1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
/*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
*@brief IntraX8 frame subdecoder image manipulation routines
*/
#include "intrax8dsp.h"
#include "libavutil/common.h"
/*
* area positions, #3 is 1 pixel only, other are 8 pixels
* |66666666|
* 3|44444444|55555555|
* - -+--------+--------+
* 1 2|XXXXXXXX|
* 1 2|XXXXXXXX|
* 1 2|XXXXXXXX|
* 1 2|XXXXXXXX|
* 1 2|XXXXXXXX|
* 1 2|XXXXXXXX|
* 1 2|XXXXXXXX|
* 1 2|XXXXXXXX|
* ^-start
*/
#define area1 (0)
#define area2 (8)
#define area3 (8 + 8)
#define area4 (8 + 8 + 1)
#define area5 (8 + 8 + 1 + 8)
#define area6 (8 + 8 + 1 + 16)
/**
Collect statistics and prepare the edge pixels required by the other spatial compensation functions.
* @param src pointer to the beginning of the processed block
* @param dst pointer to emu_edge, edge pixels are stored the way other compensation routines do.
* @param linesize byte offset between 2 vertical pixels in the source image
* @param range pointer to the variable where the edge pixel range is to be stored (max-min values)
* @param psum pointer to the variable where the edge pixel sum is to be stored
* @param edges Informs this routine that the block is on an image border, so it has to interpolate the missing edge pixels.
and some of the edge pixels should be interpolated, the flag has the following meaning:
1 - mb_x==0 - first block in the row, interpolate area #1,#2,#3;
2 - mb_y==0 - first row, interpolate area #3,#4,#5,#6;
note: 1|2 - mb_x==mb_y==0 - first block, use 0x80 value for all areas;
4 - mb_x>= (mb_width-1) last block in the row, interpolate area #5;
-*/
static void x8_setup_spatial_compensation(uint8_t *src, uint8_t *dst,
ptrdiff_t stride, int *range,
int *psum, int edges)
{
uint8_t *ptr;
int sum;
int i;
int min_pix, max_pix;
uint8_t c;
if ((edges & 3) == 3) {
*psum = 0x80 * (8 + 1 + 8 + 2);
*range = 0;
memset(dst, 0x80, 16 + 1 + 16 + 8);
/* this triggers flat_dc for sure. flat_dc avoids all (other)
* prediction modes, but requires dc_level decoding. */
return;
}
min_pix = 256;
max_pix = -1;
sum = 0;
if (!(edges & 1)) { // (mb_x != 0) // there is previous block on this row
ptr = src - 1; // left column, area 2
for (i = 7; i >= 0; i--) {
c = *(ptr - 1); // area1, same mb as area2, no need to check
dst[area1 + i] = c;
c = *ptr;
sum += c;
min_pix = FFMIN(min_pix, c);
max_pix = FFMAX(max_pix, c);
dst[area2 + i] = c;
ptr += stride;
}
}
if (!(edges & 2)) { // (mb_y != 0) // there is row above
ptr = src - stride; // top line
for (i = 0; i < 8; i++) {
c = *(ptr + i);
sum += c;
min_pix = FFMIN(min_pix, c);
max_pix = FFMAX(max_pix, c);
}
if (edges & 4) { // last block on the row?
memset(dst + area5, c, 8); // set with last pixel fr
memcpy(dst + area4, ptr, 8);
} else {
memcpy(dst + area4, ptr, 16); // both area4 and 5
}
// area6 always present in the above block
memcpy(dst + area6, ptr - stride, 8);
}
// now calculate the stuff we need
if (edges & 3) { // mb_x ==0 || mb_y == 0) {
int avg = (sum + 4) >> 3;
if (edges & 1) // (mb_x == 0) { // implies mb_y !=0
memset(dst + area1, avg, 8 + 8 + 1); // areas 1, 2, 3 are averaged
else // implies y == 0 x != 0
memset(dst + area3, avg, 1 + 16 + 8); // areas 3, 4, 5, 6
sum += avg * 9;
} else {
// the edge pixel, in the top line and left column
uint8_t c = *(src - 1 - stride);
dst[area3] = c;
sum += c;
// edge pixel is not part of min/max
}
*range = max_pix - min_pix;
sum += *(dst + area5) + *(dst + area5 + 1);
*psum = sum;
}
static const uint16_t zero_prediction_weights[64 * 2] = {
640, 640, 669, 480, 708, 354, 748, 257,
792, 198, 760, 143, 808, 101, 772, 72,
480, 669, 537, 537, 598, 416, 661, 316,
719, 250, 707, 185, 768, 134, 745, 97,
354, 708, 416, 598, 488, 488, 564, 388,
634, 317, 642, 241, 716, 179, 706, 132,
257, 748, 316, 661, 388, 564, 469, 469,
543, 395, 571, 311, 655, 238, 660, 180,
198, 792, 250, 719, 317, 634, 395, 543,
469, 469, 507, 380, 597, 299, 616, 231,
161, 855, 206, 788, 266, 710, 340, 623,
411, 548, 455, 455, 548, 366, 576, 288,
122, 972, 159, 914, 211, 842, 276, 758,
341, 682, 389, 584, 483, 483, 520, 390,
110, 1172, 144, 1107, 193, 1028, 254, 932,
317, 846, 366, 731, 458, 611, 499, 499,
};
static void spatial_compensation_0(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int i, j;
int x, y;
unsigned int p; // power divided by 2
int a;
uint16_t left_sum[2][8] = { { 0 } };
uint16_t top_sum[2][8] = { { 0 } };
for (i = 0; i < 8; i++) {
a = src[area2 + 7 - i] << 4;
for (j = 0; j < 8; j++) {
p = abs(i - j);
left_sum[p & 1][j] += a >> (p >> 1);
}
}
for (i = 0; i < 8; i++) {
a = src[area4 + i] << 4;
for (j = 0; j < 8; j++) {
p = abs(i - j);
top_sum[p & 1][j] += a >> (p >> 1);
}
}
for (; i < 10; i++) {
a = src[area4 + i] << 4;
for (j = 5; j < 8; j++) {
p = abs(i - j);
top_sum[p & 1][j] += a >> (p >> 1);
}
}
for (; i < 12; i++) {
a = src[area4 + i] << 4;
for (j = 7; j < 8; j++) {
p = abs(i - j);
top_sum[p & 1][j] += a >> (p >> 1);
}
}
for (i = 0; i < 8; i++) {
top_sum[0][i] += (top_sum[1][i] * 181 + 128) >> 8; // 181 is sqrt(2)/2
left_sum[0][i] += (left_sum[1][i] * 181 + 128) >> 8;
}
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
dst[x] = ((uint32_t) top_sum[0][x] * zero_prediction_weights[y * 16 + x * 2 + 0] +
(uint32_t) left_sum[0][y] * zero_prediction_weights[y * 16 + x * 2 + 1] +
0x8000) >> 16;
dst += stride;
}
}
static void spatial_compensation_1(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
dst[x] = src[area4 + FFMIN(2 * y + x + 2, 15)];
dst += stride;
}
}
static void spatial_compensation_2(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
dst[x] = src[area4 + 1 + y + x];
dst += stride;
}
}
static void spatial_compensation_3(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
dst[x] = src[area4 + ((y + 1) >> 1) + x];
dst += stride;
}
}
static void spatial_compensation_4(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
dst[x] = (src[area4 + x] + src[area6 + x] + 1) >> 1;
dst += stride;
}
}
static void spatial_compensation_5(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++) {
if (2 * x - y < 0)
dst[x] = src[area2 + 9 + 2 * x - y];
else
dst[x] = src[area4 + x - ((y + 1) >> 1)];
}
dst += stride;
}
}
static void spatial_compensation_6(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
dst[x] = src[area3 + x - y];
dst += stride;
}
}
static void spatial_compensation_7(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++) {
if (x - 2 * y > 0)
dst[x] = (src[area3 - 1 + x - 2 * y] + src[area3 + x - 2 * y] + 1) >> 1;
else
dst[x] = src[area2 + 8 - y + (x >> 1)];
}
dst += stride;
}
}
static void spatial_compensation_8(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
dst[x] = (src[area1 + 7 - y] + src[area2 + 7 - y] + 1) >> 1;
dst += stride;
}
}
static void spatial_compensation_9(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
dst[x] = src[area2 + 6 - FFMIN(x + y, 6)];
dst += stride;
}
}
static void spatial_compensation_10(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
dst[x] = (src[area2 + 7 - y] * (8 - x) + src[area4 + x] * x + 4) >> 3;
dst += stride;
}
}
static void spatial_compensation_11(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
{
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
dst[x] = (src[area2 + 7 - y] * y + src[area4 + x] * (8 - y) + 4) >> 3;
dst += stride;
}
}
static void x8_loop_filter(uint8_t *ptr, const ptrdiff_t a_stride,
const ptrdiff_t b_stride, int quant)
{
int i, t;
int p0, p1, p2, p3, p4, p5, p6, p7, p8, p9;
int ql = (quant + 10) >> 3;
for (i = 0; i < 8; i++, ptr += b_stride) {
p0 = ptr[-5 * a_stride];
p1 = ptr[-4 * a_stride];
p2 = ptr[-3 * a_stride];
p3 = ptr[-2 * a_stride];
p4 = ptr[-1 * a_stride];
p5 = ptr[0];
p6 = ptr[1 * a_stride];
p7 = ptr[2 * a_stride];
p8 = ptr[3 * a_stride];
p9 = ptr[4 * a_stride];
t = (FFABS(p1 - p2) <= ql) +
(FFABS(p2 - p3) <= ql) +
(FFABS(p3 - p4) <= ql) +
(FFABS(p4 - p5) <= ql);
// You need at least 1 to be able to reach a total score of 6.
if (t > 0) {
t += (FFABS(p5 - p6) <= ql) +
(FFABS(p6 - p7) <= ql) +
(FFABS(p7 - p8) <= ql) +
(FFABS(p8 - p9) <= ql) +
(FFABS(p0 - p1) <= ql);
if (t >= 6) {
int min, max;
min = max = p1;
min = FFMIN(min, p3);
max = FFMAX(max, p3);
min = FFMIN(min, p5);
max = FFMAX(max, p5);
min = FFMIN(min, p8);
max = FFMAX(max, p8);
if (max - min < 2 * quant) { // early stop
min = FFMIN(min, p2);
max = FFMAX(max, p2);
min = FFMIN(min, p4);
max = FFMAX(max, p4);
min = FFMIN(min, p6);
max = FFMAX(max, p6);
min = FFMIN(min, p7);
max = FFMAX(max, p7);
if (max - min < 2 * quant) {
ptr[-2 * a_stride] = (4 * p2 + 3 * p3 + 1 * p7 + 4) >> 3;
ptr[-1 * a_stride] = (3 * p2 + 3 * p4 + 2 * p7 + 4) >> 3;
ptr[0] = (2 * p2 + 3 * p5 + 3 * p7 + 4) >> 3;
ptr[1 * a_stride] = (1 * p2 + 3 * p6 + 4 * p7 + 4) >> 3;
continue;
}
}
}
}
{
int x, x0, x1, x2;
int m;
x0 = (2 * p3 - 5 * p4 + 5 * p5 - 2 * p6 + 4) >> 3;
if (FFABS(x0) < quant) {
x1 = (2 * p1 - 5 * p2 + 5 * p3 - 2 * p4 + 4) >> 3;
x2 = (2 * p5 - 5 * p6 + 5 * p7 - 2 * p8 + 4) >> 3;
x = FFABS(x0) - FFMIN(FFABS(x1), FFABS(x2));
m = p4 - p5;
if (x > 0 && (m ^ x0) < 0) {
int32_t sign;
sign = m >> 31;
m = (m ^ sign) - sign; // abs(m)
m >>= 1;
x = 5 * x >> 3;
if (x > m)
x = m;
x = (x ^ sign) - sign;
ptr[-1 * a_stride] -= x;
ptr[0] += x;
}
}
}
}
}
static void x8_h_loop_filter(uint8_t *src, ptrdiff_t stride, int qscale)
{
x8_loop_filter(src, stride, 1, qscale);
}
static void x8_v_loop_filter(uint8_t *src, ptrdiff_t stride, int qscale)
{
x8_loop_filter(src, 1, stride, qscale);
}
av_cold void ff_intrax8dsp_init(IntraX8DSPContext *dsp)
{
dsp->h_loop_filter = x8_h_loop_filter;
dsp->v_loop_filter = x8_v_loop_filter;
dsp->setup_spatial_compensation = x8_setup_spatial_compensation;
dsp->spatial_compensation[0] = spatial_compensation_0;
dsp->spatial_compensation[1] = spatial_compensation_1;
dsp->spatial_compensation[2] = spatial_compensation_2;
dsp->spatial_compensation[3] = spatial_compensation_3;
dsp->spatial_compensation[4] = spatial_compensation_4;
dsp->spatial_compensation[5] = spatial_compensation_5;
dsp->spatial_compensation[6] = spatial_compensation_6;
dsp->spatial_compensation[7] = spatial_compensation_7;
dsp->spatial_compensation[8] = spatial_compensation_8;
dsp->spatial_compensation[9] = spatial_compensation_9;
dsp->spatial_compensation[10] = spatial_compensation_10;
dsp->spatial_compensation[11] = spatial_compensation_11;
}
|