summaryrefslogtreecommitdiff
path: root/libavcodec/opus_celt.c
diff options
context:
space:
mode:
authorRostislav Pehlivanov <atomnuker@gmail.com>2017-02-11 00:25:06 +0000
committerRostislav Pehlivanov <atomnuker@gmail.com>2017-02-14 06:15:36 +0000
commite538108c219d7b3628a9ec33d85bf252ee70c957 (patch)
tree796c62422dbc5f3e555d84ce57557729c7a8c900 /libavcodec/opus_celt.c
parentd2119f624d392f53f80c3d36ffaadca23aef8a10 (diff)
downloadffmpeg-e538108c219d7b3628a9ec33d85bf252ee70c957.tar.gz
opus_celt: move quantization and band decoding to opus_pvq.c
A huge amount can be reused by the encoder, as the only thing which needs to be done would be to add a 10 line celt_icwrsi, a wrapper around it (celt_alg_quant) and templating the ff_celt_decode_band to replace entropy decoding functions with entropy encoding. There is no performance loss but in fact a performance gain of around 6% which is caused by the compiler being able to optimize the decoding more efficiently. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
Diffstat (limited to 'libavcodec/opus_celt.c')
-rw-r--r--libavcodec/opus_celt.c828
1 files changed, 11 insertions, 817 deletions
diff --git a/libavcodec/opus_celt.c b/libavcodec/opus_celt.c
index a0f018e664..71ef8965e2 100644
--- a/libavcodec/opus_celt.c
+++ b/libavcodec/opus_celt.c
@@ -24,109 +24,9 @@
* Opus CELT decoder
*/
-#include <stdint.h>
-
-#include "libavutil/float_dsp.h"
-#include "libavutil/libm.h"
-
-#include "mdct15.h"
-#include "opus.h"
+#include "opus_celt.h"
#include "opustab.h"
-
-enum CeltSpread {
- CELT_SPREAD_NONE,
- CELT_SPREAD_LIGHT,
- CELT_SPREAD_NORMAL,
- CELT_SPREAD_AGGRESSIVE
-};
-
-typedef struct CeltFrame {
- float energy[CELT_MAX_BANDS];
- float prev_energy[2][CELT_MAX_BANDS];
-
- uint8_t collapse_masks[CELT_MAX_BANDS];
-
- /* buffer for mdct output + postfilter */
- DECLARE_ALIGNED(32, float, buf)[2048];
-
- /* postfilter parameters */
- int pf_period_new;
- float pf_gains_new[3];
- int pf_period;
- float pf_gains[3];
- int pf_period_old;
- float pf_gains_old[3];
-
- float deemph_coeff;
-} CeltFrame;
-
-struct CeltContext {
- // constant values that do not change during context lifetime
- AVCodecContext *avctx;
- MDCT15Context *imdct[4];
- AVFloatDSPContext *dsp;
- int output_channels;
-
- // values that have inter-frame effect and must be reset on flush
- CeltFrame frame[2];
- uint32_t seed;
- int flushed;
-
- // values that only affect a single frame
- int coded_channels;
- int framebits;
- int duration;
-
- /* number of iMDCT blocks in the frame */
- int blocks;
- /* size of each block */
- int blocksize;
-
- int startband;
- int endband;
- int codedbands;
-
- int anticollapse_bit;
-
- int intensitystereo;
- int dualstereo;
- enum CeltSpread spread;
-
- int remaining;
- int remaining2;
- int fine_bits [CELT_MAX_BANDS];
- int fine_priority[CELT_MAX_BANDS];
- int pulses [CELT_MAX_BANDS];
- int tf_change [CELT_MAX_BANDS];
-
- DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
- DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
-};
-
-static inline int16_t celt_cos(int16_t x)
-{
- x = (MUL16(x, x) + 4096) >> 13;
- x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
- return 1+x;
-}
-
-static inline int celt_log2tan(int isin, int icos)
-{
- int lc, ls;
- lc = opus_ilog(icos);
- ls = opus_ilog(isin);
- icos <<= 15 - lc;
- isin <<= 15 - ls;
- return (ls << 11) - (lc << 11) +
- ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
- ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
-}
-
-static inline uint32_t celt_rng(CeltContext *s)
-{
- s->seed = 1664525 * s->seed + 1013904223;
- return s->seed;
-}
+#include "opus_pvq.h"
static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc)
{
@@ -579,711 +479,6 @@ static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc)
}
}
-static inline int celt_bits2pulses(const uint8_t *cache, int bits)
-{
- // TODO: Find the size of cache and make it into an array in the parameters list
- int i, low = 0, high;
-
- high = cache[0];
- bits--;
-
- for (i = 0; i < 6; i++) {
- int center = (low + high + 1) >> 1;
- if (cache[center] >= bits)
- high = center;
- else
- low = center;
- }
-
- return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
-}
-
-static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
-{
- // TODO: Find the size of cache and make it into an array in the parameters list
- return (pulses == 0) ? 0 : cache[pulses] + 1;
-}
-
-static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
- int N, float g)
-{
- int i;
- for (i = 0; i < N; i++)
- X[i] = g * iy[i];
-}
-
-static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride,
- float c, float s)
-{
- float *Xptr;
- int i;
-
- Xptr = X;
- for (i = 0; i < len - stride; i++) {
- float x1, x2;
- x1 = Xptr[0];
- x2 = Xptr[stride];
- Xptr[stride] = c * x2 + s * x1;
- *Xptr++ = c * x1 - s * x2;
- }
-
- Xptr = &X[len - 2 * stride - 1];
- for (i = len - 2 * stride - 1; i >= 0; i--) {
- float x1, x2;
- x1 = Xptr[0];
- x2 = Xptr[stride];
- Xptr[stride] = c * x2 + s * x1;
- *Xptr-- = c * x1 - s * x2;
- }
-}
-
-static inline void celt_exp_rotation(float *X, unsigned int len,
- unsigned int stride, unsigned int K,
- enum CeltSpread spread)
-{
- unsigned int stride2 = 0;
- float c, s;
- float gain, theta;
- int i;
-
- if (2*K >= len || spread == CELT_SPREAD_NONE)
- return;
-
- gain = (float)len / (len + (20 - 5*spread) * K);
- theta = M_PI * gain * gain / 4;
-
- c = cos(theta);
- s = sin(theta);
-
- if (len >= stride << 3) {
- stride2 = 1;
- /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
- It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
- while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
- stride2++;
- }
-
- /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
- extract_collapse_mask().*/
- len /= stride;
- for (i = 0; i < stride; i++) {
- if (stride2)
- celt_exp_rotation1(X + i * len, len, stride2, s, c);
- celt_exp_rotation1(X + i * len, len, 1, c, s);
- }
-}
-
-static inline unsigned int celt_extract_collapse_mask(const int *iy,
- unsigned int N,
- unsigned int B)
-{
- unsigned int collapse_mask;
- int N0;
- int i, j;
-
- if (B <= 1)
- return 1;
-
- /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
- exp_rotation().*/
- N0 = N/B;
- collapse_mask = 0;
- for (i = 0; i < B; i++)
- for (j = 0; j < N0; j++)
- collapse_mask |= (iy[i*N0+j]!=0)<<i;
- return collapse_mask;
-}
-
-static inline void celt_renormalize_vector(float *X, int N, float gain)
-{
- int i;
- float g = 1e-15f;
- for (i = 0; i < N; i++)
- g += X[i] * X[i];
- g = gain / sqrtf(g);
-
- for (i = 0; i < N; i++)
- X[i] *= g;
-}
-
-static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
-{
- int i;
- float xp = 0, side = 0;
- float E[2];
- float mid2;
- float t, gain[2];
-
- /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
- for (i = 0; i < N; i++) {
- xp += X[i] * Y[i];
- side += Y[i] * Y[i];
- }
-
- /* Compensating for the mid normalization */
- xp *= mid;
- mid2 = mid;
- E[0] = mid2 * mid2 + side - 2 * xp;
- E[1] = mid2 * mid2 + side + 2 * xp;
- if (E[0] < 6e-4f || E[1] < 6e-4f) {
- for (i = 0; i < N; i++)
- Y[i] = X[i];
- return;
- }
-
- t = E[0];
- gain[0] = 1.0f / sqrtf(t);
- t = E[1];
- gain[1] = 1.0f / sqrtf(t);
-
- for (i = 0; i < N; i++) {
- float value[2];
- /* Apply mid scaling (side is already scaled) */
- value[0] = mid * X[i];
- value[1] = Y[i];
- X[i] = gain[0] * (value[0] - value[1]);
- Y[i] = gain[1] * (value[0] + value[1]);
- }
-}
-
-static void celt_interleave_hadamard(float *tmp, float *X, int N0,
- int stride, int hadamard)
-{
- int i, j;
- int N = N0*stride;
-
- if (hadamard) {
- const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
- for (i = 0; i < stride; i++)
- for (j = 0; j < N0; j++)
- tmp[j*stride+i] = X[ordery[i]*N0+j];
- } else {
- for (i = 0; i < stride; i++)
- for (j = 0; j < N0; j++)
- tmp[j*stride+i] = X[i*N0+j];
- }
-
- for (i = 0; i < N; i++)
- X[i] = tmp[i];
-}
-
-static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
- int stride, int hadamard)
-{
- int i, j;
- int N = N0*stride;
-
- if (hadamard) {
- const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
- for (i = 0; i < stride; i++)
- for (j = 0; j < N0; j++)
- tmp[ordery[i]*N0+j] = X[j*stride+i];
- } else {
- for (i = 0; i < stride; i++)
- for (j = 0; j < N0; j++)
- tmp[i*N0+j] = X[j*stride+i];
- }
-
- for (i = 0; i < N; i++)
- X[i] = tmp[i];
-}
-
-static void celt_haar1(float *X, int N0, int stride)
-{
- int i, j;
- N0 >>= 1;
- for (i = 0; i < stride; i++) {
- for (j = 0; j < N0; j++) {
- float x0 = X[stride * (2 * j + 0) + i];
- float x1 = X[stride * (2 * j + 1) + i];
- X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
- X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
- }
- }
-}
-
-static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
- int dualstereo)
-{
- int qn, qb;
- int N2 = 2 * N - 1;
- if (dualstereo && N == 2)
- N2--;
-
- /* The upper limit ensures that in a stereo split with itheta==16384, we'll
- * always have enough bits left over to code at least one pulse in the
- * side; otherwise it would collapse, since it doesn't get folded. */
- qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
- qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
- return qn;
-}
-
-// this code was adapted from libopus
-static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y)
-{
- uint64_t norm = 0;
- uint32_t p;
- int s, val;
- int k0;
-
- while (N > 2) {
- uint32_t q;
-
- /*Lots of pulses case:*/
- if (K >= N) {
- const uint32_t *row = ff_celt_pvq_u_row[N];
-
- /* Are the pulses in this dimension negative? */
- p = row[K + 1];
- s = -(i >= p);
- i -= p & s;
-
- /*Count how many pulses were placed in this dimension.*/
- k0 = K;
- q = row[N];
- if (q > i) {
- K = N;
- do {
- p = ff_celt_pvq_u_row[--K][N];
- } while (p > i);
- } else
- for (p = row[K]; p > i; p = row[K])
- K--;
-
- i -= p;
- val = (k0 - K + s) ^ s;
- norm += val * val;
- *y++ = val;
- } else { /*Lots of dimensions case:*/
- /*Are there any pulses in this dimension at all?*/
- p = ff_celt_pvq_u_row[K ][N];
- q = ff_celt_pvq_u_row[K + 1][N];
-
- if (p <= i && i < q) {
- i -= p;
- *y++ = 0;
- } else {
- /*Are the pulses in this dimension negative?*/
- s = -(i >= q);
- i -= q & s;
-
- /*Count how many pulses were placed in this dimension.*/
- k0 = K;
- do p = ff_celt_pvq_u_row[--K][N];
- while (p > i);
-
- i -= p;
- val = (k0 - K + s) ^ s;
- norm += val * val;
- *y++ = val;
- }
- }
- N--;
- }
-
- /* N == 2 */
- p = 2 * K + 1;
- s = -(i >= p);
- i -= p & s;
- k0 = K;
- K = (i + 1) / 2;
-
- if (K)
- i -= 2 * K - 1;
-
- val = (k0 - K + s) ^ s;
- norm += val * val;
- *y++ = val;
-
- /* N==1 */
- s = -i;
- val = (K + s) ^ s;
- norm += val * val;
- *y = val;
-
- return norm;
-}
-
-static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K)
-{
- unsigned int idx;
-#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
-#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
- idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
- return celt_cwrsi(N, K, idx, y);
-}
-
-/** Decode pulse vector and combine the result with the pitch vector to produce
- the final normalised signal in the current band. */
-static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X,
- unsigned int N, unsigned int K,
- enum CeltSpread spread,
- unsigned int blocks, float gain)
-{
- int y[176];
-
- gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
- celt_normalize_residual(y, X, N, gain);
- celt_exp_rotation(X, N, blocks, K, spread);
- return celt_extract_collapse_mask(y, N, blocks);
-}
-
-static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc,
- const int band, float *X, float *Y,
- int N, int b, unsigned int blocks,
- float *lowband, int duration,
- float *lowband_out, int level,
- float gain, float *lowband_scratch,
- int fill)
-{
- const uint8_t *cache;
- int dualstereo, split;
- int imid = 0, iside = 0;
- unsigned int N0 = N;
- int N_B;
- int N_B0;
- int B0 = blocks;
- int time_divide = 0;
- int recombine = 0;
- int inv = 0;
- float mid = 0, side = 0;
- int longblocks = (B0 == 1);
- unsigned int cm = 0;
-
- N_B0 = N_B = N / blocks;
- split = dualstereo = (Y != NULL);
-
- if (N == 1) {
- /* special case for one sample */
- int i;
- float *x = X;
- for (i = 0; i <= dualstereo; i++) {
- int sign = 0;
- if (s->remaining2 >= 1<<3) {
- sign = ff_opus_rc_get_raw(rc, 1);
- s->remaining2 -= 1 << 3;
- b -= 1 << 3;
- }
- x[0] = sign ? -1.0f : 1.0f;
- x = Y;
- }
- if (lowband_out)
- lowband_out[0] = X[0];
- return 1;
- }
-
- if (!dualstereo && level == 0) {
- int tf_change = s->tf_change[band];
- int k;
- if (tf_change > 0)
- recombine = tf_change;
- /* Band recombining to increase frequency resolution */
-
- if (lowband &&
- (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
- int j;
- for (j = 0; j < N; j++)
- lowband_scratch[j] = lowband[j];
- lowband = lowband_scratch;
- }
-
- for (k = 0; k < recombine; k++) {
- if (lowband)
- celt_haar1(lowband, N >> k, 1 << k);
- fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
- }
- blocks >>= recombine;
- N_B <<= recombine;
-
- /* Increasing the time resolution */
- while ((N_B & 1) == 0 && tf_change < 0) {
- if (lowband)
- celt_haar1(lowband, N_B, blocks);
- fill |= fill << blocks;
- blocks <<= 1;
- N_B >>= 1;
- time_divide++;
- tf_change++;
- }
- B0 = blocks;
- N_B0 = N_B;
-
- /* Reorganize the samples in time order instead of frequency order */
- if (B0 > 1 && lowband)
- celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
- B0 << recombine, longblocks);
- }
-
- /* If we need 1.5 more bit than we can produce, split the band in two. */
- cache = ff_celt_cache_bits +
- ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
- if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
- N >>= 1;
- Y = X + N;
- split = 1;
- duration -= 1;
- if (blocks == 1)
- fill = (fill & 1) | (fill << 1);
- blocks = (blocks + 1) >> 1;
- }
-
- if (split) {
- int qn;
- int itheta = 0;
- int mbits, sbits, delta;
- int qalloc;
- int pulse_cap;
- int offset;
- int orig_fill;
- int tell;
-
- /* Decide on the resolution to give to the split parameter theta */
- pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
- offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
- CELT_QTHETA_OFFSET);
- qn = (dualstereo && band >= s->intensitystereo) ? 1 :
- celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
- tell = opus_rc_tell_frac(rc);
- if (qn != 1) {
- /* Entropy coding of the angle. We use a uniform pdf for the
- time split, a step for stereo, and a triangular one for the rest. */
- if (dualstereo && N > 2)
- itheta = ff_opus_rc_dec_uint_step(rc, qn/2);
- else if (dualstereo || B0 > 1)
- itheta = ff_opus_rc_dec_uint(rc, qn+1);
- else
- itheta = ff_opus_rc_dec_uint_tri(rc, qn);
- itheta = itheta * 16384 / qn;
- /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
- Let's do that at higher complexity */
- } else if (dualstereo) {
- inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
- itheta = 0;
- }
- qalloc = opus_rc_tell_frac(rc) - tell;
- b -= qalloc;
-
- orig_fill = fill;
- if (itheta == 0) {
- imid = 32767;
- iside = 0;
- fill = av_mod_uintp2(fill, blocks);
- delta = -16384;
- } else if (itheta == 16384) {
- imid = 0;
- iside = 32767;
- fill &= ((1 << blocks) - 1) << blocks;
- delta = 16384;
- } else {
- imid = celt_cos(itheta);
- iside = celt_cos(16384-itheta);
- /* This is the mid vs side allocation that minimizes squared error
- in that band. */
- delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
- }
-
- mid = imid / 32768.0f;
- side = iside / 32768.0f;
-
- /* This is a special case for N=2 that only works for stereo and takes
- advantage of the fact that mid and side are orthogonal to encode
- the side with just one bit. */
- if (N == 2 && dualstereo) {
- int c;
- int sign = 0;
- float tmp;
- float *x2, *y2;
- mbits = b;
- /* Only need one bit for the side */
- sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
- mbits -= sbits;
- c = (itheta > 8192);
- s->remaining2 -= qalloc+sbits;
-
- x2 = c ? Y : X;
- y2 = c ? X : Y;
- if (sbits)
- sign = ff_opus_rc_get_raw(rc, 1);
- sign = 1 - 2 * sign;
- /* We use orig_fill here because we want to fold the side, but if
- itheta==16384, we'll have cleared the low bits of fill. */
- cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
- lowband, duration, lowband_out, level, gain,
- lowband_scratch, orig_fill);
- /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
- and there's no need to worry about mixing with the other channel. */
- y2[0] = -sign * x2[1];
- y2[1] = sign * x2[0];
- X[0] *= mid;
- X[1] *= mid;
- Y[0] *= side;
- Y[1] *= side;
- tmp = X[0];
- X[0] = tmp - Y[0];
- Y[0] = tmp + Y[0];
- tmp = X[1];
- X[1] = tmp - Y[1];
- Y[1] = tmp + Y[1];
- } else {
- /* "Normal" split code */
- float *next_lowband2 = NULL;
- float *next_lowband_out1 = NULL;
- int next_level = 0;
- int rebalance;
-
- /* Give more bits to low-energy MDCTs than they would
- * otherwise deserve */
- if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
- if (itheta > 8192)
- /* Rough approximation for pre-echo masking */
- delta -= delta >> (4 - duration);
- else
- /* Corresponds to a forward-masking slope of
- * 1.5 dB per 10 ms */
- delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
- }
- mbits = av_clip((b - delta) / 2, 0, b);
- sbits = b - mbits;
- s->remaining2 -= qalloc;
-
- if (lowband && !dualstereo)
- next_lowband2 = lowband + N; /* >32-bit split case */
-
- /* Only stereo needs to pass on lowband_out.
- * Otherwise, it's handled at the end */
- if (dualstereo)
- next_lowband_out1 = lowband_out;
- else
- next_level = level + 1;
-
- rebalance = s->remaining2;
- if (mbits >= sbits) {
- /* In stereo mode, we do not apply a scaling to the mid
- * because we need the normalized mid for folding later */
- cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
- lowband, duration, next_lowband_out1,
- next_level, dualstereo ? 1.0f : (gain * mid),
- lowband_scratch, fill);
-
- rebalance = mbits - (rebalance - s->remaining2);
- if (rebalance > 3 << 3 && itheta != 0)
- sbits += rebalance - (3 << 3);
-
- /* For a stereo split, the high bits of fill are always zero,
- * so no folding will be done to the side. */
- cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
- next_lowband2, duration, NULL,
- next_level, gain * side, NULL,
- fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
- } else {
- /* For a stereo split, the high bits of fill are always zero,
- * so no folding will be done to the side. */
- cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
- next_lowband2, duration, NULL,
- next_level, gain * side, NULL,
- fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
-
- rebalance = sbits - (rebalance - s->remaining2);
- if (rebalance > 3 << 3 && itheta != 16384)
- mbits += rebalance - (3 << 3);
-
- /* In stereo mode, we do not apply a scaling to the mid because
- * we need the normalized mid for folding later */
- cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
- lowband, duration, next_lowband_out1,
- next_level, dualstereo ? 1.0f : (gain * mid),
- lowband_scratch, fill);
- }
- }
- } else {
- /* This is the basic no-split case */
- unsigned int q = celt_bits2pulses(cache, b);
- unsigned int curr_bits = celt_pulses2bits(cache, q);
- s->remaining2 -= curr_bits;
-
- /* Ensures we can never bust the budget */
- while (s->remaining2 < 0 && q > 0) {
- s->remaining2 += curr_bits;
- curr_bits = celt_pulses2bits(cache, --q);
- s->remaining2 -= curr_bits;
- }
-
- if (q != 0) {
- /* Finally do the actual quantization */
- cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
- s->spread, blocks, gain);
- } else {
- /* If there's no pulse, fill the band anyway */
- int j;
- unsigned int cm_mask = (1 << blocks) - 1;
- fill &= cm_mask;
- if (!fill) {
- for (j = 0; j < N; j++)
- X[j] = 0.0f;
- } else {
- if (!lowband) {
- /* Noise */
- for (j = 0; j < N; j++)
- X[j] = (((int32_t)celt_rng(s)) >> 20);
- cm = cm_mask;
- } else {
- /* Folded spectrum */
- for (j = 0; j < N; j++) {
- /* About 48 dB below the "normal" folding level */
- X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
- }
- cm = fill;
- }
- celt_renormalize_vector(X, N, gain);
- }
- }
- }
-
- /* This code is used by the decoder and by the resynthesis-enabled encoder */
- if (dualstereo) {
- int j;
- if (N != 2)
- celt_stereo_merge(X, Y, mid, N);
- if (inv) {
- for (j = 0; j < N; j++)
- Y[j] *= -1;
- }
- } else if (level == 0) {
- int k;
-
- /* Undo the sample reorganization going from time order to frequency order */
- if (B0 > 1)
- celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
- B0<<recombine, longblocks);
-
- /* Undo time-freq changes that we did earlier */
- N_B = N_B0;
- blocks = B0;
- for (k = 0; k < time_divide; k++) {
- blocks >>= 1;
- N_B <<= 1;
- cm |= cm >> blocks;
- celt_haar1(X, N_B, blocks);
- }
-
- for (k = 0; k < recombine; k++) {
- cm = ff_celt_bit_deinterleave[cm];
- celt_haar1(X, N0>>k, 1<<k);
- }
- blocks <<= recombine;
-
- /* Scale output for later folding */
- if (lowband_out) {
- int j;
- float n = sqrtf(N0);
- for (j = 0; j < N0; j++)
- lowband_out[j] = n * X[j];
- }
- cm = av_mod_uintp2(cm, blocks);
- }
- return cm;
-}
-
static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data)
{
int i, j;
@@ -1562,18 +757,17 @@ static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc)
}
if (s->dualstereo) {
- cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
- effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
- norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
+ cm[0] = ff_celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
+ effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
+ norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
- cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
- effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
- norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
+ cm[1] = ff_celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
+ effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
+ norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
} else {
- cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
- effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
- norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
-
+ cm[0] = ff_celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
+ effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
+ norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
cm[1] = cm[0];
}