summaryrefslogtreecommitdiff
path: root/libavcodec/acelp_vectors.c
blob: 0c660acb5a6e31b46c23d3cd0a9efb60ca253944 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*
 * adaptive and fixed codebook vector operations for ACELP-based codecs
 *
 * Copyright (c) 2008 Vladimir Voroshilov
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <inttypes.h>

#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "avcodec.h"
#include "acelp_vectors.h"

const uint8_t ff_fc_2pulses_9bits_track1[16] =
{
    1,  3,
    6,  8,
    11, 13,
    16, 18,
    21, 23,
    26, 28,
    31, 33,
    36, 38
};
const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
{
  1,  3,
  8,  6,
  18, 16,
  11, 13,
  38, 36,
  31, 33,
  21, 23,
  28, 26,
};

const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
{
  0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
};

const uint8_t ff_fc_4pulses_8bits_track_4[32] =
{
    3,  4,
    8,  9,
    13, 14,
    18, 19,
    23, 24,
    28, 29,
    33, 34,
    38, 39,
    43, 44,
    48, 49,
    53, 54,
    58, 59,
    63, 64,
    68, 69,
    73, 74,
    78, 79,
};

const float ff_pow_0_7[10] = {
    0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
    0.117649, 0.082354, 0.057648, 0.040354, 0.028248
};

const float ff_pow_0_75[10] = {
    0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
    0.177979, 0.133484, 0.100113, 0.075085, 0.056314
};

const float ff_pow_0_55[10] = {
    0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
    0.027681, 0.015224, 0.008373, 0.004605, 0.002533
};

const float ff_b60_sinc[61] = {
 0.898529  ,  0.865051  ,  0.769257  ,  0.624054  ,  0.448639  ,  0.265289   ,
 0.0959167 , -0.0412598 , -0.134338  , -0.178986  , -0.178528  , -0.142609   ,
-0.0849304 , -0.0205078 ,  0.0369568 ,  0.0773926 ,  0.0955200 ,  0.0912781  ,
 0.0689392 ,  0.0357056 ,  0.0       , -0.0305481 , -0.0504150 , -0.0570068  ,
-0.0508423 , -0.0350037 , -0.0141602 ,  0.00665283,  0.0230713 ,  0.0323486  ,
 0.0335388 ,  0.0275879 ,  0.0167847 ,  0.00411987, -0.00747681, -0.0156860  ,
-0.0193481 , -0.0183716 , -0.0137634 , -0.00704956,  0.0       ,  0.00582886 ,
 0.00939941,  0.0103760 ,  0.00903320,  0.00604248,  0.00238037, -0.00109863 ,
-0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
 0.00103760,  0.00222778,  0.00277710,  0.00271606,  0.00213623,  0.00115967 ,
 0.
};

void ff_acelp_fc_pulse_per_track(
        int16_t* fc_v,
        const uint8_t *tab1,
        const uint8_t *tab2,
        int pulse_indexes,
        int pulse_signs,
        int pulse_count,
        int bits)
{
    int mask = (1 << bits) - 1;
    int i;

    for(i=0; i<pulse_count; i++)
    {
        fc_v[i + tab1[pulse_indexes & mask]] +=
                (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)

        pulse_indexes >>= bits;
        pulse_signs >>= 1;
    }

    fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
}

void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
                                AMRFixed *fixed_sparse,
                                const uint8_t *gray_decode,
                                int half_pulse_count, int bits)
{
    int i;
    int mask = (1 << bits) - 1;

    fixed_sparse->no_repeat_mask = 0;
    fixed_sparse->n = 2 * half_pulse_count;
    for (i = 0; i < half_pulse_count; i++) {
        const int pos1   = gray_decode[fixed_index[2*i+1] & mask] + i;
        const int pos2   = gray_decode[fixed_index[2*i  ] & mask] + i;
        const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
        fixed_sparse->x[2*i+1] = pos1;
        fixed_sparse->x[2*i  ] = pos2;
        fixed_sparse->y[2*i+1] = sign;
        fixed_sparse->y[2*i  ] = pos2 < pos1 ? -sign : sign;
    }
}

void ff_acelp_weighted_vector_sum(
        int16_t* out,
        const int16_t *in_a,
        const int16_t *in_b,
        int16_t weight_coeff_a,
        int16_t weight_coeff_b,
        int16_t rounder,
        int shift,
        int length)
{
    int i;

    // Clipping required here; breaks OVERFLOW test.
    for(i=0; i<length; i++)
        out[i] = av_clip_int16((
                 in_a[i] * weight_coeff_a +
                 in_b[i] * weight_coeff_b +
                 rounder) >> shift);
}

void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
                             float weight_coeff_a, float weight_coeff_b, int length)
{
    int i;

    for(i=0; i<length; i++)
        out[i] = weight_coeff_a * in_a[i]
               + weight_coeff_b * in_b[i];
}

void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
                              int size, float alpha, float *gain_mem)
{
    int i;
    float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size);
    float gain_scale_factor = 1.0;
    float mem = *gain_mem;

    if (postfilter_energ)
        gain_scale_factor = sqrt(speech_energ / postfilter_energ);

    gain_scale_factor *= 1.0 - alpha;

    for (i = 0; i < size; i++) {
        mem = alpha * mem + gain_scale_factor;
        out[i] = in[i] * mem;
    }

    *gain_mem = mem;
}

void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
                                             float sum_of_squares, const int n)
{
    int i;
    float scalefactor = avpriv_scalarproduct_float_c(in, in, n);
    if (scalefactor)
        scalefactor = sqrt(sum_of_squares / scalefactor);
    for (i = 0; i < n; i++)
        out[i] = in[i] * scalefactor;
}

void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
{
    int i;

    for (i=0; i < in->n; i++) {
        int x   = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
        float y = in->y[i] * scale;

        do {
            out[x] += y;
            y *= in->pitch_fac;
            x += in->pitch_lag;
        } while (x < size && repeats);
    }
}

void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
{
    int i;

    for (i=0; i < in->n; i++) {
        int x  = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);

        do {
            out[x] = 0.0;
            x += in->pitch_lag;
        } while (x < size && repeats);
    }
}