1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
|
/*
* Copyright (c) 2001-2003 The ffmpeg Project
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "get_bits.h"
#include "put_bits.h"
#include "bytestream.h"
#include "adpcm.h"
#include "adpcm_data.h"
/**
* @file
* ADPCM encoders
* First version by Francois Revol (revol@free.fr)
* Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
* by Mike Melanson (melanson@pcisys.net)
*
* See ADPCM decoder reference documents for codec information.
*/
typedef struct TrellisPath {
int nibble;
int prev;
} TrellisPath;
typedef struct TrellisNode {
uint32_t ssd;
int path;
int sample1;
int sample2;
int step;
} TrellisNode;
typedef struct ADPCMEncodeContext {
ADPCMChannelStatus status[6];
TrellisPath *paths;
TrellisNode *node_buf;
TrellisNode **nodep_buf;
uint8_t *trellis_hash;
} ADPCMEncodeContext;
#define FREEZE_INTERVAL 128
static av_cold int adpcm_encode_close(AVCodecContext *avctx);
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
{
ADPCMEncodeContext *s = avctx->priv_data;
uint8_t *extradata;
int i;
int ret = AVERROR(ENOMEM);
if (avctx->channels > 2) {
av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n");
return AVERROR(EINVAL);
}
if (avctx->trellis && (unsigned)avctx->trellis > 16U) {
av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
return AVERROR(EINVAL);
}
if (avctx->trellis) {
int frontier = 1 << avctx->trellis;
int max_paths = frontier * FREEZE_INTERVAL;
FF_ALLOC_OR_GOTO(avctx, s->paths,
max_paths * sizeof(*s->paths), error);
FF_ALLOC_OR_GOTO(avctx, s->node_buf,
2 * frontier * sizeof(*s->node_buf), error);
FF_ALLOC_OR_GOTO(avctx, s->nodep_buf,
2 * frontier * sizeof(*s->nodep_buf), error);
FF_ALLOC_OR_GOTO(avctx, s->trellis_hash,
65536 * sizeof(*s->trellis_hash), error);
}
avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
switch (avctx->codec->id) {
case CODEC_ID_ADPCM_IMA_WAV:
/* each 16 bits sample gives one nibble
and we have 4 bytes per channel overhead */
avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 /
(4 * avctx->channels) + 1;
/* seems frame_size isn't taken into account...
have to buffer the samples :-( */
avctx->block_align = BLKSIZE;
avctx->bits_per_coded_sample = 4;
break;
case CODEC_ID_ADPCM_IMA_QT:
avctx->frame_size = 64;
avctx->block_align = 34 * avctx->channels;
break;
case CODEC_ID_ADPCM_MS:
/* each 16 bits sample gives one nibble
and we have 7 bytes per channel overhead */
avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2;
avctx->bits_per_coded_sample = 4;
avctx->block_align = BLKSIZE;
if (!(avctx->extradata = av_malloc(32 + FF_INPUT_BUFFER_PADDING_SIZE)))
goto error;
avctx->extradata_size = 32;
extradata = avctx->extradata;
bytestream_put_le16(&extradata, avctx->frame_size);
bytestream_put_le16(&extradata, 7); /* wNumCoef */
for (i = 0; i < 7; i++) {
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
}
break;
case CODEC_ID_ADPCM_YAMAHA:
avctx->frame_size = BLKSIZE * 2 / avctx->channels;
avctx->block_align = BLKSIZE;
break;
case CODEC_ID_ADPCM_SWF:
if (avctx->sample_rate != 11025 &&
avctx->sample_rate != 22050 &&
avctx->sample_rate != 44100) {
av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
"22050 or 44100\n");
ret = AVERROR(EINVAL);
goto error;
}
avctx->frame_size = 512 * (avctx->sample_rate / 11025);
break;
default:
ret = AVERROR(EINVAL);
goto error;
}
if (!(avctx->coded_frame = avcodec_alloc_frame()))
goto error;
return 0;
error:
adpcm_encode_close(avctx);
return ret;
}
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
{
ADPCMEncodeContext *s = avctx->priv_data;
av_freep(&avctx->coded_frame);
av_freep(&s->paths);
av_freep(&s->node_buf);
av_freep(&s->nodep_buf);
av_freep(&s->trellis_hash);
return 0;
}
static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
int16_t sample)
{
int delta = sample - c->prev_sample;
int nibble = FFMIN(7, abs(delta) * 4 /
ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
ff_adpcm_yamaha_difflookup[nibble]) / 8);
c->prev_sample = av_clip_int16(c->prev_sample);
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
return nibble;
}
static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
int16_t sample)
{
int delta = sample - c->prev_sample;
int diff, step = ff_adpcm_step_table[c->step_index];
int nibble = 8*(delta < 0);
delta= abs(delta);
diff = delta + (step >> 3);
if (delta >= step) {
nibble |= 4;
delta -= step;
}
step >>= 1;
if (delta >= step) {
nibble |= 2;
delta -= step;
}
step >>= 1;
if (delta >= step) {
nibble |= 1;
delta -= step;
}
diff -= delta;
if (nibble & 8)
c->prev_sample -= diff;
else
c->prev_sample += diff;
c->prev_sample = av_clip_int16(c->prev_sample);
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
return nibble;
}
static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
int16_t sample)
{
int predictor, nibble, bias;
predictor = (((c->sample1) * (c->coeff1)) +
(( c->sample2) * (c->coeff2))) / 64;
nibble = sample - predictor;
if (nibble >= 0)
bias = c->idelta / 2;
else
bias = -c->idelta / 2;
nibble = (nibble + bias) / c->idelta;
nibble = av_clip(nibble, -8, 7) & 0x0F;
predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
c->sample2 = c->sample1;
c->sample1 = av_clip_int16(predictor);
c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
if (c->idelta < 16)
c->idelta = 16;
return nibble;
}
static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
int16_t sample)
{
int nibble, delta;
if (!c->step) {
c->predictor = 0;
c->step = 127;
}
delta = sample - c->predictor;
nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
c->predictor = av_clip_int16(c->predictor);
c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
c->step = av_clip(c->step, 127, 24567);
return nibble;
}
static void adpcm_compress_trellis(AVCodecContext *avctx,
const int16_t *samples, uint8_t *dst,
ADPCMChannelStatus *c, int n)
{
//FIXME 6% faster if frontier is a compile-time constant
ADPCMEncodeContext *s = avctx->priv_data;
const int frontier = 1 << avctx->trellis;
const int stride = avctx->channels;
const int version = avctx->codec->id;
TrellisPath *paths = s->paths, *p;
TrellisNode *node_buf = s->node_buf;
TrellisNode **nodep_buf = s->nodep_buf;
TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
TrellisNode **nodes_next = nodep_buf + frontier;
int pathn = 0, froze = -1, i, j, k, generation = 0;
uint8_t *hash = s->trellis_hash;
memset(hash, 0xff, 65536 * sizeof(*hash));
memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
nodes[0] = node_buf + frontier;
nodes[0]->ssd = 0;
nodes[0]->path = 0;
nodes[0]->step = c->step_index;
nodes[0]->sample1 = c->sample1;
nodes[0]->sample2 = c->sample2;
if (version == CODEC_ID_ADPCM_IMA_WAV ||
version == CODEC_ID_ADPCM_IMA_QT ||
version == CODEC_ID_ADPCM_SWF)
nodes[0]->sample1 = c->prev_sample;
if (version == CODEC_ID_ADPCM_MS)
nodes[0]->step = c->idelta;
if (version == CODEC_ID_ADPCM_YAMAHA) {
if (c->step == 0) {
nodes[0]->step = 127;
nodes[0]->sample1 = 0;
} else {
nodes[0]->step = c->step;
nodes[0]->sample1 = c->predictor;
}
}
for (i = 0; i < n; i++) {
TrellisNode *t = node_buf + frontier*(i&1);
TrellisNode **u;
int sample = samples[i * stride];
int heap_pos = 0;
memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
for (j = 0; j < frontier && nodes[j]; j++) {
// higher j have higher ssd already, so they're likely
// to yield a suboptimal next sample too
const int range = (j < frontier / 2) ? 1 : 0;
const int step = nodes[j]->step;
int nidx;
if (version == CODEC_ID_ADPCM_MS) {
const int predictor = ((nodes[j]->sample1 * c->coeff1) +
(nodes[j]->sample2 * c->coeff2)) / 64;
const int div = (sample - predictor) / step;
const int nmin = av_clip(div-range, -8, 6);
const int nmax = av_clip(div+range, -7, 7);
for (nidx = nmin; nidx <= nmax; nidx++) {
const int nibble = nidx & 0xf;
int dec_sample = predictor + nidx * step;
#define STORE_NODE(NAME, STEP_INDEX)\
int d;\
uint32_t ssd;\
int pos;\
TrellisNode *u;\
uint8_t *h;\
dec_sample = av_clip_int16(dec_sample);\
d = sample - dec_sample;\
ssd = nodes[j]->ssd + d*d;\
/* Check for wraparound, skip such samples completely. \
* Note, changing ssd to a 64 bit variable would be \
* simpler, avoiding this check, but it's slower on \
* x86 32 bit at the moment. */\
if (ssd < nodes[j]->ssd)\
goto next_##NAME;\
/* Collapse any two states with the same previous sample value. \
* One could also distinguish states by step and by 2nd to last
* sample, but the effects of that are negligible.
* Since nodes in the previous generation are iterated
* through a heap, they're roughly ordered from better to
* worse, but not strictly ordered. Therefore, an earlier
* node with the same sample value is better in most cases
* (and thus the current is skipped), but not strictly
* in all cases. Only skipping samples where ssd >=
* ssd of the earlier node with the same sample gives
* slightly worse quality, though, for some reason. */ \
h = &hash[(uint16_t) dec_sample];\
if (*h == generation)\
goto next_##NAME;\
if (heap_pos < frontier) {\
pos = heap_pos++;\
} else {\
/* Try to replace one of the leaf nodes with the new \
* one, but try a different slot each time. */\
pos = (frontier >> 1) +\
(heap_pos & ((frontier >> 1) - 1));\
if (ssd > nodes_next[pos]->ssd)\
goto next_##NAME;\
heap_pos++;\
}\
*h = generation;\
u = nodes_next[pos];\
if (!u) {\
assert(pathn < FREEZE_INTERVAL << avctx->trellis);\
u = t++;\
nodes_next[pos] = u;\
u->path = pathn++;\
}\
u->ssd = ssd;\
u->step = STEP_INDEX;\
u->sample2 = nodes[j]->sample1;\
u->sample1 = dec_sample;\
paths[u->path].nibble = nibble;\
paths[u->path].prev = nodes[j]->path;\
/* Sift the newly inserted node up in the heap to \
* restore the heap property. */\
while (pos > 0) {\
int parent = (pos - 1) >> 1;\
if (nodes_next[parent]->ssd <= ssd)\
break;\
FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
pos = parent;\
}\
next_##NAME:;
STORE_NODE(ms, FFMAX(16,
(ff_adpcm_AdaptationTable[nibble] * step) >> 8));
}
} else if (version == CODEC_ID_ADPCM_IMA_WAV ||
version == CODEC_ID_ADPCM_IMA_QT ||
version == CODEC_ID_ADPCM_SWF) {
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
const int predictor = nodes[j]->sample1;\
const int div = (sample - predictor) * 4 / STEP_TABLE;\
int nmin = av_clip(div - range, -7, 6);\
int nmax = av_clip(div + range, -6, 7);\
if (nmin <= 0)\
nmin--; /* distinguish -0 from +0 */\
if (nmax < 0)\
nmax--;\
for (nidx = nmin; nidx <= nmax; nidx++) {\
const int nibble = nidx < 0 ? 7 - nidx : nidx;\
int dec_sample = predictor +\
(STEP_TABLE *\
ff_adpcm_yamaha_difflookup[nibble]) / 8;\
STORE_NODE(NAME, STEP_INDEX);\
}
LOOP_NODES(ima, ff_adpcm_step_table[step],
av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
} else { //CODEC_ID_ADPCM_YAMAHA
LOOP_NODES(yamaha, step,
av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
127, 24567));
#undef LOOP_NODES
#undef STORE_NODE
}
}
u = nodes;
nodes = nodes_next;
nodes_next = u;
generation++;
if (generation == 255) {
memset(hash, 0xff, 65536 * sizeof(*hash));
generation = 0;
}
// prevent overflow
if (nodes[0]->ssd > (1 << 28)) {
for (j = 1; j < frontier && nodes[j]; j++)
nodes[j]->ssd -= nodes[0]->ssd;
nodes[0]->ssd = 0;
}
// merge old paths to save memory
if (i == froze + FREEZE_INTERVAL) {
p = &paths[nodes[0]->path];
for (k = i; k > froze; k--) {
dst[k] = p->nibble;
p = &paths[p->prev];
}
froze = i;
pathn = 0;
// other nodes might use paths that don't coincide with the frozen one.
// checking which nodes do so is too slow, so just kill them all.
// this also slightly improves quality, but I don't know why.
memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
}
}
p = &paths[nodes[0]->path];
for (i = n - 1; i > froze; i--) {
dst[i] = p->nibble;
p = &paths[p->prev];
}
c->predictor = nodes[0]->sample1;
c->sample1 = nodes[0]->sample1;
c->sample2 = nodes[0]->sample2;
c->step_index = nodes[0]->step;
c->step = nodes[0]->step;
c->idelta = nodes[0]->step;
}
static int adpcm_encode_frame(AVCodecContext *avctx, uint8_t *frame,
int buf_size, void *data)
{
int n, i, st;
int16_t *samples;
uint8_t *dst;
ADPCMEncodeContext *c = avctx->priv_data;
uint8_t *buf;
dst = frame;
samples = data;
st = avctx->channels == 2;
/* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
switch(avctx->codec->id) {
case CODEC_ID_ADPCM_IMA_WAV:
n = avctx->frame_size / 8;
c->status[0].prev_sample = samples[0];
/* c->status[0].step_index = 0;
XXX: not sure how to init the state machine */
bytestream_put_le16(&dst, c->status[0].prev_sample);
*dst++ = c->status[0].step_index;
*dst++ = 0; /* unknown */
samples++;
if (avctx->channels == 2) {
c->status[1].prev_sample = samples[0];
/* c->status[1].step_index = 0; */
bytestream_put_le16(&dst, c->status[1].prev_sample);
*dst++ = c->status[1].step_index;
*dst++ = 0;
samples++;
}
/* stereo: 4 bytes (8 samples) for left,
4 bytes for right, 4 bytes left, ... */
if (avctx->trellis > 0) {
FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 8, error);
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n * 8);
if (avctx->channels == 2)
adpcm_compress_trellis(avctx, samples + 1, buf + n * 8,
&c->status[1], n * 8);
for (i = 0; i < n; i++) {
*dst++ = buf[8 * i + 0] | (buf[8 * i + 1] << 4);
*dst++ = buf[8 * i + 2] | (buf[8 * i + 3] << 4);
*dst++ = buf[8 * i + 4] | (buf[8 * i + 5] << 4);
*dst++ = buf[8 * i + 6] | (buf[8 * i + 7] << 4);
if (avctx->channels == 2) {
uint8_t *buf1 = buf + n * 8;
*dst++ = buf1[8 * i + 0] | (buf1[8 * i + 1] << 4);
*dst++ = buf1[8 * i + 2] | (buf1[8 * i + 3] << 4);
*dst++ = buf1[8 * i + 4] | (buf1[8 * i + 5] << 4);
*dst++ = buf1[8 * i + 6] | (buf1[8 * i + 7] << 4);
}
}
av_free(buf);
} else {
for (; n > 0; n--) {
*dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
*dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels ]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
*dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
*dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
*dst++ |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
/* right channel */
if (avctx->channels == 2) {
*dst = adpcm_ima_compress_sample(&c->status[1], samples[1 ]);
*dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[3 ]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[1], samples[5 ]);
*dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[7 ]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[1], samples[9 ]);
*dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
*dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
*dst++ |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
}
samples += 8 * avctx->channels;
}
}
break;
case CODEC_ID_ADPCM_IMA_QT:
{
int ch, i;
PutBitContext pb;
init_put_bits(&pb, dst, buf_size * 8);
for (ch = 0; ch < avctx->channels; ch++) {
put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
put_bits(&pb, 7, c->status[ch].step_index);
if (avctx->trellis > 0) {
uint8_t buf[64];
adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
for (i = 0; i < 64; i++)
put_bits(&pb, 4, buf[i ^ 1]);
} else {
for (i = 0; i < 64; i += 2) {
int t1, t2;
t1 = adpcm_ima_qt_compress_sample(&c->status[ch],
samples[avctx->channels * (i + 0) + ch]);
t2 = adpcm_ima_qt_compress_sample(&c->status[ch],
samples[avctx->channels * (i + 1) + ch]);
put_bits(&pb, 4, t2);
put_bits(&pb, 4, t1);
}
}
}
flush_put_bits(&pb);
dst += put_bits_count(&pb) >> 3;
break;
}
case CODEC_ID_ADPCM_SWF:
{
int i;
PutBitContext pb;
init_put_bits(&pb, dst, buf_size * 8);
n = avctx->frame_size - 1;
// store AdpcmCodeSize
put_bits(&pb, 2, 2); // set 4-bit flash adpcm format
// init the encoder state
for (i = 0; i < avctx->channels; i++) {
// clip step so it fits 6 bits
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63);
put_sbits(&pb, 16, samples[i]);
put_bits(&pb, 6, c->status[i].step_index);
c->status[i].prev_sample = samples[i];
}
if (avctx->trellis > 0) {
FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
adpcm_compress_trellis(avctx, samples + 2, buf, &c->status[0], n);
if (avctx->channels == 2)
adpcm_compress_trellis(avctx, samples + 3, buf + n,
&c->status[1], n);
for (i = 0; i < n; i++) {
put_bits(&pb, 4, buf[i]);
if (avctx->channels == 2)
put_bits(&pb, 4, buf[n + i]);
}
av_free(buf);
} else {
for (i = 1; i < avctx->frame_size; i++) {
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
samples[avctx->channels * i]));
if (avctx->channels == 2)
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
samples[2 * i + 1]));
}
}
flush_put_bits(&pb);
dst += put_bits_count(&pb) >> 3;
break;
}
case CODEC_ID_ADPCM_MS:
for (i = 0; i < avctx->channels; i++) {
int predictor = 0;
*dst++ = predictor;
c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
}
for (i = 0; i < avctx->channels; i++) {
if (c->status[i].idelta < 16)
c->status[i].idelta = 16;
bytestream_put_le16(&dst, c->status[i].idelta);
}
for (i = 0; i < avctx->channels; i++)
c->status[i].sample2= *samples++;
for (i = 0; i < avctx->channels; i++) {
c->status[i].sample1 = *samples++;
bytestream_put_le16(&dst, c->status[i].sample1);
}
for (i = 0; i < avctx->channels; i++)
bytestream_put_le16(&dst, c->status[i].sample2);
if (avctx->trellis > 0) {
int n = avctx->block_align - 7 * avctx->channels;
FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
if (avctx->channels == 1) {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
for (i = 0; i < n; i += 2)
*dst++ = (buf[i] << 4) | buf[i + 1];
} else {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
adpcm_compress_trellis(avctx, samples + 1, buf + n, &c->status[1], n);
for (i = 0; i < n; i++)
*dst++ = (buf[i] << 4) | buf[n + i];
}
av_free(buf);
} else {
for (i = 7 * avctx->channels; i < avctx->block_align; i++) {
int nibble;
nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
*dst++ = nibble;
}
}
break;
case CODEC_ID_ADPCM_YAMAHA:
n = avctx->frame_size / 2;
if (avctx->trellis > 0) {
FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 2, error);
n *= 2;
if (avctx->channels == 1) {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
for (i = 0; i < n; i += 2)
*dst++ = buf[i] | (buf[i + 1] << 4);
} else {
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
adpcm_compress_trellis(avctx, samples + 1, buf + n, &c->status[1], n);
for (i = 0; i < n; i++)
*dst++ = buf[i] | (buf[n + i] << 4);
}
av_free(buf);
} else
for (n *= avctx->channels; n > 0; n--) {
int nibble;
nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
*dst++ = nibble;
}
break;
default:
return AVERROR(EINVAL);
}
return dst - frame;
error:
return AVERROR(ENOMEM);
}
#define ADPCM_ENCODER(id_, name_, long_name_) \
AVCodec ff_ ## name_ ## _encoder = { \
.name = #name_, \
.type = AVMEDIA_TYPE_AUDIO, \
.id = id_, \
.priv_data_size = sizeof(ADPCMEncodeContext), \
.init = adpcm_encode_init, \
.encode = adpcm_encode_frame, \
.close = adpcm_encode_close, \
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16, \
AV_SAMPLE_FMT_NONE}, \
.long_name = NULL_IF_CONFIG_SMALL(long_name_), \
}
ADPCM_ENCODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
ADPCM_ENCODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
ADPCM_ENCODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
ADPCM_ENCODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
ADPCM_ENCODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");
|