summaryrefslogtreecommitdiff
path: root/lib/stdlib/src/sets.erl
blob: bdc0ed40f30067c12f42cf030eb3418dba05caf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
%%
%% %CopyrightBegin%
%% 
%% Copyright Ericsson AB 2000-2021. All Rights Reserved.
%% 
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%% 
%% %CopyrightEnd%
%%

%% The new version 2 has moved to use maps under the roof whenever a
%% map is given.

%% The previous version (version 1) uses the dynamic hashing techniques
%% by Per-Åke Larsson as described in "The Design and Implementation
%% of Dynamic Hashing for Sets and Tables in Icon" by Griswold and
%% Townsend.  Much of the terminology comes from that paper as well.

%% The segments are all of the same fixed size and we just keep
%% increasing the size of the top tuple as the table grows.  At the
%% end of the segments tuple we keep an empty segment which we use
%% when we expand the segments.  The segments are expanded by doubling
%% every time n reaches maxn instead of increasing the tuple one
%% element at a time.  It is easier and does not seem detrimental to
%% speed.  The same applies when contracting the segments.
%%
%% Note that as the order of the keys is undefined we may freely
%% reorder keys within in a bucket.

-module(sets).
-compile([{nowarn_deprecated_function, [{erlang,phash,2}]}]).

%% Standard interface.
-export([new/0,is_set/1,size/1,is_empty/1,to_list/1,from_list/1]).
-export([is_element/2,add_element/2,del_element/2]).
-export([union/2,union/1,intersection/2,intersection/1]).
-export([is_disjoint/2]).
-export([subtract/2,is_subset/2]).
-export([fold/3,filter/2]).
-export([new/1, from_list/2]).

-export_type([set/0, set/1]).

%% This is the value used when sets are represented as maps.
%% We use an empty list instead of an atom as it is cheaper
%% to serialize.
-define(VALUE, []).

%% Note: mk_seg/1 must be changed too if seg_size is changed.
-define(seg_size, 16).
-define(max_seg, 32).
-define(expand_load, 5).
-define(contract_load, 3).
-define(exp_size, ?seg_size * ?expand_load).
-define(con_size, ?seg_size * ?contract_load).
-compile({no_auto_import,[size/1]}).

%%------------------------------------------------------------------------------

-type seg()          :: tuple().
-type segs(_Element) :: tuple().

%% Define a hash set.  The default values are the standard ones.
-record(set,
	{size=0              :: non_neg_integer(),	% Number of elements
	 n=?seg_size         :: non_neg_integer(),	% Number of active slots
	 maxn=?seg_size      :: pos_integer(),  	% Maximum slots
	 bso=?seg_size div 2 :: non_neg_integer(),      % Buddy slot offset
	 exp_size=?exp_size  :: non_neg_integer(),	% Size to expand at
	 con_size=?con_size  :: non_neg_integer(),	% Size to contract at
	 empty               :: seg(),			% Empty segment
	 segs                :: segs(_)			% Segments
	}).

-type set() :: set(_).

-opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.

%%------------------------------------------------------------------------------

%% new() -> Set
-spec new() -> set().
new() ->
    Empty = mk_seg(?seg_size),
    #set{empty = Empty, segs = {Empty}}.

-spec new([{version, 1..2}]) -> set().
new([{version, 2}]) ->
    #{};
new(Opts) ->
    case proplists:get_value(version, Opts, 1) of
        1 -> new();
        2 -> new([{version, 2}])
    end.

%% from_list([Elem]) -> Set.
%%  Build a set from the elements in List.
-spec from_list(List) -> Set when
      List :: [Element],
      Set :: set(Element).
from_list(Ls) ->
    lists:foldl(fun (E, S) -> add_element(E, S) end, new(), Ls).

-spec from_list(List, [{version, 1..2}]) -> Set when
      List :: [Element],
      Set :: set(Element).
from_list(Ls, [{version, 2}]) ->
    maps:from_keys(Ls, ?VALUE);
from_list(Ls, Opts) ->
    case proplists:get_value(version, Opts, 1) of
        1 -> from_list(Ls);
        2 -> from_list(Ls, [{version, 2}])
    end.

%%------------------------------------------------------------------------------

%% is_set(Set) -> boolean().
%%  Return 'true' if Set is a set of elements, else 'false'.
-spec is_set(Set) -> boolean() when
      Set :: term().
is_set(#{}) -> true;
is_set(#set{}) -> true;
is_set(_) -> false.

%% size(Set) -> int().
%%  Return the number of elements in Set.
-spec size(Set) -> non_neg_integer() when
      Set :: set().
size(#{}=S) -> map_size(S);
size(#set{size=Size}) -> Size.

%% is_empty(Set) -> boolean().
%%  Return 'true' if Set is an empty set, otherwise 'false'.
-spec is_empty(Set) -> boolean() when
      Set :: set().
is_empty(#{}=S) -> map_size(S)=:=0;
is_empty(#set{size=Size}) -> Size=:=0.

%% to_list(Set) -> [Elem].
%%  Return the elements in Set as a list.
-spec to_list(Set) -> List when
      Set :: set(Element),
      List :: [Element].
to_list(#{}=S) ->
    maps:keys(S);
to_list(#set{} = S) ->
    fold(fun (Elem, List) -> [Elem|List] end, [], S).

%% is_element(Element, Set) -> boolean().
%%  Return 'true' if Element is an element of Set, else 'false'.
-spec is_element(Element, Set) -> boolean() when
      Set :: set(Element).
is_element(E, #{}=S) ->
    case S of
        #{E := _} -> true;
        _ -> false
    end;
is_element(E, #set{}=S) ->
    Slot = get_slot(S, E),
    Bkt = get_bucket(S, Slot),
    lists:member(E, Bkt).

%% add_element(Element, Set) -> Set.
%%  Return Set with Element inserted in it.
-spec add_element(Element, Set1) -> Set2 when
      Set1 :: set(Element),
      Set2 :: set(Element).
add_element(E, #{}=S) ->
    S#{E=>?VALUE};
add_element(E, #set{}=S0) ->
    Slot = get_slot(S0, E),
    Bkt = get_bucket(S0, Slot),
    case lists:member(E, Bkt) of
        true ->
            S0;
        false ->
            S1 = update_bucket(S0, Slot, [E | Bkt]),
            maybe_expand(S1)
    end.

%% del_element(Element, Set) -> Set.
%%  Return Set but with Element removed.
-spec del_element(Element, Set1) -> Set2 when
      Set1 :: set(Element),
      Set2 :: set(Element).
del_element(E, #{}=S) ->
    maps:remove(E, S);
del_element(E, #set{}=S0) ->
    Slot = get_slot(S0, E),
    Bkt = get_bucket(S0, Slot),
    case lists:member(E, Bkt) of
        false ->
            S0;
        true ->
            S1 = update_bucket(S0, Slot, lists:delete(E, Bkt)),
            maybe_contract(S1, 1)
    end.

%% update_bucket(Set, Slot, NewBucket) -> UpdatedSet.
%%  Replace bucket in Slot by NewBucket
-spec update_bucket(Set1, Slot, Bkt) -> Set2 when
      Set1 :: set(Element),
      Set2 :: set(Element),
      Slot :: non_neg_integer(),
      Bkt :: [Element].
update_bucket(Set, Slot, NewBucket) ->
    SegI = ((Slot-1) div ?seg_size) + 1,
    BktI = ((Slot-1) rem ?seg_size) + 1,
    Segs = Set#set.segs,
    Seg = element(SegI, Segs),
    Set#set{segs = setelement(SegI, Segs, setelement(BktI, Seg, NewBucket))}.

%% union(Set1, Set2) -> Set
%%  Return the union of Set1 and Set2.
-spec union(Set1, Set2) -> Set3 when
      Set1 :: set(Element),
      Set2 :: set(Element),
      Set3 :: set(Element).
union(#{}=S1, #{}=S2) ->
    maps:merge(S1,S2);
union(S1, S2) ->
    case size(S1) < size(S2) of
	true ->
	    fold(fun (E, S) -> add_element(E, S) end, S2, S1);
	false ->
	    fold(fun (E, S) -> add_element(E, S) end, S1, S2)
    end.

%% union([Set]) -> Set
%%  Return the union of the list of sets.
-spec union(SetList) -> Set when
      SetList :: [set(Element)],
      Set :: set(Element).
union([S1,S2|Ss]) ->
    union1(union(S1, S2), Ss);
union([S]) -> S;
union([]) -> new().

-spec union1(set(E), [set(E)]) -> set(E).
union1(S1, [S2|Ss]) ->
    union1(union(S1, S2), Ss);
union1(S1, []) -> S1.

%% intersection(Set1, Set2) -> Set.
%%  Return the intersection of Set1 and Set2.
-spec intersection(Set1, Set2) -> Set3 when
      Set1 :: set(Element),
      Set2 :: set(Element),
      Set3 :: set(Element).
intersection(#{}=S1, #{}=S2) ->
    case map_size(S1) < map_size(S2) of
        true ->
            Next = maps:next(maps:iterator(S1)),
            intersection_heuristic(Next, [], [], floor(map_size(S1) * 0.75), S1, S2);
        false ->
            Next = maps:next(maps:iterator(S2)),
            intersection_heuristic(Next, [], [], floor(map_size(S2) * 0.75), S2, S1)
    end;
intersection(S1, S2) ->
    case size(S1) < size(S2) of
        true ->
	    filter(fun (E) -> is_element(E, S2) end, S1);
        false ->
	    filter(fun (E) -> is_element(E, S1) end, S2)
    end.

%% If we are keeping more than 75% of the keys, then it is
%% cheaper to delete them. Stop accumulating and start deleting.
intersection_heuristic(Next, _Keep, Delete, 0, Acc, Reference) ->
  intersection_decided(Next, remove_keys(Delete, Acc), Reference);
intersection_heuristic({Key, _Value, Iterator}, Keep, Delete, KeepCount, Acc, Reference) ->
    Next = maps:next(Iterator),
    case Reference of
        #{Key := _} ->
            intersection_heuristic(Next, [Key | Keep], Delete, KeepCount - 1, Acc, Reference);
        _ ->
            intersection_heuristic(Next, Keep, [Key | Delete], KeepCount, Acc, Reference)
    end;
intersection_heuristic(none, Keep, _Delete, _Count, _Acc, _Reference) ->
    maps:from_keys(Keep, ?VALUE).

intersection_decided({Key, _Value, Iterator}, Acc0, Reference) ->
    Acc1 = case Reference of
        #{Key := _} -> Acc0;
        #{} -> maps:remove(Key, Acc0)
    end,
    intersection_decided(maps:next(Iterator), Acc1, Reference);
intersection_decided(none, Acc, _Reference) ->
    Acc.

remove_keys([K | Ks], Map) -> remove_keys(Ks, maps:remove(K, Map));
remove_keys([], Map) -> Map.

%% intersection([Set]) -> Set.
%%  Return the intersection of the list of sets.
-spec intersection(SetList) -> Set when
      SetList :: [set(Element),...],
      Set :: set(Element).
intersection([S1,S2|Ss]) ->
    intersection1(intersection(S1, S2), Ss);
intersection([S]) -> S.

-spec intersection1(set(E), [set(E)]) -> set(E).
intersection1(S1, [S2|Ss]) ->
    intersection1(intersection(S1, S2), Ss);
intersection1(S1, []) -> S1.

%% is_disjoint(Set1, Set2) -> boolean().
%%  Check whether Set1 and Set2 are disjoint.
-spec is_disjoint(Set1, Set2) -> boolean() when
      Set1 :: set(Element),
      Set2 :: set(Element).
is_disjoint(#{}=S1, #{}=S2) ->
    if
	map_size(S1) < map_size(S2) ->
	    is_disjoint_1(S2, maps:iterator(S1));
	true ->
	    is_disjoint_1(S1, maps:iterator(S2))
    end;
is_disjoint(S1, S2) ->
    case size(S1) < size(S2) of
        true ->
	    fold(fun (_, false) -> false;
		(E, true) -> not is_element(E, S2)
	    end, true, S1);
        false ->
	    fold(fun (_, false) -> false;
		(E, true) -> not is_element(E, S1)
	    end, true, S2)
    end.

is_disjoint_1(Set, Iter) ->
    case maps:next(Iter) of
        {K, _, NextIter} ->
            case Set of
                #{K := _} -> false;
                #{} -> is_disjoint_1(Set, NextIter)
            end;
        none ->
            true
    end.

%% subtract(Set1, Set2) -> Set.
%%  Return all and only the elements of Set1 which are not also in
%%  Set2.
-spec subtract(Set1, Set2) -> Set3 when
      Set1 :: set(Element),
      Set2 :: set(Element),
      Set3 :: set(Element).

subtract(#{}=S1, #{}=S2) ->
    Next = maps:next(maps:iterator(S1)),
    subtract_heuristic(Next, [], [], floor(map_size(S1) * 0.75), S1, S2);
subtract(S1, S2) ->
    filter(fun (E) -> not is_element(E, S2) end, S1).

%% If we are keeping more than 75% of the keys, then it is
%% cheaper to delete them. Stop accumulating and start deleting.
subtract_heuristic(Next, _Keep, Delete, 0, Acc, Reference) ->
  subtract_decided(Next, remove_keys(Delete, Acc), Reference);
subtract_heuristic({Key, _Value, Iterator}, Keep, Delete, KeepCount, Acc, Reference) ->
    Next = maps:next(Iterator),
    case Reference of
        #{Key := _} ->
            subtract_heuristic(Next, Keep, [Key | Delete], KeepCount, Acc, Reference);
        _ ->
            subtract_heuristic(Next, [Key | Keep], Delete, KeepCount - 1, Acc, Reference)
    end;
subtract_heuristic(none, Keep, _Delete, _Count, _Acc, _Reference) ->
    maps:from_keys(Keep, ?VALUE).

subtract_decided({Key, _Value, Iterator}, Acc, Reference) ->
    case Reference of
        #{Key := _} ->
            subtract_decided(maps:next(Iterator), maps:remove(Key, Acc), Reference);
        _ ->
            subtract_decided(maps:next(Iterator), Acc, Reference)
    end;
subtract_decided(none, Acc, _Reference) ->
    Acc.

%% is_subset(Set1, Set2) -> boolean().
%%  Return 'true' when every element of Set1 is also a member of
%%  Set2, else 'false'.
-spec is_subset(Set1, Set2) -> boolean() when
      Set1 :: set(Element),
      Set2 :: set(Element).

is_subset(#{}=S1, #{}=S2) ->
    if
	map_size(S1) > map_size(S2) ->
	    false;
	true ->
	    is_subset_1(S2, maps:iterator(S1))
    end;
is_subset(S1, S2) ->
    fold(fun (E, Sub) -> Sub andalso is_element(E, S2) end, true, S1).

is_subset_1(Set, Iter) ->
    case maps:next(Iter) of
        {K, _, NextIter} ->
            case Set of
                #{K := _} -> is_subset_1(Set, NextIter);
                #{} -> false
            end;
        none ->
            true
    end.

%% fold(Fun, Accumulator, Set) -> Accumulator.
%%  Fold function Fun over all elements in Set and return Accumulator.
-spec fold(Function, Acc0, Set) -> Acc1 when
      Function :: fun((Element, AccIn) -> AccOut),
      Set :: set(Element),
      Acc0 :: Acc,
      Acc1 :: Acc,
      AccIn :: Acc,
      AccOut :: Acc.
fold(F, Acc, #{}=D) when is_function(F, 2)->
    fold_1(F, Acc, maps:iterator(D));
fold(F, Acc, #set{}=D) when is_function(F, 2)->
    fold_set(F, Acc, D).

fold_1(Fun, Acc, Iter) ->
    case maps:next(Iter) of
        {K, _, NextIter} ->
            fold_1(Fun, Fun(K,Acc), NextIter);
        none ->
            Acc
    end.

%% filter(Fun, Set) -> Set.
%%  Filter Set with Fun.
-spec filter(Pred, Set1) -> Set2 when
      Pred :: fun((Element) -> boolean()),
      Set1 :: set(Element),
      Set2 :: set(Element).
filter(F, #{}=D) when is_function(F, 1)->
    maps:from_keys(filter_1(F, maps:iterator(D)), ?VALUE);
filter(F, #set{}=D) when is_function(F, 1)->
    filter_set(F, D).

filter_1(Fun, Iter) ->
    case maps:next(Iter) of
        {K, _, NextIter} ->
            case Fun(K) of
                true ->
                    [K | filter_1(Fun, NextIter)];
                false ->
                    filter_1(Fun, NextIter)
            end;
        none ->
            []
    end.

%% get_slot(Hashdb, Key) -> Slot.
%%  Get the slot.  First hash on the new range, if we hit a bucket
%%  which has not been split use the unsplit buddy bucket.
-spec get_slot(set(E), E) -> non_neg_integer().
get_slot(T, Key) ->
    H = erlang:phash(Key, T#set.maxn),
    if
	H > T#set.n -> H - T#set.bso;
	true -> H
    end.

%% get_bucket(Hashdb, Slot) -> Bucket.
-spec get_bucket(set(), non_neg_integer()) -> term().
get_bucket(T, Slot) -> get_bucket_s(T#set.segs, Slot).

%% fold_set(Fun, Acc, Dictionary) -> Dictionary.
%% filter_set(Fun, Dictionary) -> Dictionary.

%%  Work functions for fold and filter operations.  These traverse the
%%  hash structure rebuilding as necessary.  Note we could have
%%  implemented map and hash using fold but these should be faster.
%%  We hope!

fold_set(F, Acc, D) ->
    Segs = D#set.segs,
    fold_segs(F, Acc, Segs, tuple_size(Segs)).

fold_segs(F, Acc, Segs, I) when I >= 1 ->
    Seg = element(I, Segs),
    fold_segs(F, fold_seg(F, Acc, Seg, tuple_size(Seg)), Segs, I-1);
fold_segs(_, Acc, _, _) -> Acc.

fold_seg(F, Acc, Seg, I) when I >= 1 ->
    fold_seg(F, fold_bucket(F, Acc, element(I, Seg)), Seg, I-1);
fold_seg(_, Acc, _, _) -> Acc.

fold_bucket(F, Acc, [E|Bkt]) ->
    fold_bucket(F, F(E, Acc), Bkt);
fold_bucket(_, Acc, []) -> Acc.

filter_set(F, D) ->
    Segs0 = tuple_to_list(D#set.segs),
    {Segs1,Fc} = filter_seg_list(F, Segs0, [], 0),
    maybe_contract(D#set{segs = list_to_tuple(Segs1)}, Fc).

filter_seg_list(F, [Seg|Segs], Fss, Fc0) ->
    Bkts0 = tuple_to_list(Seg),
    {Bkts1,Fc1} = filter_bkt_list(F, Bkts0, [], Fc0),
    filter_seg_list(F, Segs, [list_to_tuple(Bkts1)|Fss], Fc1);
filter_seg_list(_, [], Fss, Fc) ->
    {lists:reverse(Fss, []),Fc}.

filter_bkt_list(F, [Bkt0|Bkts], Fbs, Fc0) ->
    {Bkt1,Fc1} = filter_bucket(F, Bkt0, [], Fc0),
    filter_bkt_list(F, Bkts, [Bkt1|Fbs], Fc1);
filter_bkt_list(_, [], Fbs, Fc) ->
    {lists:reverse(Fbs),Fc}.

filter_bucket(F, [E|Bkt], Fb, Fc) ->
    case F(E) of
	true -> filter_bucket(F, Bkt, [E|Fb], Fc);
	false -> filter_bucket(F, Bkt, Fb, Fc+1)
    end;
filter_bucket(_, [], Fb, Fc) -> {Fb,Fc}.

%% get_bucket_s(Segments, Slot) -> Bucket.
%% put_bucket_s(Segments, Slot, Bucket) -> NewSegments.

get_bucket_s(Segs, Slot) ->
    SegI = ((Slot-1) div ?seg_size) + 1,
    BktI = ((Slot-1) rem ?seg_size) + 1,
    element(BktI, element(SegI, Segs)).

put_bucket_s(Segs, Slot, Bkt) ->
    SegI = ((Slot-1) div ?seg_size) + 1,
    BktI = ((Slot-1) rem ?seg_size) + 1,
    Seg = setelement(BktI, element(SegI, Segs), Bkt),
    setelement(SegI, Segs, Seg).

-spec maybe_expand(set(E)) -> set(E).
maybe_expand(T0) when T0#set.size + 1 > T0#set.exp_size ->
    T = maybe_expand_segs(T0),			%Do we need more segments.
    N = T#set.n + 1,				%Next slot to expand into
    Segs0 = T#set.segs,
    Slot1 = N - T#set.bso,
    B = get_bucket_s(Segs0, Slot1),
    Slot2 = N,
    {B1,B2} = rehash(B, Slot1, Slot2, T#set.maxn),
    Segs1 = put_bucket_s(Segs0, Slot1, B1),
    Segs2 = put_bucket_s(Segs1, Slot2, B2),
    T#set{size = T#set.size + 1,
	  n = N,
	  exp_size = N * ?expand_load,
	  con_size = N * ?contract_load,
	  segs = Segs2};
maybe_expand(T) -> T#set{size = T#set.size + 1}.

-spec maybe_expand_segs(set(E)) -> set(E).
maybe_expand_segs(T) when T#set.n =:= T#set.maxn ->
    T#set{maxn = 2 * T#set.maxn,
	  bso  = 2 * T#set.bso,
	  segs = expand_segs(T#set.segs, T#set.empty)};
maybe_expand_segs(T) -> T.

-spec maybe_contract(set(E), non_neg_integer()) -> set(E).
maybe_contract(T, Dc) when T#set.size - Dc < T#set.con_size,
			   T#set.n > ?seg_size ->
    N = T#set.n,
    Slot1 = N - T#set.bso,
    Segs0 = T#set.segs,
    B1 = get_bucket_s(Segs0, Slot1),
    Slot2 = N,
    B2 = get_bucket_s(Segs0, Slot2),
    Segs1 = put_bucket_s(Segs0, Slot1, B1 ++ B2),
    Segs2 = put_bucket_s(Segs1, Slot2, []),	%Clear the upper bucket
    N1 = N - 1,
    maybe_contract_segs(T#set{size = T#set.size - Dc,
			      n = N1,
			      exp_size = N1 * ?expand_load,
			      con_size = N1 * ?contract_load,
			      segs = Segs2});
maybe_contract(T, Dc) -> T#set{size = T#set.size - Dc}.

-spec maybe_contract_segs(set(E)) -> set(E).
maybe_contract_segs(T) when T#set.n =:= T#set.bso ->
    T#set{maxn = T#set.maxn div 2,
	  bso  = T#set.bso div 2,
	  segs = contract_segs(T#set.segs)};
maybe_contract_segs(T) -> T.

%% rehash(Bucket, Slot1, Slot2, MaxN) -> {Bucket1,Bucket2}.
-spec rehash([T], integer(), pos_integer(), pos_integer()) -> {[T],[T]}.
rehash([E|T], Slot1, Slot2, MaxN) ->
    {L1,L2} = rehash(T, Slot1, Slot2, MaxN),
    case erlang:phash(E, MaxN) of
	Slot1 -> {[E|L1],L2};
	Slot2 -> {L1,[E|L2]}
    end;
rehash([], _, _, _) -> {[],[]}.

%% mk_seg(Size) -> Segment.
-spec mk_seg(16) -> seg().
mk_seg(16) -> {[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]}.

%% expand_segs(Segs, EmptySeg) -> NewSegs.
%% contract_segs(Segs) -> NewSegs.
%%  Expand/contract the segment tuple by doubling/halving the number
%%  of segments.  We special case the powers of 2 upto 32, this should
%%  catch most case.  N.B. the last element in the segments tuple is
%%  an extra element containing a default empty segment.
-spec expand_segs(segs(E), seg()) -> segs(E).
expand_segs({B1}, Empty) ->
    {B1,Empty};
expand_segs({B1,B2}, Empty) ->
    {B1,B2,Empty,Empty};
expand_segs({B1,B2,B3,B4}, Empty) ->
    {B1,B2,B3,B4,Empty,Empty,Empty,Empty};
expand_segs({B1,B2,B3,B4,B5,B6,B7,B8}, Empty) ->
    {B1,B2,B3,B4,B5,B6,B7,B8,
     Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty};
expand_segs({B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16}, Empty) ->
    {B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,
     Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty,
     Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty};
expand_segs(Segs, Empty) ->
    list_to_tuple(tuple_to_list(Segs) 
    ++ lists:duplicate(tuple_size(Segs), Empty)).

-spec contract_segs(segs(E)) -> segs(E).
contract_segs({B1,_}) ->
    {B1};
contract_segs({B1,B2,_,_}) ->
    {B1,B2};
contract_segs({B1,B2,B3,B4,_,_,_,_}) ->
    {B1,B2,B3,B4};
contract_segs({B1,B2,B3,B4,B5,B6,B7,B8,_,_,_,_,_,_,_,_}) ->
    {B1,B2,B3,B4,B5,B6,B7,B8};
contract_segs({B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,
	       _,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_}) ->
    {B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16};
contract_segs(Segs) ->
    Ss = tuple_size(Segs) div 2,
    list_to_tuple(lists:sublist(tuple_to_list(Segs), 1, Ss)).