(Is, [I|Acc], St);
	false -> opt(Is, [I|Acc], St)
    end;
opt([], Acc, #st{replace=Replace0}) when Replace0 =/= #{} ->
    Replace = normalize_replace(maps:to_list(Replace0), Replace0, []),
    beam_utils:replace_labels(Acc, [], Replace, fun(Old) -> Old end);
opt([], Acc, #st{replace=Replace}) when Replace =:= #{} ->
    reverse(Acc).

is_lt_to_is_ge({test,is_lt,Lbl,Args}=I) ->
    case Args of
        [{integer,N},{tr,_,#t_integer{}}=Src] ->
            {test,is_ge,Lbl,[Src,{integer,N+1}]};
        [{tr,_,#t_integer{}}=Src,{integer,N}] ->
            {test,is_ge,Lbl,[{integer,N-1},Src]};
        [_,_] ->
            I
    end;
is_lt_to_is_ge(I) -> I.

prune_redundant_values([_Val,F|Vls], F) ->
    prune_redundant_values(Vls, F);
prune_redundant_values([Val,Lbl|Vls], F) ->
    [Val,Lbl|prune_redundant_values(Vls, F)];
prune_redundant_values([], _) -> [].

normalize_replace([{From,To0}|Rest], Replace, Acc) ->
    case Replace of
        #{To0 := To} ->
            normalize_replace([{From,To}|Rest], Replace, Acc);
        _ ->
            normalize_replace(Rest, Replace, [{From,To0}|Acc])
    end;
normalize_replace([], _Replace, Acc) ->
    maps:from_list(Acc).

collect_labels(Is, Label, #st{entry=Entry,replace=Replace} = St) ->
    collect_labels_1(Is, Label, Entry, Replace, St).

collect_labels_1([{label,Entry}|_]=Is, _Label, Entry, Acc, St) ->
    %% Never move the entry label.
    {Is,St#st{replace=Acc}};
collect_labels_1([{label,L}|Is], Label, Entry, Acc, St) ->
    collect_labels_1(Is, Label, Entry, Acc#{L => Label}, St);
collect_labels_1(Is, _Label, _Entry, Acc, St) ->
    {Is,St#st{replace=Acc}}.

%% label_defined(Is, Label) -> true | false.
%%  Test whether the label Label is defined at the start of the instruction
%%  sequence, possibly preceded by other label definitions.
%%
is_label_defined([{label,L}|_], L) -> true;
is_label_defined([{label,_}|Is], L) -> is_label_defined(Is, L);
is_label_defined(_, _) -> false.

%% invert_test(Test0) -> not_possible | Test

invert_test(is_ge) ->       is_lt;
invert_test(is_lt) ->       is_ge;
invert_test(is_eq) ->       is_ne;
invert_test(is_ne) ->       is_eq;
invert_test(is_eq_exact) -> is_ne_exact;
invert_test(is_ne_exact) -> is_eq_exact;
invert_test(_) ->           not_possible.

%% skip_unreachable([Instruction], St).
%%  Remove all instructions (including definitions of labels
%%  that have not been referenced yet) up to the next
%%  referenced label, then call opt/3 to optimize the rest
%%  of the instruction sequence.
%%
skip_unreachable([{label,L}|_Is]=Is0, [{jump,{f,L}}|Acc], St) ->
    opt(Is0, Acc, St);
skip_unreachable([{label,L}|Is]=Is0, Acc, St) ->
    case is_label_used(L, St) of
	true  -> opt(Is0, Acc, St);
	false -> skip_unreachable(Is, Acc, St)
    end;
skip_unreachable([_|Is], Acc, St) ->
    skip_unreachable(Is, Acc, St);
skip_unreachable([], Acc, St) ->
    opt([], Acc, St).

%% Add one or more label to the set of used labels.

label_used({f,L}, St) -> St#st{labels=sets:add_element(L,St#st.labels)};
label_used([H|T], St0) -> label_used(T, label_used(H, St0));
label_used([], St) -> St;
label_used(_Other, St) -> St.

%% Test if label is used.

is_label_used(L, St) ->
    sets:is_element(L, St#st.labels).

%% is_unreachable_after(Instruction) -> boolean()
%%  Test whether the code after Instruction is unreachable.

-spec is_unreachable_after(instruction()) -> boolean().

is_unreachable_after({func_info,_M,_F,_A}) -> true;
is_unreachable_after(return) -> true;
is_unreachable_after({jump,_Lbl}) -> true;
is_unreachable_after({select,_What,_R,_Lbl,_Cases}) -> true;
is_unreachable_after({loop_rec_end,_}) -> true;
is_unreachable_after({wait,_}) -> true;
is_unreachable_after(I) -> is_exit_instruction(I).

%% is_exit_instruction(Instruction) -> boolean()
%%  Test whether the instruction Instruction always
%%  causes an exit/failure.

-spec is_exit_instruction(instruction()) -> boolean().

is_exit_instruction(if_end) -> true;
is_exit_instruction({case_end,_}) -> true;
is_exit_instruction({try_case_end,_}) -> true;
is_exit_instruction({badmatch,_}) -> true;
is_exit_instruction({badrecord,_}) -> true;
is_exit_instruction(_) -> false.

%% remove_unused_labels(Instructions0) -> Instructions
%%  Remove all unused labels. Also remove unreachable
%%  instructions following labels that are removed.

-spec remove_unused_labels([instruction()]) -> [instruction()].

remove_unused_labels(Is) ->
    Used0 = initial_labels(Is),
    Used = foldl(fun ulbl/2, Used0, Is),
    rem_unused(Is, Used, []).

rem_unused([{label,Lbl}=I|Is0], Used, [Prev|_]=Acc) ->
    case sets:is_element(Lbl, Used) of
	false ->
	    Is = case is_unreachable_after(Prev) of
		     true -> drop_upto_label(Is0);
		     false -> Is0
		 end,
	    rem_unused(Is, Used, Acc);
	true ->
	    rem_unused(Is0, Used, [I|Acc])
    end;
rem_unused([I|Is], Used, Acc) ->
    rem_unused(Is, Used, [I|Acc]);
rem_unused([], _, Acc) -> reverse(Acc).

initial_labels(Is) ->
    initial_labels(Is, []).

initial_labels([{line,_}|Is], Acc) ->
    initial_labels(Is, Acc);
initial_labels([{label,Lbl}|Is], Acc) ->
    initial_labels(Is, [Lbl|Acc]);
initial_labels([{func_info,_,_,_},{label,Lbl}|_], Acc) ->
    sets:from_list([Lbl|Acc], [{version, 2}]).

drop_upto_label([{label,_}|_]=Is) -> Is;
drop_upto_label([_|Is]) -> drop_upto_label(Is);
drop_upto_label([]) -> [].

%% unshare([Instruction]) -> [Instruction].
%%  Replace a jump to a return sequence (a `return` instruction
%%  optionally precede by a `deallocate` instruction) with the return
%%  sequence. This always saves execution time and may also save code
%%  space (depending on the architecture). Eliminating `jump`
%%  instructions also gives beam_trim more opportunities to trim the
%%  stack.

unshare(Is) ->
    Short = unshare_collect_short(Is, #{}),
    unshare_short(Is, Short).

unshare_collect_short([{label,L},return|Is], Map) ->
    unshare_collect_short(Is, Map#{L=>[return]});
unshare_collect_short([{label,L},{deallocate,_}=D,return|Is], Map) ->
    %% `deallocate` and `return` are combined into one instruction by
    %% the loader.
    unshare_collect_short(Is, Map#{L=>[D,return]});
unshare_collect_short([_|Is], Map) ->
    unshare_collect_short(Is, Map);
unshare_collect_short([], Map) -> Map.

unshare_short([{jump,{f,F}}=I|Is], Map) ->
    case Map of
        #{F:=Seq} ->
            Seq ++ unshare_short(Is, Map);
        #{} ->
            [I|unshare_short(Is, Map)]
    end;
unshare_short([I|Is], Map) ->
    [I|unshare_short(Is, Map)];
unshare_short([], _Map) -> [].

%% ulbl(Instruction, UsedCerlSet) -> UsedCerlSet'
%%  Update the cerl_set UsedCerlSet with any function-local labels
%%  (i.e. not with labels in call instructions) referenced by
%%  the instruction Instruction.
%%
%%  NOTE: This function does NOT look for labels inside blocks.

ulbl(I, Used) ->
    case instr_labels(I) of
        [] ->
            Used;
        [Lbl] ->
            sets:add_element(Lbl, Used);
        [_|_]=L ->
            ulbl_list(L, Used)
    end.

ulbl_list([L|Ls], Used) ->
    ulbl_list(Ls, sets:add_element(L, Used));
ulbl_list([], Used) -> Used.

-spec instr_labels(Instruction) -> Labels when
      Instruction :: instruction(),
      Labels :: [beam_asm:label()].

instr_labels({test,_,Fail,_}) ->
    do_instr_labels(Fail);
instr_labels({test,_,Fail,_,_,_}) ->
    do_instr_labels(Fail);
instr_labels({select,_,_,Fail,Vls}) ->
    do_instr_labels_list(Vls, do_instr_labels(Fail));
instr_labels({'try',_,Lbl}) ->
    do_instr_labels(Lbl);
instr_labels({'catch',_,Lbl}) ->
    do_instr_labels(Lbl);
instr_labels({jump,Lbl}) ->
    do_instr_labels(Lbl);
instr_labels({loop_rec,Lbl,_}) ->
    do_instr_labels(Lbl);
instr_labels({loop_rec_end,Lbl}) ->
    do_instr_labels(Lbl);
instr_labels({wait,Lbl}) ->
    do_instr_labels(Lbl);
instr_labels({wait_timeout,Lbl,_To}) ->
    do_instr_labels(Lbl);
instr_labels({bif,_Name,Lbl,_As,_R}) ->
    do_instr_labels(Lbl);
instr_labels({gc_bif,_Name,Lbl,_Live,_As,_R}) ->
    do_instr_labels(Lbl);
instr_labels({bs_create_bin,Lbl,_,_,_,_,_}) ->
    do_instr_labels(Lbl);
instr_labels({bs_init,Lbl,_,_,_,_}) ->
    do_instr_labels(Lbl);
instr_labels({bs_put,Lbl,_,_}) ->
    do_instr_labels(Lbl);
instr_labels({put_map,Lbl,_Op,_Src,_Dst,_Live,_List}) ->
    do_instr_labels(Lbl);
instr_labels({get_map_elements,Lbl,_Src,_List}) ->
    do_instr_labels(Lbl);
instr_labels({bs_start_match4,Fail,_,_,_}) ->
    case Fail of
        {f,L} -> [L];
        {atom,_} -> []
    end;
instr_labels({bs_match,{f,Fail},_Ctx,_List}) ->
    [Fail];
instr_labels(_) ->
    [].

do_instr_labels({f,0}) -> [];
do_instr_labels({f,F}) -> [F].

do_instr_labels_list([{f,F}|T], Acc) ->
    do_instr_labels_list(T, [F|Acc]);
do_instr_labels_list([_|T], Acc) ->
    do_instr_labels_list(T, Acc);
do_instr_labels_list([], Acc) -> Acc.