summaryrefslogtreecommitdiff
path: root/system/doc/reference_manual/data_types.xml
blob: 1a4bdc56806a52abf70b1002633c4b7bc8ea0b6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">

<chapter>
  <header>
    <copyright>
      <year>2003</year><year>2022</year>
      <holder>Ericsson AB. All Rights Reserved.</holder>
    </copyright>
    <legalnotice>
      Licensed under the Apache License, Version 2.0 (the "License");
      you may not use this file except in compliance with the License.
      You may obtain a copy of the License at
 
          http://www.apache.org/licenses/LICENSE-2.0

      Unless required by applicable law or agreed to in writing, software
      distributed under the License is distributed on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      See the License for the specific language governing permissions and
      limitations under the License.
    
    </legalnotice>

    <title>Data Types</title>
    <prepared></prepared>
    <docno></docno>
    <date></date>
    <rev></rev>
    <file>data_types.xml</file>
  </header>
    <p>Erlang provides a number of data types, which are listed in
    this section.</p>

    <marker id="no_user_types" />
    <p>Note that Erlang has no user defined types, only composite
    types (data structures) made of Erlang terms.  This means that any
    function testing for a composite type, typically named
    <c>is_type/1</c>, might return <c>true</c> for a term
    that coincides with the chosen representation.  The corresponding
    functions for built in types do not suffer from this.</p>

  <section>
    <title>Terms</title>
    <p>A piece of data of any data type is called a <em>term</em>.</p>
  </section>

  <section>
    <title>Number</title>
    <p>There are two types of numeric literals, <em>integers</em> and
      <em>floats</em>. Besides the conventional notation, there are two
      Erlang-specific notations:</p>
    <list type="bulleted">
      <item><c>$</c><em><c>char</c></em>      <br></br>

       ASCII value or unicode code-point of the character
       <em><c>char</c></em>.</item>
      <item><em><c>base</c></em><c>#</c><em><c>value</c></em>      <br></br>

       Integer with the base <em><c>base</c></em>, that must be an
       integer in the range 2..36.</item>
    </list>
    <p>Leading zeroes are ignored. Single underscore <c>_</c> can be inserted
    between digits as a visual separator.</p>
    <p><em>Examples:</em></p>
    <pre>
1> <input>42.</input>
42
2> <input>-1_234_567_890.</input>
-1234567890
3> <input>$A.</input>
65
4> <input>$\n.</input>
10
5> <input>2#101.</input>
5
6> <input>16#1f.</input>
31
7> <input>16#4865_316F_774F_6C64.</input>
5216630098191412324
8> <input>2.3.</input>
2.3
9> <input>2.3e3.</input>
2.3e3
10> <input>2.3e-3.</input>
0.0023
11> <input>1_234.333_333</input>
1234.333333
</pre>
<marker id="float_representation_problem" />
    <section>
      <title>Representation of Floating Point Numbers</title>
      <p>When working with floats you may not see what you expect when printing or
        doing arithmetic operations. This is because floats
        are represented by a fixed number of bits in a base-2 system while
        printed floats are represented with a base-10 system. Erlang
        uses 64-bit floats. Here are examples of this phenomenon:
      </p>
      <pre>
> <input>0.1+0.2.</input>
0.30000000000000004
</pre>
<p>The real numbers <c>0.1</c> and <c>0.2</c> cannot be represented
exactly as floats.</p>
<pre>
> <input>{36028797018963968.0, 36028797018963968 == 36028797018963968.0,
  36028797018963970.0, 36028797018963970 == 36028797018963970.0}.</input>
{3.602879701896397e16, true,
 3.602879701896397e16, false}.
</pre>
      <p>
        The value <c>36028797018963968</c> can be represented exactly
        as a float value but Erlang's pretty printer rounds
        <c>36028797018963968.0</c> to <c>3.602879701896397e16</c>
        (<c>=36028797018963970.0</c>) as all values in the range
        <c>[36028797018963966.0, 36028797018963972.0]</c> are
        represented by <c>36028797018963968.0</c>.
      </p>
      <p>
        For more information about floats and issues with them see:
      </p>
        <list type="bulleted">
          <item><url
                    href="https://floating-point-gui.de/">What Every Programmer
          Should Know About Floating-Point Arithmetic</url>,</item>
          <item><url
                    href="https://0.30000000000000004.com/">0.30000000000000004.com/</url>, and</item>
          <item><url href="https://docs.python.org/3/tutorial/floatingpoint.html">Floating Point Arithmetic: Issues and
          Limitations</url>.</item>
        </list>
      <p>If you need to work with decimal fractions, for instance if you need to represent money,
        then you should use a library that handles that or work in cents instead of euros so
        that you do not need decimal fractions.
      </p>
    </section>
  </section>

  <section>
    <title>Atom</title>
    <p>An atom is a literal, a constant with name. An atom is to be
      enclosed in single quotes (') if it does not begin with a
      lower-case letter or if it contains other characters than
      alphanumeric characters, underscore (_), or @.</p>
    <p><em>Examples:</em></p>
    <pre>
hello
phone_number
'Monday'
'phone number'</pre>
  </section>

  <section>
    <title>Bit Strings and Binaries</title>
    <p>A bit string is used to store an area of untyped memory.</p>
    <p>Bit strings are expressed using the
      <seeguide marker="expressions#bit_syntax">bit syntax</seeguide>.</p>
    <p>Bit strings that consist of a number of bits that are evenly
      divisible by eight, are called <em>binaries</em></p>
    <p><em>Examples:</em></p>
    <pre>
1> <input>&lt;&lt;10,20&gt;&gt;.</input>
&lt;&lt;10,20>>
2> <input>&lt;&lt;"ABC"&gt;&gt;.</input>
&lt;&lt;"ABC">>
1> <input>&lt;&lt;1:1,0:1&gt;&gt;.</input>
&lt;&lt;2:2>></pre>
    <p>For more examples,
      see <seeguide marker="system/programming_examples:bit_syntax">
      Programming Examples</seeguide>.</p>
  </section>

  <section>
    <title>Reference</title>
    <p>
      A term that is
      <seeguide marker="system/efficiency_guide:advanced#unique_references">unique</seeguide>
      among connected nodes. A reference can be created by calling the
      <seemfa marker="erts:erlang#make_ref/0"><c>make_ref/0</c></seemfa>
      BIF. The
      <seemfa marker="erts:erlang#is_reference/1"><c>is_reference/1</c></seemfa>
      BIF can be used to test if a term is a reference.
    </p>
  </section>

  <section>
    <title>Fun</title>
    <p>A fun is a functional object. Funs make it possible to create
      an anonymous function and pass the function itself -- not its
      name -- as argument to other functions.</p>
    <p><em>Example:</em></p>
    <pre>
1> <input>Fun1 = fun (X) -> X+1 end.</input>
#Fun&lt;erl_eval.6.39074546&gt;
2> <input>Fun1(2).</input>
3</pre>
    <p>Read more about funs in <seeguide marker="expressions#funs">
      Fun Expressions</seeguide>. For more examples, see
      <seeguide marker="system/programming_examples:funs">
      Programming Examples</seeguide>.</p>
  </section>

  <section>
    <title>Port Identifier</title>
    <p>A port identifier identifies an Erlang port.</p>
    <p><c>open_port/2</c>, which is used to create ports, returns
      a value of this data type.</p>
    <p>Read more about ports in <seeguide marker="ports">Ports and Port Drivers</seeguide>.</p>
  </section>

  <section>
    <title>PID</title>
    <p>
      PID is an abbreviation for process identifier. Each process has
      a PID which identifies the process. PIDs are unique among processes
      that are alive on connected nodes. However, a PID of a terminated
      process may be reused as a PID for a new process after a while.
    </p>
    <p>
      The BIF <seemfa marker="erts:erlang#self/0"><c>self/0</c></seemfa>
      returns the PID of the calling process. When
      <seeguide marker="processes#process-creation">creating a new
      process</seeguide>, the parent process will be able to get the PID
      of the child process either via the return value, as is the case
      when calling the <seemfa marker="erts:erlang#spawn/3"><c>spawn/3</c></seemfa>
      BIF, or via a message, which is the case when calling the
      <seemfa marker="erts:erlang#spawn_request/5"><c>spawn_request/5</c></seemfa>
      BIF. A PID is typically used when when sending a process a
      <seeguide marker="processes#signals">signal</seeguide>. The
      <seemfa marker="erts:erlang#is_pid/1"><c>is_pid/1</c></seemfa>
      BIF can be used to test whether a term is a PID. 
    </p>
    <p><em>Example:</em></p>
    <pre>
-module(m).
-export([loop/0]).

loop() ->
    receive
        who_are_you ->
            io:format("I am ~p~n", [self()]),
            loop()
    end.

1> <input>P = spawn(m, loop, []).</input>
&lt;0.58.0>
2> <input>P ! who_are_you.</input>
I am &lt;0.58.0>
who_are_you</pre>
    <p>Read more about processes in
      <seeguide marker="processes">Processes</seeguide>.</p>
  </section>

  <section>
    <title>Tuple</title>
    <p>A tuple is a compound data type with a fixed number of terms:</p>
    <pre>
{Term1,...,TermN}</pre>
    <p>Each term <c>Term</c> in the tuple is called an
      <em>element</em>. The number of elements is said to be
      the <em>size</em> of the tuple.</p>
    <p>There exists a number of BIFs to manipulate tuples.</p>
    <p><em>Examples:</em></p>
    <pre>
1> <input>P = {adam,24,{july,29}}.</input>
{adam,24,{july,29}}
2> <input>element(1,P).</input>
adam
3> <input>element(3,P).</input>
{july,29}
4> <input>P2 = setelement(2,P,25).</input>
{adam,25,{july,29}}
5> <input>tuple_size(P).</input>
3
6> <input>tuple_size({}).</input>
0</pre>
  </section>

  <section>
    <title>Map</title>
    <p>A map is a compound data type with a variable number of
      key-value associations:</p>
    <pre>
#{Key1=>Value1,...,KeyN=>ValueN}</pre>
	<p>Each key-value association in the map is called an
		<em>association pair</em>. The key and value parts of the pair are
		called <em>elements</em>. The number of association pairs is said to be
      the <em>size</em> of the map.</p>
    <p>There exists a number of BIFs to manipulate maps.</p>
    <p><em>Examples:</em></p>
    <pre>
1> <input>M1 = #{name=>adam,age=>24,date=>{july,29}}.</input>
#{age => 24,date => {july,29},name => adam}
2> <input>maps:get(name,M1).</input>
adam
3> <input>maps:get(date,M1).</input>
{july,29}
4> <input>M2 = maps:update(age,25,M1).</input>
#{age => 25,date => {july,29},name => adam}
5> <input>map_size(M).</input>
3
6> <input>map_size(#{}).</input>
0</pre>
    <p>A collection of maps processing functions can be found in
      <seeerl marker="stdlib:maps"><c>maps</c></seeerl> manual page
      in STDLIB.</p>
    <p>Read more about maps in <seeguide marker="expressions#map_expressions">
      Map Expressions</seeguide>.</p>
  <note>
    <p>Maps are considered to be experimental during Erlang/OTP R17.</p>
  </note>
  </section>

  <section>
    <title>List</title>
    <p>A list is a compound data type with a variable number of terms.</p>
    <pre>
[Term1,...,TermN]</pre>
    <p>Each term <c>Term</c> in the list is called an
      <em>element</em>. The number of elements is said to be
      the <em>length</em> of the list.</p>
    <p>Formally, a list is either the empty list <c>[]</c> or
      consists of a <em>head</em> (first element) and a <em>tail</em>
      (remainder of the list).
      The <em>tail</em> is also a list. The latter can
      be expressed as <c>[H|T]</c>. The notation
      <c>[Term1,...,TermN]</c> above is equivalent with
      the list <c>[Term1|[...|[TermN|[]]]]</c>.</p>
    <p><em>Example:</em></p>
<p><c>[]</c> is a list, thus      <br></br>
<c>[c|[]]</c> is a list, thus      <br></br>
<c>[b|[c|[]]]</c> is a list, thus      <br></br>
<c>[a|[b|[c|[]]]]</c> is a list, or in short <c>[a,b,c]</c></p>

    <p>A list where the tail is a list is sometimes called a <em>proper list</em>. It is allowed to have a list where the tail is not a
      list, for example, <c>[a|b]</c>. However, this type of list is of
      little practical use.</p>
    <p><em>Examples:</em></p>
    <pre>
1> <input>L1 = [a,2,{c,4}].</input>
[a,2,{c,4}]
2> <input>[H|T] = L1.</input>
[a,2,{c,4}]
3> <input>H.</input>
a
4> <input>T.</input>
[2,{c,4}]
5> <input>L2 = [d|T].</input>
[d,2,{c,4}]
6> <input>length(L1).</input>
3
7> <input>length([]).</input>
0</pre>
    <p>A collection of list processing functions can be found in
      the <seeerl marker="stdlib:lists">lists</seeerl> manual
      page in STDLIB.</p>
  </section>

  <section>
    <title>String</title>
    <p>Strings are enclosed in double quotes ("), but is not a
      data type in Erlang. Instead, a string <c>"hello"</c> is
      shorthand for the list <c>[$h,$e,$l,$l,$o]</c>, that is,
      <c>[104,101,108,108,111]</c>.</p>
    <p>Two adjacent string literals are concatenated into one. This is
      done in the compilation, thus, does not incur any runtime overhead.</p>
      <p><em>Example:</em></p>
    <pre>
"string" "42"</pre>
    <p>is equivalent to</p>
    <pre>
"string42"</pre>
  </section>

  <section>
    <title>Record</title>
    <p>A record is a data structure for storing a fixed number of
      elements. It has named fields and is similar to a struct in C.
      However, a record is not a true data type. Instead, record
      expressions are translated to tuple expressions during
      compilation. Therefore, record expressions are not understood by
      the shell unless special actions are taken. For details, see the
      <seeerl marker="stdlib:shell">shell(3)</seeerl> manual
      page in STDLIB).</p>
    <p><em>Examples:</em></p>
    <pre>
-module(person).
-export([new/2]).

-record(person, {name, age}).

new(Name, Age) ->
    #person{name=Name, age=Age}.

1> <input>person:new(ernie, 44).</input>
{person,ernie,44}</pre>
    <p>Read more about records in
      <seeguide marker="records">Records</seeguide>. More examples can be
      found in <seeguide marker="system/programming_examples:records">
      Programming Examples</seeguide>.</p>
  </section>

  <section>
    <title>Boolean</title>
    <p>There is no Boolean data type in Erlang. Instead the atoms
      <c>true</c> and <c>false</c> are used to denote Boolean values.</p>
    <p><em>Examples:</em></p>
    <pre>
1> <input>2 =&lt; 3</input>.
true
2> <input>true or false</input>.
true</pre>
  </section>

  <section>
    <title>Escape Sequences</title>
    <p>Within strings and quoted atoms, the following escape sequences
      are recognized:</p>
    <table>
      <row>
        <cell align="left" valign="middle"><em>Sequence</em></cell>
        <cell align="left" valign="middle"><em>Description</em></cell>
      </row>
      <row>
        <cell align="left" valign="middle">\b</cell>
        <cell align="left" valign="middle">Backspace</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\d</cell>
        <cell align="left" valign="middle">Delete</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\e</cell>
        <cell align="left" valign="middle">Escape</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\f</cell>
        <cell align="left" valign="middle">Form feed</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\n</cell>
        <cell align="left" valign="middle">Newline</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\r</cell>
        <cell align="left" valign="middle">Carriage return</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\s</cell>
        <cell align="left" valign="middle">Space</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\t</cell>
        <cell align="left" valign="middle">Tab</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\v</cell>
        <cell align="left" valign="middle">Vertical tab</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\XYZ, \YZ, \Z</cell>
        <cell align="left" valign="middle">Character with octal
        representation XYZ, YZ or Z</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\xXY</cell>
        <cell align="left" valign="middle">Character with hexadecimal
        representation XY</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\x{X...}</cell>
        <cell align="left" valign="middle">Character with hexadecimal
        representation; X... is one or more hexadecimal characters</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\^a...\^z        <br></br>
\^A...\^Z</cell>
        <cell align="left" valign="middle">Control A to control Z</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\'</cell>
        <cell align="left" valign="middle">Single quote</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\"</cell>
        <cell align="left" valign="middle">Double quote</cell>
      </row>
      <row>
        <cell align="left" valign="middle">\\</cell>
        <cell align="left" valign="middle">Backslash</cell>
      </row>
      <tcaption>Recognized Escape Sequences</tcaption>
    </table>
  </section>

  <section>
    <title>Type Conversions</title>
    <p>There are a number of BIFs for type conversions.</p>
    <p><em>Examples:</em></p>
    <pre>
1> <input>atom_to_list(hello).</input>
"hello"
2> <input>list_to_atom("hello").</input>
hello
3> <input>binary_to_list(&lt;&lt;"hello">>).</input>
"hello"
4> <input>binary_to_list(&lt;&lt;104,101,108,108,111>>).</input>
"hello"
5> <input>list_to_binary("hello").</input>
&lt;&lt;104,101,108,108,111>>
6> <input>float_to_list(7.0).</input>
"7.00000000000000000000e+00"
7> <input>list_to_float("7.000e+00").</input>
7.0
8> <input>integer_to_list(77).</input>
"77"
9> <input>list_to_integer("77").</input>
77
10> <input>tuple_to_list({a,b,c}).</input>
[a,b,c]
11> <input>list_to_tuple([a,b,c]).</input>
{a,b,c}
12> <input>term_to_binary({a,b,c}).</input>
&lt;&lt;131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
13> <input>binary_to_term(&lt;&lt;131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).</input>
{a,b,c}
14> <input>binary_to_integer(&lt;&lt;"77">>).</input>
77
15> <input>integer_to_binary(77).</input>
&lt;&lt;"77">>
16> <input>float_to_binary(7.0).</input>
&lt;&lt;"7.00000000000000000000e+00">>
17> <input>binary_to_float(&lt;&lt;"7.000e+00">>).</input>
7.0</pre>
  </section>
</chapter>