summaryrefslogtreecommitdiff
path: root/lib/compiler/src/beam_ssa_private_append.erl
blob: c2954927621abefc804932b80b913a300aa75901 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2023. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%%

%% When a binary is grown by appending data to it using
%% `bs_create_bin`, a considerable performance improvement can be
%% achieved if the append can be done using the destructive
%% `private_append` instead of `append`. Using `private_append` flavor
%% of `bs_create_bin` is only possible when the binary being extended
%% has been created by `bs_writable_binary` or by another
%% `bs_create_bin` using `private_append`. As `private_append` is
%% destructive, an additional requirement is that there is only one
%% live reference to the binary being being extended.

%% This optimization implements a new SSA optimization pass which
%% finds suitable code sequences which iteratively grow a binaries
%% starting with `<<>>` and rewrites them to start with an initial
%% value created by `bs_writable_binary` and use `private_append` for
%% `bs_create_bin`.

-module(beam_ssa_private_append).

-export([opt/2]).

-import(lists, [foldl/3, foldr/3, keysort/2, map/2, reverse/1]).

-include("beam_ssa_opt.hrl").
-include("beam_types.hrl").

%% -define(DEBUG, true).

-ifdef(DEBUG).
-define(DP(FMT, ARGS), io:format(FMT, ARGS)).
-define(DP(FMT), io:format(FMT)).
-else.
-define(DP(FMT, ARGS), skip).
-define(DP(FMT), skip).
-endif.

-spec opt(st_map(), func_info_db()) -> {st_map(), func_info_db()}.
opt(StMap, FuncDb) ->
    %% Ignore functions which are not in the function db (never
    %% called) or are stubs for nifs.
    Funs = [ F || F <- maps:keys(StMap),
                  is_map_key(F, FuncDb), not is_nif(F, StMap)],
    private_append(Funs, StMap, FuncDb).

private_append(Funs, StMap0, FuncDb) ->
    Appends = maps:fold(fun(Fun, As, Acc) ->
                                [{Fun,A} || A <- As] ++ Acc
                        end, [], find_appends(Funs, StMap0, #{})),
    %% We now have to find where we create the binaries in order to
    %% patch them.
    Defs = find_defs(Appends, StMap0, FuncDb),
    StMap = patch_appends(Defs, Appends, StMap0),
    {StMap, FuncDb}.

find_appends([F|Funs], StMap, Found0) ->
    #opt_st{ssa=Linear} = map_get(F, StMap),
    Found = find_appends_blk(Linear, F, Found0),
    find_appends(Funs, StMap, Found);
find_appends([], _, Found) ->
    Found.

find_appends_blk([{_Lbl,#b_blk{is=Is}}|Linear], Fun, Found0) ->
    Found = find_appends_is(Is, Fun, Found0),
    find_appends_blk(Linear, Fun, Found);
find_appends_blk([], _, Found) ->
    Found.

find_appends_is([#b_set{dst=Dst, op=bs_create_bin,
                        args=[#b_literal{val=append},
                              _,
                              Lit=#b_literal{val= <<>>}|_]}|Is],
                Fun, Found0) ->
    %% Special case for when the first fragment is a literal <<>> as
    %% it won't be annotated as unique nor will it die with the
    %% instruction.
    AlreadyFound = maps:get(Fun, Found0, []),
    Found = Found0#{Fun => [{append,Dst,Lit}|AlreadyFound]},
    find_appends_is(Is, Fun, Found);
find_appends_is([#b_set{dst=Dst, op=bs_create_bin,
                        args=[#b_literal{val=append},SegmentInfo,Var|_],
                        anno=#{first_fragment_dies:=Dies}=Anno}|Is],
                Fun, Found0) ->
    case Dies andalso is_unique(Var, Anno)
        andalso is_appendable(Anno, SegmentInfo) of
        true ->
            AlreadyFound = maps:get(Fun, Found0, []),
            Found = Found0#{Fun => [{append,Dst,Var}|AlreadyFound]},
            find_appends_is(Is, Fun, Found);
        false ->
            find_appends_is(Is, Fun, Found0)
    end;
find_appends_is([_|Is], Fun, Found) ->
    find_appends_is(Is, Fun, Found);
find_appends_is([], _, Found) ->
    Found.

is_unique(Var, Anno) ->
    ordsets:is_element(Var, maps:get(unique, Anno, [])).

is_appendable(Anno, #b_literal{val=[SegmentUnit|_]})
  when is_integer(SegmentUnit) ->
    case Anno of
        #{arg_types:=#{2:=#t_bitstring{appendable=true,size_unit=SizeUnit}}} ->
            SizeUnit rem SegmentUnit == 0;
        _ ->
            false
    end.

-record(def_st,
        {
         funcdb,
         stmap,
         defsdb = #{},
         literals = #{},
         valuesdb = #{}
        }).

find_defs(As, StMap, FuncDb) ->
    find_defs_1(As, #def_st{funcdb=FuncDb,stmap=StMap}).

find_defs_1([{Fun,{append,Dst,_Arg}}|Work], DefSt0=#def_st{stmap=StMap}) ->
    #{Fun:=#opt_st{ssa=SSA,args=Args}} = StMap,
    {DefsInFun,DefSt} = defs_in_fun(Fun, Args, SSA, DefSt0),
    ValuesInFun = values_in_fun(Fun, DefSt),
    ?DP("*** append in: ~p ***~n", [Fun]),
    track_value_in_fun([{Dst,self}], Fun, Work,
                       DefsInFun, ValuesInFun, DefSt);
find_defs_1([{Fun,{track_call_argument,Callee,Element,Idx}}|Work],
            DefSt0=#def_st{stmap=StMap}) ->
    #{Fun:=#opt_st{ssa=SSA,args=Args}} = StMap,
    ?DP("*** Tracking ~p of the ~p:th argument in call to ~p"
        " in the function ~p ***~n", [Element, Idx, Callee, Fun]),

    {DefsInFun,DefSt1} = defs_in_fun(Fun, Args, SSA, DefSt0),
    ValuesInFun = values_in_fun(Fun, DefSt1),
    {Vars,DefSt} =
        get_call_arguments(Callee, Element, Idx, DefsInFun, Fun, DefSt1),
    ?DP("  Vars to track: ~p~n", [Vars]),
    track_value_in_fun(Vars, Fun, Work, DefsInFun, ValuesInFun, DefSt);
find_defs_1([{Fun,{track_result,Element}}|Work],
            DefSt0=#def_st{stmap=StMap}) ->
    #{Fun:=#opt_st{ssa=SSA,args=Args}} = StMap,
    {DefsInFun,DefSt1} = defs_in_fun(Fun, Args, SSA, DefSt0),
    ValuesInFun = values_in_fun(Fun, DefSt0),
    ?DP("*** Tracking ~p of the result of ~p ***~n",
        [Fun, Element]),
    {Results,DefSt} = get_results(SSA, Element, Fun, DefSt1),
    ?DP("values to track inside the function: ~p~n", [Results]),
    track_value_in_fun(Results, Fun, Work, DefsInFun, ValuesInFun, DefSt);

find_defs_1([], DefSt) ->
    DefSt#def_st.literals.

%% Find all variables which are returned and return them in a worklist
get_results(SSA, Element, Fun, DefSt) ->
    get_results(SSA, [], Element, Fun, DefSt).

get_results([{_,#b_blk{last=#b_ret{arg=#b_var{}=V}}}|Rest],
            Acc, Element, Fun, DefSt) ->
    get_results(Rest, [{V,Element}|Acc], Element, Fun, DefSt);
get_results([{Lbl,#b_blk{last=#b_ret{arg=#b_literal{val=Lit}}}}|Rest],
            Acc, Element, Fun, DefSt0) ->
    %% As tracking doesn't make any attempt to use type information to
    %% exclude execution paths not relevant when tracking an
    %% appendable binary, it can happen that we encounter literals
    %% which do not match the type of the element. We can safely stop
    %% the tracking in that case.
    Continue = case Element of
                   {tuple_element,_,_} ->
                       is_tuple(Lit);
                   self ->
                       is_bitstring(Lit);
                   {hd,_} ->
                       is_list(Lit) andalso (Lit =/= [])
               end,
    DefSt = if Continue ->
                    add_literal(Fun, {ret,Lbl,Element}, DefSt0);
               true ->
                    DefSt0
            end,
    get_results(Rest, Acc, Element, Fun, DefSt);
get_results([_|Rest], Acc, Element, Fun, DefSt) ->
    get_results(Rest, Acc, Element, Fun, DefSt);
get_results([], Acc, _, _Fun, DefSt) ->
    {Acc, DefSt}.

track_value_in_fun([{#b_var{}=V,Element}|Rest], Fun, Work,
                   Defs, ValuesInFun, DefSt0)
  when is_map_key({V,Element}, ValuesInFun) ->
    %% We have already explored this value.
    ?DP("We have already explored ~p of ~p in ~p~n", [Element, V, Fun]),
    track_value_in_fun(Rest, Fun, Work, Defs, ValuesInFun, DefSt0);
track_value_in_fun([{#b_var{}=V,Element}|Rest], Fun, Work0, Defs,
                   ValuesInFun0, DefSt0=#def_st{}) ->
    ?DP("Tracking  ~p of ~p in fun ~p~n", [Element, V, Fun]),
    ValuesInFun = ValuesInFun0#{{V,Element}=>visited},
    case Defs of
        #{V:=#b_set{dst=V,op=Op,args=Args}} ->
            case {Op,Args,Element} of
                {bs_create_bin,[#b_literal{val=append},_,Arg|_],self} ->
                    track_value_in_fun([{Arg,self}|Rest], Fun, Work0,
                                       Defs, ValuesInFun, DefSt0);
                {bs_create_bin,[#b_literal{val=private_append},_,_|_],self} ->
                    %% If the code has already been rewritten to use
                    %% private_append, tracking the accumulator to
                    %% ensure that it is is writable has already
                    %% been seen to, so no need to track it.
                    track_value_in_fun(Rest, Fun, Work0,
                                       Defs, ValuesInFun, DefSt0);
                {bs_init_writable,_,self} ->
                    %% bs_init_writable creates a writable binary, so
                    %% we are done.
                    track_value_in_fun(Rest, Fun, Work0,
                                       Defs, ValuesInFun, DefSt0);
                {call,[#b_local{}=Callee|_Args],_} ->
                    track_value_into_call(Callee, Element, Fun, Rest, Work0,
                                          Defs, ValuesInFun, DefSt0);
                {call,[#b_remote{mod=#b_literal{val=erlang},
                                 name=#b_literal{val=error},
                                 arity=1}|_Args],_} ->
                    %% As erlang:error/1 never returns, we shouldn't
                    %% try to track this value.
                    track_value_in_fun(Rest, Fun, Work0,
                                       Defs, ValuesInFun, DefSt0);
                {get_hd,[List],_} ->
                    %% We only handle the case when the tracked value
                    %% is in the head field of a cons. This is due to
                    %% the type analyser always assuming that a cons
                    %% is part of a list and therefore we will never
                    %% be able to safely rewrite an accumulator in the
                    %% tail field of the cons, thus we will never
                    %% have to track it.
                    track_value_in_fun(
                      [{List,{hd,Element}}|Rest], Fun, Work0,
                      Defs, ValuesInFun, DefSt0);
                {get_tuple_element,[#b_var{}=Tuple,#b_literal{val=Idx}],_} ->
                    track_value_in_fun(
                      [{Tuple,{tuple_element,Idx,Element}}|Rest], Fun, Work0,
                      Defs, ValuesInFun, DefSt0);
                {phi,_,_} ->
                    {ToExplore,DefSt} = handle_phi(Fun, V, Args,
                                                   Element, DefSt0),
                    track_value_in_fun(ToExplore ++ Rest, Fun, Work0,
                                       Defs, ValuesInFun, DefSt);
                {put_tuple,_,_} ->
                    track_put_tuple(Args, Element, Rest, Fun, V, Work0,
                                    Defs, ValuesInFun, DefSt0);
                {put_list,_,_} ->
                    track_put_list(Args, Element, Rest, Fun, V, Work0,
                                   Defs, ValuesInFun, DefSt0);
                {_,_,_} ->
                    %% Above we have handled all operations through
                    %% which we are able to track the value to its
                    %% construction. All other operations are from
                    %% execution paths not reachable when the actual
                    %% type (at runtime) is a relevant bitstring.
                    %% Thus we can safely abort the tracking here.
                    track_value_in_fun(Rest, Fun, Work0,
                                       Defs, ValuesInFun, DefSt0)
            end;
        #{V:={arg,Idx}} ->
            track_value_into_caller(Element, Idx, Rest, Fun, Work0, Defs,
                                    ValuesInFun, DefSt0)
    end;
track_value_in_fun([{#b_literal{},_}|Rest], Fun, Work,
                   Defs, ValuesInFun, DefSt) ->
    track_value_in_fun(Rest, Fun, Work, Defs, ValuesInFun, DefSt);
track_value_in_fun([], Fun, Work, _Defs, ValuesInFun,
                   DefSt0=#def_st{valuesdb=ValuesDb0}) ->
    %% We are done with this function. Store the result in the
    %% valuesdb and continue with the work list.
    DefSt = DefSt0#def_st{valuesdb=ValuesDb0#{Fun=>ValuesInFun}},
    find_defs_1(Work, DefSt).

track_value_into_call(Callee, Element, CallerFun, CallerWork, GlobalWork0,
                      CallerDefs, CallerValuesInFun, DefSt0) ->
    GlobalWork = [{Callee, {track_result, Element}}|GlobalWork0],
    track_value_in_fun(CallerWork, CallerFun, GlobalWork,
                       CallerDefs, CallerValuesInFun, DefSt0).

track_value_into_caller(Element, ArgIdx,
                        CalledFunWorklist, CalledFun,
                        GlobalWorklist0,
                        CalledFunDefs, CalledFunValues,
                        DefSt0=#def_st{funcdb=FuncDb,stmap=StMap}) ->
    #func_info{in=Callers} = map_get(CalledFun, FuncDb),
    ?DP("Track into callers of ~p, tracking arg-idx:~p, ~p~n  callers:~p~n",
        [CalledFun, ArgIdx, Element, Callers]),
    %% The caller information in func_info does not remove a caller
    %% when it is inlined into another function (although the new
    %% caller is added), so we have to filter out functions which lack
    %% entries in the st_map (as they are dead, they have been removed
    %% from the stmap).
    Work = [ {Caller,{track_call_argument,CalledFun,Element,ArgIdx}}
             || Caller <- Callers, is_map_key(Caller, StMap)],
    GlobalWorklist = Work ++ GlobalWorklist0,
    track_value_in_fun(CalledFunWorklist, CalledFun, GlobalWorklist,
                       CalledFunDefs, CalledFunValues, DefSt0).

track_put_tuple(FieldVars, {tuple_element,Idx,Element},
                Work, Fun, Dst, GlobalWork,
                Defs, ValuesInFun, DefSt0) ->
    %% The value we are tracking was constructed by a put tuple and we
    %% are interested in continuing the tracking of the field
    case lists:nth(Idx + 1, FieldVars) of
        ToTrack = #b_var{} ->
            track_value_in_fun([{ToTrack,Element}|Work], Fun, GlobalWork,
                               Defs, ValuesInFun, DefSt0);
        #b_literal{val=Lit} ->
            DefSt = add_literal(Fun, {opargs,Dst,Idx,Lit,Element}, DefSt0),
            track_value_in_fun(Work, Fun, GlobalWork,
                               Defs, ValuesInFun, DefSt)
    end.

track_put_list([Hd,_Tl], {hd,Element},
               Work, Fun, Dst, GlobalWork,
               Defs, ValuesInFun, DefSt0) ->
    %% The value we are tracking was constructed by a put list and we
    %% are interested in continuing the tracking of the field. We only
    %% handle the case when the tracked value is in the head field of
    %% a cons. This is due to the type analyser always assuming that a
    %% cons is part of a list and therefore we will never be able to
    %% safely rewrite an accumulator in the tail field of the cons,
    %% thus we will never have to track it.
    case Hd of
        #b_var{} ->
            track_value_in_fun([{Hd,Element}|Work], Fun, GlobalWork,
                               Defs, ValuesInFun, DefSt0);
        #b_literal{val=Lit} ->
            DefSt = add_literal(Fun, {opargs,Dst,0,Lit,Element}, DefSt0),
            track_value_in_fun(Work, Fun, GlobalWork, Defs, ValuesInFun, DefSt)
    end.

%% Find all calls to Callee and produce a work-list containing all
%% values which are used as the Idx:th argument.
get_call_arguments(Callee, Element, Idx, Defs, Fun, DefSt0) ->
    %% We traverse all defs inside the caller to find the calls.
    maps:fold(fun(_, #b_set{dst=Dst,op=call,args=[Target|Args]}, {Acc,DefSt})
                    when Callee =:= Target ->
                      {Values,DefSt1} =
                          gca(Args, Element, Idx, Fun, Dst, DefSt),
                      {Values ++ Acc, DefSt1};
                 (_, _, Acc) ->
                      Acc
              end, {[], DefSt0}, Defs).

gca(Args, Element, Idx, Fun, Dst, DefSt) ->
    gca(Args, 0, Element, Idx, Fun, Dst, DefSt).

gca([#b_var{}=V|_], I, Element, I, _Fun, _Dst, DefSt) ->
    %% This is the argument we are tracking.
    {[{V,Element}], DefSt};
gca([#b_literal{val=Lit}|_], I, self, I, _Fun, _Dst, DefSt)
  when not is_bitstring(Lit)->
    %% As value tracking is done without type information, we can
    %% follow def chains which don't terminate in a bitstring. This is
    %% harmless, but we should ignore them and not, later on, try to
    %% patch them to a bs_writable_binary.
    {[], DefSt};
gca([#b_literal{val=Lit}|_], I, Element, I, Fun, Dst, DefSt) ->
    {[], add_literal(Fun, {opargs,Dst,I+1,Lit,Element}, DefSt)};
gca([_|Args], I, Element, Idx, Fun, Dst, DefSt) ->
    gca(Args, I + 1, Element, Idx, Fun, Dst, DefSt).

handle_phi(Fun, Dst, Args, Element, DefSt0) ->
    foldl(fun({#b_literal{val=Lit},Lbl}, {Acc,DefStAcc0}) ->
                  DefStAcc =
                      add_literal(Fun, {phi,Dst,Lbl,Lit,Element}, DefStAcc0),
                  {Acc, DefStAcc};
             ({V=#b_var{},_Lbl}, {Acc,DefStAcc}) ->
                  {[{V,Element}|Acc],DefStAcc}
          end, {[],DefSt0}, Args).

%% Cache calculation of the defs for a function so we only do it once.
defs_in_fun(Fun, Args, SSA, DefSt=#def_st{defsdb=DefsDb}) ->
    case DefsDb of
        #{Fun:=Defs} ->
            {Defs, DefSt};
        #{} ->
            BlockMap = maps:from_list(SSA),
            Labels = maps:keys(BlockMap),
            Defs0 = beam_ssa:definitions(Labels, BlockMap),
            {Defs,_} = foldl(fun(Arg, {Acc,Idx}) ->
                                     {Acc#{Arg => {arg,Idx}}, Idx + 1}
                             end, {Defs0,0}, Args),
            {Defs, DefSt#def_st{defsdb=DefsDb#{Fun=>Defs}}}
    end.


%% Look up what we know about the values in Fun.
values_in_fun(Fun, #def_st{valuesdb=ValuesDb}) ->
    maps:get(Fun, ValuesDb, #{}).

add_literal(Fun, LitInfo, DefSt=#def_st{literals=Ls}) ->
    Old = maps:get(Fun, Ls, []),
    DefSt#def_st{literals=Ls#{Fun => [LitInfo|Old]}}.

patch_appends(Bins, Appends, StMap0) ->
    ?DP("Appends:~n~p~n", [Appends]),
    ?DP("Bins:~n~p~n", [Bins]),

    %% Group by function
    Patches = foldl(fun({Fun,Append}, Acc) ->
                            Acc#{Fun => [Append|maps:get(Fun, Acc, [])] }
                    end, Bins, Appends),
    ?DP("Patches:~n~p~n", [Patches]),
    maps:fold(fun(Fun, Ps, StMapAcc) ->
                      OptSt=#opt_st{ssa=SSA0,cnt=Cnt0} =
                          map_get(Fun, StMapAcc),
                      {SSA,Cnt} = patch_appends_f(SSA0, Cnt0, Ps),
                      StMapAcc#{Fun => OptSt#opt_st{ssa=SSA,cnt=Cnt}}
              end, StMap0, Patches).

patch_appends_f(SSA0, Cnt0, Patches) ->
    ?DP("Will patch ~p~n", [Patches]),
    ?DP("SSA: ~p~n", [SSA0]),
    %% Group by PD
    PD = foldl(fun(P, Acc) ->
                       case P of
                           {opargs,Dst,_,_,_} -> ok;
                           {append,Dst,_} -> ok;
                           {phi,Dst,_,_,_} -> ok;
                           {ret,Dst,_} -> ok
                       end,
                       Set = ordsets:add_element(P, maps:get(Dst, Acc, [])),
                       Acc#{Dst => Set}
               end, #{}, Patches),
    ?DP("PD: ~p~n", [PD]),
    patch_appends_f(SSA0, Cnt0, PD, [], []).

patch_appends_f([{Lbl,Blk=#b_blk{is=Is0,last=Last0}}|Rest],
                Cnt0, PD0, Acc0, BlockAdditions0) ->
    {Last,Extra,Cnt2,PD} =
        case PD0 of
            #{ Lbl := Patches } ->
                {Last1,Extra0,Cnt1} = patch_appends_ret(Last0, Patches, Cnt0),
                {Last1, reverse(Extra0), Cnt1, maps:remove(Lbl, PD0)};
            #{} ->
                {Last0, [], Cnt0, PD0}
        end,
    {Is, Cnt, BlockAdditions} = patch_appends_is(Is0, PD, Cnt2, [], []),
    Acc = [{Lbl,Blk#b_blk{is=Is ++ Extra, last=Last}}|Acc0],
    patch_appends_f(Rest, Cnt, PD, Acc, BlockAdditions ++ BlockAdditions0 );
patch_appends_f([], Cnt, _PD, Acc, BlockAdditions) ->
    ?DP("BlockAdditions: ~p~n", [BlockAdditions]),
    Linear = insert_block_additions(Acc, maps:from_list(BlockAdditions), []),
    ?DP("SSA-result:~n~p~n", [Linear]),
    {Linear, Cnt}.

patch_appends_is([I0=#b_set{dst=Dst}|Rest], PD0, Cnt0, Acc, BlockAdditions0)
  when is_map_key(Dst, PD0) ->
    #{ Dst := Patches } = PD0,
    PD = maps:remove(Dst, PD0),
    ExtractOpargs = fun({opargs,D,Idx,Lit,Element}) when Dst =:= D ->
                            {Idx, Lit, Element}
                    end,
    case Patches of
        [{opargs,Dst,_,_,_}|_] ->
            Ps = keysort(1, map(ExtractOpargs, Patches)),
            {Is, Cnt} = patch_opargs(I0, Ps, Cnt0),
            patch_appends_is(Rest, PD, Cnt, Is++Acc, BlockAdditions0);
        [{append,Dst,#b_literal{val= <<>>}=Lit}] ->
            %% Special case for when the first fragment is a literal
            %% <<>> and it has to be replaced with a bs_init_writable.
            #b_set{op=bs_create_bin,dst=Dst,args=Args0}=I0,
            [#b_literal{val=append},SegInfo,Lit|OtherArgs] = Args0,
            {V,Cnt} = new_var(Cnt0),
            Init = #b_set{op=bs_init_writable,dst=V,args=[#b_literal{val=256}]},
            I = I0#b_set{args=[#b_literal{val=private_append},
                               SegInfo,V|OtherArgs]},
            patch_appends_is(Rest, PD, Cnt, [I,Init|Acc], BlockAdditions0);
        [{append,Dst,_}] ->
            #b_set{op=bs_create_bin,dst=Dst,args=Args0}=I0,
            [#b_literal{val=append}|OtherArgs] = Args0,
            I = I0#b_set{args=[#b_literal{val=private_append}|OtherArgs]},
            patch_appends_is(Rest, PD, Cnt0, [I|Acc], BlockAdditions0);
        [{phi,Dst,_,_,_}|_] ->
            {I, Extra, Cnt} = patch_phi(I0, Patches, Cnt0),
            patch_appends_is(Rest, PD, Cnt, [I|Acc], Extra ++ BlockAdditions0)
    end;
patch_appends_is([I|Rest], PD, Cnt, Acc, BlockAdditions) ->
    patch_appends_is(Rest, PD, Cnt, [I|Acc], BlockAdditions);
patch_appends_is([], _, Cnt, Acc, BlockAdditions) ->
    {reverse(Acc), Cnt, BlockAdditions}.

%% The only time when we patch a return is when it returns a
%% literal.
patch_appends_ret(Last=#b_ret{arg=#b_literal{val=Lit}}, Patches, Cnt0)
  when is_list(Lit); is_tuple(Lit) ->
    Ps = keysort(1, [E || {ret,_,E} <- Patches]),
    ?DP("patch_appends_ret tuple or list :~n  lit: ~p~n  patches: ~p~n", [Lit, Ps]),
    {V,Extra,Cnt} = patch_literal_term(Lit, Ps, Cnt0),
    {Last#b_ret{arg=V}, Extra, Cnt};
patch_appends_ret(Last=#b_ret{arg=#b_literal{val=Lit}},
                  [{ret,_,Element}],
                  Cnt0) ->
    ?DP("patch_appends_ret other:~n  lit: ~p~n  element: ~p~n", [Lit, Element]),
    {V,Extra,Cnt} = patch_literal_term(Lit, Element, Cnt0),
    {Last#b_ret{arg=V}, Extra, Cnt}.

%% Should return the instructions in reversed order
patch_opargs(I0=#b_set{args=Args}, Patches0, Cnt0) ->
    ?DP("Patching args in ~p~nArgs: ~p~n Patches: ~p~n",
        [I0,Args,Patches0]),
    Patches = merge_arg_patches(Patches0),
    {PatchedArgs, Is, Cnt} = patch_opargs(Args, Patches, 0, [], [], Cnt0),
    {[I0#b_set{args=reverse(PatchedArgs)}|Is], Cnt}.

patch_opargs([#b_literal{val=Lit}|Args], [{Idx,Lit,Element}|Patches],
             Idx, PatchedArgs, Is, Cnt0) ->
    ?DP("Patching arg idx ~p~n  lit: ~p~n  elem: ~p~n", [Idx, Lit, Element]),
    {Arg,Extra,Cnt} = patch_literal_term(Lit, Element, Cnt0),
    patch_opargs(Args, Patches, Idx + 1, [Arg|PatchedArgs], Extra ++ Is, Cnt);
patch_opargs([Arg|Args], Patches, Idx, PatchedArgs, Is, Cnt) ->
    ?DP("Skipping arg idx ~p~n  arg: ~p~n  patches: ~p~n",
              [Idx,Arg,Patches]),
    patch_opargs(Args, Patches, Idx + 1, [Arg|PatchedArgs], Is, Cnt);
patch_opargs([], [], _, PatchedArgs, Is, Cnt) ->
    {PatchedArgs, Is, Cnt}.

%% The way find_defs and find_appends work, we can end up with
%% multiple patches patching different parts of a tuple or pair. We
%% merge them here.
merge_arg_patches([{Idx,Lit,P0},{Idx,Lit,P1}|Patches]) ->
    P = case {P0, P1} of
            {{tuple_element,I0,E0},{tuple_element,I1,E1}} ->
                {tuple_elements,[{I0,E0},{I1,E1}]};
            {{tuple_elements,Es},{tuple_element,I,E}} ->
                {tuple_elements,[{I,E}|Es]}
        end,
    merge_arg_patches([{Idx,Lit,P}|Patches]);
merge_arg_patches([P|Patches]) ->
    [P|merge_arg_patches(Patches)];
merge_arg_patches([]) ->
    [].

patch_phi(I0=#b_set{op=phi,args=Args0}, Patches, Cnt0) ->
    L2P = foldl(fun(Phi={phi,_,Lbl,_,_}, Acc) ->
                        Acc#{Lbl => Phi}
                end, #{}, Patches),
    {Args, Extra, Cnt} =
        foldr(fun(Arg0={_, Lbl}, {ArgsAcc, ExtraAcc, CntAcc}) ->
                      case L2P of
                          #{Lbl := {phi,_,Lbl,Lit,Element}} ->
                              {Arg,Extra,Cnt1} =
                                  patch_literal_term(Lit, Element, CntAcc),
                              {[{Arg,Lbl}|ArgsAcc],
                               [{Lbl, Extra}|ExtraAcc], Cnt1};
                          _ ->
                              {[Arg0|ArgsAcc], ExtraAcc, CntAcc}
                      end
              end, {[], [], Cnt0}, Args0),
    I = I0#b_set{op=phi,args=Args},
    {I, Extra, Cnt}.

%% Should return the instructions in reversed order
patch_literal_term(Tuple, {tuple_elements,Elems}, Cnt) ->
    Es = [{tuple_element,I,E} || {I,E} <- keysort(1, Elems)],
    patch_literal_tuple(Tuple, Es, Cnt);
patch_literal_term(Tuple, Elements0, Cnt) when is_tuple(Tuple) ->
    Elements = if is_list(Elements0) -> Elements0;
                  true -> [Elements0]
               end,
    patch_literal_tuple(Tuple, Elements, Cnt);
patch_literal_term(<<>>, self, Cnt0) ->
    {V,Cnt} = new_var(Cnt0),
    I = #b_set{op=bs_init_writable,dst=V,args=[#b_literal{val=256}]},
    {V, [I], Cnt};
patch_literal_term(Lit, self, Cnt) ->
    {#b_literal{val=Lit}, [], Cnt};
patch_literal_term([H0|T0], {hd,Element}, Cnt0) ->
    {H,Extra,Cnt1} = patch_literal_term(H0, Element, Cnt0),
    {T,[],Cnt1} = patch_literal_term(T0, [], Cnt1),
    {Dst,Cnt} = new_var(Cnt1),
    I = #b_set{op=put_list,dst=Dst,args=[H,T]},
    {Dst, [I|Extra], Cnt};
patch_literal_term(Lit, [], Cnt) ->
    {#b_literal{val=Lit}, [], Cnt}.

patch_literal_tuple(Tuple, Elements, Cnt) ->
    ?DP("Will patch literal tuple~n  tuple:~p~n  elements: ~p~n",
              [Tuple,Elements]),
    patch_literal_tuple(erlang:tuple_to_list(Tuple), Elements, [], [], 0, Cnt).

patch_literal_tuple([Lit|LitElements], [{tuple_element,Idx,Element}|Elements],
                    Patched, Extra, Idx, Cnt0) ->
    ?DP("patch_literal_tuple: idx:~p~n  Lit: ~p~n  patch: ~p~n",
              [Idx, Lit, Element]),
    {V,Exs,Cnt} = patch_literal_term(Lit, Element, Cnt0),
    patch_literal_tuple(LitElements, Elements, [V|Patched],
                        Exs ++ Extra, Idx + 1, Cnt);
patch_literal_tuple([Lit|LitElements], Patches, Patched, Extra, Idx, Cnt) ->
    ?DP("patch_literal_tuple: skipping idx:~p~n  Lit: ~p~n  patches: ~p~n", [Idx, Lit, Patches]),
    {T,[],Cnt} = patch_literal_term(Lit, [], Cnt),
    patch_literal_tuple(LitElements, Patches, [T|Patched],
                        Extra, Idx + 1, Cnt);
patch_literal_tuple([], [], Patched, Extra, _, Cnt0) ->
    {V,Cnt} = new_var(Cnt0),
    I = #b_set{op=put_tuple,dst=V,args=reverse(Patched)},
    {V, [I|Extra], Cnt}.

%% As beam_ssa_opt:new_var/2, but with a hard-coded base
new_var(Count) ->
    {#b_var{name={alias_opt,Count}},Count+1}.

%% Done with an accumulator to reverse the reversed block order from
%% patch_appends_f/5.
insert_block_additions([Blk0={L,B=#b_blk{is=Is0}}|RevLinear],
                       Lbl2Addition, Acc) ->
    Blk = case Lbl2Addition of
            #{ L := Additions} ->
                  Is = Is0 ++ reverse(Additions),
                  {L,B#b_blk{is=Is}};
              _ ->
                  Blk0
          end,
    insert_block_additions(RevLinear, Lbl2Addition, [Blk|Acc]);
insert_block_additions([], _, Acc) ->
    Acc.

%%%
%%% Predicate to check if a function is the stub for a nif.
%%%
-spec is_nif(func_id(), st_map()) -> boolean().

is_nif(F, StMap) ->
    #opt_st{ssa=[{0,#b_blk{is=Is}}|_]} = map_get(F, StMap),
    case Is of
        [#b_set{op=nif_start}|_] ->
            true;
        _ -> false
    end.