summaryrefslogtreecommitdiff
path: root/libavcodec/utvideoenc.c
diff options
context:
space:
mode:
authorJan Ekström <jeebjp@gmail.com>2012-08-20 12:15:34 +0300
committerAnton Khirnov <anton@khirnov.net>2012-08-20 11:22:59 +0200
commit1ab5a780424ae8755858e153def1173a50a44e4c (patch)
tree09c9bf900112cd918f78d14547ce163829a68408 /libavcodec/utvideoenc.c
parent677e763a55dd882c08369f1b67277bf2f54387b7 (diff)
downloadffmpeg-1ab5a780424ae8755858e153def1173a50a44e4c.tar.gz
lavc: add Ut Video encoder
Signed-off-by: Anton Khirnov <anton@khirnov.net>
Diffstat (limited to 'libavcodec/utvideoenc.c')
-rw-r--r--libavcodec/utvideoenc.c735
1 files changed, 735 insertions, 0 deletions
diff --git a/libavcodec/utvideoenc.c b/libavcodec/utvideoenc.c
new file mode 100644
index 0000000000..4a82046530
--- /dev/null
+++ b/libavcodec/utvideoenc.c
@@ -0,0 +1,735 @@
+/*
+ * Ut Video encoder
+ * Copyright (c) 2012 Jan Ekström
+ *
+ * This file is part of Libav.
+ *
+ * Libav is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * Libav is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with Libav; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Ut Video encoder
+ */
+
+#include "libavutil/intreadwrite.h"
+#include "avcodec.h"
+#include "internal.h"
+#include "bytestream.h"
+#include "put_bits.h"
+#include "dsputil.h"
+#include "mathops.h"
+#include "utvideo.h"
+
+/* Compare huffentry symbols */
+static int huff_cmp_sym(const void *a, const void *b)
+{
+ const HuffEntry *aa = a, *bb = b;
+ return aa->sym - bb->sym;
+}
+
+static av_cold int utvideo_encode_close(AVCodecContext *avctx)
+{
+ UtvideoContext *c = avctx->priv_data;
+
+ av_freep(&avctx->coded_frame);
+ av_freep(&c->slice_bits);
+ av_freep(&c->slice_buffer);
+
+ return 0;
+}
+
+static av_cold int utvideo_encode_init(AVCodecContext *avctx)
+{
+ UtvideoContext *c = avctx->priv_data;
+
+ uint32_t original_format;
+
+ c->avctx = avctx;
+ c->frame_info_size = 4;
+
+ switch (avctx->pix_fmt) {
+ case PIX_FMT_RGB24:
+ c->planes = 3;
+ avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
+ original_format = UTVIDEO_RGB;
+ break;
+ case PIX_FMT_RGBA:
+ c->planes = 4;
+ avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
+ original_format = UTVIDEO_RGBA;
+ break;
+ case PIX_FMT_YUV420P:
+ if (avctx->width & 1 || avctx->height & 1) {
+ av_log(avctx, AV_LOG_ERROR,
+ "4:2:0 video requires even width and height.\n");
+ return AVERROR_INVALIDDATA;
+ }
+ c->planes = 3;
+ avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
+ original_format = UTVIDEO_420;
+ break;
+ case PIX_FMT_YUV422P:
+ if (avctx->width & 1) {
+ av_log(avctx, AV_LOG_ERROR,
+ "4:2:2 video requires even width.\n");
+ return AVERROR_INVALIDDATA;
+ }
+ c->planes = 3;
+ avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
+ original_format = UTVIDEO_422;
+ break;
+ default:
+ av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
+ avctx->pix_fmt);
+ return AVERROR_INVALIDDATA;
+ }
+
+ ff_dsputil_init(&c->dsp, avctx);
+
+ /* Check the prediction method, and error out if unsupported */
+ if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
+ av_log(avctx, AV_LOG_WARNING,
+ "Prediction method %d is not supported in Ut Video.\n",
+ avctx->prediction_method);
+ return AVERROR_OPTION_NOT_FOUND;
+ }
+
+ if (avctx->prediction_method == FF_PRED_PLANE) {
+ av_log(avctx, AV_LOG_ERROR,
+ "Plane prediction is not supported in Ut Video.\n");
+ return AVERROR_OPTION_NOT_FOUND;
+ }
+
+ /* Convert from libavcodec prediction type to Ut Video's */
+ c->frame_pred = ff_ut_pred_order[avctx->prediction_method];
+
+ if (c->frame_pred == PRED_GRADIENT) {
+ av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
+ return AVERROR_OPTION_NOT_FOUND;
+ }
+
+ avctx->coded_frame = avcodec_alloc_frame();
+
+ if (!avctx->coded_frame) {
+ av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n");
+ utvideo_encode_close(avctx);
+ return AVERROR(ENOMEM);
+ }
+
+ /* extradata size is 4 * 32bit */
+ avctx->extradata_size = 16;
+
+ avctx->extradata = av_mallocz(avctx->extradata_size +
+ FF_INPUT_BUFFER_PADDING_SIZE);
+
+ if (!avctx->extradata) {
+ av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
+ utvideo_encode_close(avctx);
+ return AVERROR(ENOMEM);
+ }
+
+ c->slice_buffer = av_malloc(avctx->width * avctx->height +
+ FF_INPUT_BUFFER_PADDING_SIZE);
+
+ if (!c->slice_buffer) {
+ av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
+ utvideo_encode_close(avctx);
+ return AVERROR(ENOMEM);
+ }
+
+ /*
+ * Set the version of the encoder.
+ * Last byte is "implementation ID", which is
+ * obtained from the creator of the format.
+ * Libavcodec has been assigned with the ID 0xF0.
+ */
+ AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
+
+ /*
+ * Set the "original format"
+ * Not used for anything during decoding.
+ */
+ AV_WL32(avctx->extradata + 4, original_format);
+
+ /* Write 4 as the 'frame info size' */
+ AV_WL32(avctx->extradata + 8, c->frame_info_size);
+
+ /*
+ * Set how many slices are going to be used.
+ * Set one slice for now.
+ */
+ c->slices = 1;
+
+ /* Set compression mode */
+ c->compression = COMP_HUFF;
+
+ /*
+ * Set the encoding flags:
+ * - Slice count minus 1
+ * - Interlaced encoding mode flag, set to zero for now.
+ * - Compression mode (none/huff)
+ * And write the flags.
+ */
+ c->flags = (c->slices - 1) << 24;
+ c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
+ c->flags |= c->compression;
+
+ AV_WL32(avctx->extradata + 12, c->flags);
+
+ return 0;
+}
+
+static void mangle_rgb_planes(uint8_t *src, int step, int stride, int width,
+ int height)
+{
+ int i, j;
+ uint8_t r, g, b;
+
+ for (j = 0; j < height; j++) {
+ for (i = 0; i < width * step; i += step) {
+ r = src[i];
+ g = src[i + 1];
+ b = src[i + 2];
+
+ src[i] = r - g + 0x80;
+ src[i + 2] = b - g + 0x80;
+ }
+ src += stride;
+ }
+}
+
+/* Write data to a plane, no prediction applied */
+static void write_plane(uint8_t *src, uint8_t *dst, int step, int stride,
+ int width, int height)
+{
+ int i, j;
+
+ for (j = 0; j < height; j++) {
+ for (i = 0; i < width * step; i += step)
+ *dst++ = src[i];
+
+ src += stride;
+ }
+}
+
+/* Write data to a plane with left prediction */
+static void left_predict(uint8_t *src, uint8_t *dst, int step, int stride,
+ int width, int height)
+{
+ int i, j;
+ uint8_t prev;
+
+ prev = 0x80; /* Set the initial value */
+ for (j = 0; j < height; j++) {
+ for (i = 0; i < width * step; i += step) {
+ *dst++ = src[i] - prev;
+ prev = src[i];
+ }
+ src += stride;
+ }
+}
+
+/* Write data to a plane with median prediction */
+static void median_predict(uint8_t *src, uint8_t *dst, int step, int stride,
+ int width, int height)
+{
+ int i, j;
+ int A, B, C;
+ uint8_t prev;
+
+ /* First line uses left neighbour prediction */
+ prev = 0x80; /* Set the initial value */
+ for (i = 0; i < width * step; i += step) {
+ *dst++ = src[i] - prev;
+ prev = src[i];
+ }
+
+ if (height == 1)
+ return;
+
+ src += stride;
+
+ /*
+ * Second line uses top prediction for the first sample,
+ * and median for the rest.
+ */
+ C = src[-stride];
+ *dst++ = src[0] - C;
+ A = src[0];
+ for (i = step; i < width * step; i += step) {
+ B = src[i - stride];
+ *dst++ = src[i] - mid_pred(A, B, (A + B - C) & 0xFF);
+ C = B;
+ A = src[i];
+ }
+
+ src += stride;
+
+ /* Rest of the coded part uses median prediction */
+ for (j = 2; j < height; j++) {
+ for (i = 0; i < width * step; i += step) {
+ B = src[i - stride];
+ *dst++ = src[i] - mid_pred(A, B, (A + B - C) & 0xFF);
+ C = B;
+ A = src[i];
+ }
+ src += stride;
+ }
+}
+
+/* Count the usage of values in a plane */
+static void count_usage(uint8_t *src, int width,
+ int height, uint32_t *counts)
+{
+ int i, j;
+
+ for (j = 0; j < height; j++) {
+ for (i = 0; i < width; i++) {
+ counts[src[i]]++;
+ }
+ src += width;
+ }
+}
+
+static uint32_t add_weights(uint32_t w1, uint32_t w2)
+{
+ uint32_t max = (w1 & 0xFF) > (w2 & 0xFF) ? (w1 & 0xFF) : (w2 & 0xFF);
+
+ return ((w1 & 0xFFFFFF00) + (w2 & 0xFFFFFF00)) | (1 + max);
+}
+
+static void up_heap(uint32_t val, uint32_t *heap, uint32_t *weights)
+{
+ uint32_t initial_val = heap[val];
+
+ while (weights[initial_val] < weights[heap[val >> 1]]) {
+ heap[val] = heap[val >> 1];
+ val >>= 1;
+ }
+
+ heap[val] = initial_val;
+}
+
+static void down_heap(uint32_t nr_heap, uint32_t *heap, uint32_t *weights)
+{
+ uint32_t val = 1;
+ uint32_t val2;
+ uint32_t initial_val = heap[val];
+
+ while (1) {
+ val2 = val << 1;
+
+ if (val2 > nr_heap)
+ break;
+
+ if (val2 < nr_heap && weights[heap[val2 + 1]] < weights[heap[val2]])
+ val2++;
+
+ if (weights[initial_val] < weights[heap[val2]])
+ break;
+
+ heap[val] = heap[val2];
+
+ val = val2;
+ }
+
+ heap[val] = initial_val;
+}
+
+/* Calculate the huffman code lengths from value counts */
+static void calculate_code_lengths(uint8_t *lengths, uint32_t *counts)
+{
+ uint32_t nr_nodes, nr_heap, node1, node2;
+ int i, j;
+ int32_t k;
+
+ /* Heap and node entries start from 1 */
+ uint32_t weights[512];
+ uint32_t heap[512];
+ int32_t parents[512];
+
+ /* Set initial weights */
+ for (i = 0; i < 256; i++)
+ weights[i + 1] = (counts[i] ? counts[i] : 1) << 8;
+
+ nr_nodes = 256;
+ nr_heap = 0;
+
+ heap[0] = 0;
+ weights[0] = 0;
+ parents[0] = -2;
+
+ /* Create initial nodes */
+ for (i = 1; i <= 256; i++) {
+ parents[i] = -1;
+
+ heap[++nr_heap] = i;
+ up_heap(nr_heap, heap, weights);
+ }
+
+ /* Build the tree */
+ while (nr_heap > 1) {
+ node1 = heap[1];
+ heap[1] = heap[nr_heap--];
+
+ down_heap(nr_heap, heap, weights);
+
+ node2 = heap[1];
+ heap[1] = heap[nr_heap--];
+
+ down_heap(nr_heap, heap, weights);
+
+ nr_nodes++;
+
+ parents[node1] = parents[node2] = nr_nodes;
+ weights[nr_nodes] = add_weights(weights[node1], weights[node2]);
+ parents[nr_nodes] = -1;
+
+ heap[++nr_heap] = nr_nodes;
+
+ up_heap(nr_heap, heap, weights);
+ }
+
+ /* Generate lengths */
+ for (i = 1; i <= 256; i++) {
+ j = 0;
+ k = i;
+
+ while (parents[k] >= 0) {
+ k = parents[k];
+ j++;
+ }
+
+ lengths[i - 1] = j;
+ }
+}
+
+/* Calculate the actual huffman codes from the code lengths */
+static void calculate_codes(HuffEntry *he)
+{
+ int last, i;
+ uint32_t code;
+
+ qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
+
+ last = 255;
+ while (he[last].len == 255 && last)
+ last--;
+
+ code = 1;
+ for (i = last; i >= 0; i--) {
+ he[i].code = code >> (32 - he[i].len);
+ code += 0x80000000u >> (he[i].len - 1);
+ }
+
+ qsort(he, 256, sizeof(*he), huff_cmp_sym);
+}
+
+/* Write huffman bit codes to a memory block */
+static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
+ int width, int height, HuffEntry *he)
+{
+ PutBitContext pb;
+ int i, j;
+ int count;
+
+ init_put_bits(&pb, dst, dst_size);
+
+ /* Write the codes */
+ for (j = 0; j < height; j++) {
+ for (i = 0; i < width; i++)
+ put_bits(&pb, he[src[i]].len, he[src[i]].code);
+
+ src += width;
+ }
+
+ /* Pad output to a 32bit boundary */
+ count = put_bits_count(&pb) & 0x1F;
+
+ if (count)
+ put_bits(&pb, 32 - count, 0);
+
+ /* Get the amount of bits written */
+ count = put_bits_count(&pb);
+
+ /* Flush the rest with zeroes */
+ flush_put_bits(&pb);
+
+ return count;
+}
+
+static int encode_plane(AVCodecContext *avctx, uint8_t *src,
+ uint8_t *dst, int step, int stride,
+ int width, int height, PutByteContext *pb)
+{
+ UtvideoContext *c = avctx->priv_data;
+ uint8_t lengths[256];
+ uint32_t counts[256] = { 0 };
+
+ HuffEntry he[256];
+
+ uint32_t offset = 0, slice_len = 0;
+ int i, sstart, send = 0;
+ int symbol;
+
+ /* Do prediction / make planes */
+ switch (c->frame_pred) {
+ case PRED_NONE:
+ for (i = 0; i < c->slices; i++) {
+ sstart = send;
+ send = height * (i + 1) / c->slices;
+ write_plane(src + sstart * stride, dst + sstart * width,
+ step, stride, width, send - sstart);
+ }
+ break;
+ case PRED_LEFT:
+ for (i = 0; i < c->slices; i++) {
+ sstart = send;
+ send = height * (i + 1) / c->slices;
+ left_predict(src + sstart * stride, dst + sstart * width,
+ step, stride, width, send - sstart);
+ }
+ break;
+ case PRED_MEDIAN:
+ for (i = 0; i < c->slices; i++) {
+ sstart = send;
+ send = height * (i + 1) / c->slices;
+ median_predict(src + sstart * stride, dst + sstart * width,
+ step, stride, width, send - sstart);
+ }
+ break;
+ default:
+ av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
+ c->frame_pred);
+ return AVERROR_OPTION_NOT_FOUND;
+ }
+
+ /* Count the usage of values */
+ count_usage(dst, width, height, counts);
+
+ /* Check for a special case where only one symbol was used */
+ for (symbol = 0; symbol < 256; symbol++) {
+ /* If non-zero count is found, see if it matches width * height */
+ if (counts[symbol]) {
+ /* Special case if only one symbol was used */
+ if (counts[symbol] == width * height) {
+ /*
+ * Write a zero for the single symbol
+ * used in the plane, else 0xFF.
+ */
+ for (i = 0; i < 256; i++) {
+ if (i == symbol)
+ bytestream2_put_byte(pb, 0);
+ else
+ bytestream2_put_byte(pb, 0xFF);
+ }
+
+ /* Write zeroes for lengths */
+ for (i = 0; i < c->slices; i++)
+ bytestream2_put_le32(pb, 0);
+
+ /* And that's all for that plane folks */
+ return 0;
+ }
+ break;
+ }
+ }
+
+ /* Calculate huffman lengths */
+ calculate_code_lengths(lengths, counts);
+
+ /*
+ * Write the plane's header into the output packet:
+ * - huffman code lengths (256 bytes)
+ * - slice end offsets (gotten from the slice lengths)
+ */
+ for (i = 0; i < 256; i++) {
+ bytestream2_put_byte(pb, lengths[i]);
+
+ he[i].len = lengths[i];
+ he[i].sym = i;
+ }
+
+ /* Calculate the huffman codes themselves */
+ calculate_codes(he);
+
+ send = 0;
+ for (i = 0; i < c->slices; i++) {
+ sstart = send;
+ send = height * (i + 1) / c->slices;
+
+ /*
+ * Write the huffman codes to a buffer,
+ * get the offset in bits and convert to bytes.
+ */
+ offset += write_huff_codes(dst + sstart * width, c->slice_bits,
+ width * (send - sstart), width,
+ send - sstart, he) >> 3;
+
+ slice_len = offset - slice_len;
+
+ /* Byteswap the written huffman codes */
+ c->dsp.bswap_buf((uint32_t *) c->slice_bits,
+ (uint32_t *) c->slice_bits,
+ slice_len >> 2);
+
+ /* Write the offset to the stream */
+ bytestream2_put_le32(pb, offset);
+
+ /* Seek to the data part of the packet */
+ bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
+ offset - slice_len, SEEK_CUR);
+
+ /* Write the slices' data into the output packet */
+ bytestream2_put_buffer(pb, c->slice_bits, slice_len);
+
+ /* Seek back to the slice offsets */
+ bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
+ SEEK_CUR);
+
+ slice_len = offset;
+ }
+
+ /* And at the end seek to the end of written slice(s) */
+ bytestream2_seek_p(pb, offset, SEEK_CUR);
+
+ return 0;
+}
+
+static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
+ const AVFrame *pic, int *got_packet)
+{
+ UtvideoContext *c = avctx->priv_data;
+ PutByteContext pb;
+
+ uint32_t frame_info;
+
+ uint8_t *dst;
+
+ int width = avctx->width, height = avctx->height;
+ int i, ret = 0;
+
+ /* Allocate a new packet if needed, and set it to the pointer dst */
+ ret = ff_alloc_packet(pkt, (256 + 4 * c->slices + width * height) *
+ c->planes + 4);
+
+ if (ret < 0) {
+ av_log(avctx, AV_LOG_ERROR,
+ "Error allocating the output packet, or the provided packet "
+ "was too small.\n");
+ return ret;
+ }
+
+ dst = pkt->data;
+
+ bytestream2_init_writer(&pb, dst, pkt->size);
+
+ av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
+ width * height + FF_INPUT_BUFFER_PADDING_SIZE);
+
+ if (!c->slice_bits) {
+ av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
+ return AVERROR(ENOMEM);
+ }
+
+ /* In case of RGB, mangle the planes to Ut Video's format */
+ if (avctx->pix_fmt == PIX_FMT_RGBA || avctx->pix_fmt == PIX_FMT_RGB24)
+ mangle_rgb_planes(pic->data[0], c->planes, pic->linesize[0], width,
+ height);
+
+ /* Deal with the planes */
+ switch (avctx->pix_fmt) {
+ case PIX_FMT_RGB24:
+ case PIX_FMT_RGBA:
+ for (i = 0; i < c->planes; i++) {
+ ret = encode_plane(avctx, pic->data[0] + ff_ut_rgb_order[i],
+ c->slice_buffer, c->planes, pic->linesize[0],
+ width, height, &pb);
+
+ if (ret) {
+ av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
+ return ret;
+ }
+ }
+ break;
+ case PIX_FMT_YUV422P:
+ for (i = 0; i < c->planes; i++) {
+ ret = encode_plane(avctx, pic->data[i], c->slice_buffer, 1,
+ pic->linesize[i], width >> !!i, height, &pb);
+
+ if (ret) {
+ av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
+ return ret;
+ }
+ }
+ break;
+ case PIX_FMT_YUV420P:
+ for (i = 0; i < c->planes; i++) {
+ ret = encode_plane(avctx, pic->data[i], c->slice_buffer, 1,
+ pic->linesize[i], width >> !!i, height >> !!i,
+ &pb);
+
+ if (ret) {
+ av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
+ return ret;
+ }
+ }
+ break;
+ default:
+ av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
+ avctx->pix_fmt);
+ return AVERROR_INVALIDDATA;
+ }
+
+ /*
+ * Write frame information (LE 32bit unsigned)
+ * into the output packet.
+ * Contains the prediction method.
+ */
+ frame_info = c->frame_pred << 8;
+ bytestream2_put_le32(&pb, frame_info);
+
+ /*
+ * At least currently Ut Video is IDR only.
+ * Set flags accordingly.
+ */
+ avctx->coded_frame->reference = 0;
+ avctx->coded_frame->key_frame = 1;
+ avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
+
+ pkt->size = bytestream2_tell_p(&pb);
+ pkt->flags |= AV_PKT_FLAG_KEY;
+
+ /* Packet should be done */
+ *got_packet = 1;
+
+ return 0;
+}
+
+AVCodec ff_utvideo_encoder = {
+ .name = "utvideo",
+ .type = AVMEDIA_TYPE_VIDEO,
+ .id = CODEC_ID_UTVIDEO,
+ .priv_data_size = sizeof(UtvideoContext),
+ .init = utvideo_encode_init,
+ .encode2 = utvideo_encode_frame,
+ .close = utvideo_encode_close,
+ .pix_fmts = (const enum PixelFormat[]) {
+ PIX_FMT_RGB24, PIX_FMT_RGBA, PIX_FMT_YUV422P,
+ PIX_FMT_YUV420P, PIX_FMT_NONE
+ },
+ .long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
+};