summaryrefslogtreecommitdiff
path: root/src/libFLAC/fixed_intrin_sse2.c
blob: 3b5089581bec6147dff9fd6f34c608adcdb5d6bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/* libFLAC - Free Lossless Audio Codec library
 * Copyright (C) 2000-2009  Josh Coalson
 * Copyright (C) 2011-2022  Xiph.Org Foundation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the Xiph.org Foundation nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include "private/cpu.h"

#ifndef FLAC__INTEGER_ONLY_LIBRARY
#ifndef FLAC__NO_ASM
#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
#include "private/fixed.h"
#ifdef FLAC__SSE2_SUPPORTED

#include <emmintrin.h> /* SSE2 */
#include <math.h>
#include "private/macros.h"
#include "share/compat.h"
#include "FLAC/assert.h"

#ifdef FLAC__CPU_IA32
#define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src)
#else
#define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src)
#endif

#ifdef local_abs
#undef local_abs
#endif
#define local_abs(x) ((uint32_t)((x)<0? -(x) : (x)))

FLAC__SSE_TARGET("sse2")
uint32_t FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
{
	FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
	FLAC__int32 i, data_len_int;
	uint32_t order;
	__m128i total_err0, total_err1, total_err2, total_err3, total_err4;
	__m128i prev_err0,  prev_err1,  prev_err2,  prev_err3;
	__m128i tempA, tempB, bitmask;
	FLAC__int32 data_scalar[4];
	FLAC__int32 prev_err0_scalar[4];
	FLAC__int32 prev_err1_scalar[4];
	FLAC__int32 prev_err2_scalar[4];
	FLAC__int32 prev_err3_scalar[4];
	total_err0 = _mm_setzero_si128();
	total_err1 = _mm_setzero_si128();
	total_err2 = _mm_setzero_si128();
	total_err3 = _mm_setzero_si128();
	total_err4 = _mm_setzero_si128();
	data_len_int = data_len;

	for(i = 0; i < 4; i++){
		prev_err0_scalar[i] = data[-1+i*(data_len_int/4)];
		prev_err1_scalar[i] = data[-1+i*(data_len_int/4)] - data[-2+i*(data_len_int/4)];
		prev_err2_scalar[i] = prev_err1_scalar[i] - (data[-2+i*(data_len_int/4)] - data[-3+i*(data_len_int/4)]);
		prev_err3_scalar[i] = prev_err2_scalar[i] - (data[-2+i*(data_len_int/4)] - 2*data[-3+i*(data_len_int/4)] + data[-4+i*(data_len_int/4)]);
	}
	prev_err0 = _mm_loadu_si128((const __m128i*)prev_err0_scalar);
	prev_err1 = _mm_loadu_si128((const __m128i*)prev_err1_scalar);
	prev_err2 = _mm_loadu_si128((const __m128i*)prev_err2_scalar);
	prev_err3 = _mm_loadu_si128((const __m128i*)prev_err3_scalar);
	for(i = 0; i < data_len_int / 4; i++){
		data_scalar[0] = data[i];
		data_scalar[1] = data[i+data_len/4];
		data_scalar[2] = data[i+2*(data_len/4)];
		data_scalar[3] = data[i+3*(data_len/4)];
		tempA = _mm_loadu_si128((const __m128i*)data_scalar);
		/* Next three intrinsics calculate tempB as abs of tempA */
		bitmask = _mm_srai_epi32(tempA, 31);
		tempB   = _mm_xor_si128(tempA, bitmask);
		tempB   = _mm_sub_epi32(tempB, bitmask);
		total_err0 = _mm_add_epi32(total_err0,tempB);
		tempB = _mm_sub_epi32(tempA,prev_err0);
		prev_err0 = tempA;
		/* Next three intrinsics calculate tempA as abs of tempB */
		bitmask = _mm_srai_epi32(tempB, 31);
		tempA   = _mm_xor_si128(tempB, bitmask);
		tempA   = _mm_sub_epi32(tempA, bitmask);
		total_err1 = _mm_add_epi32(total_err1,tempA);
		tempA = _mm_sub_epi32(tempB,prev_err1);
		prev_err1 = tempB;
		/* Next three intrinsics calculate tempB as abs of tempA */
		bitmask = _mm_srai_epi32(tempA, 31);
		tempB   = _mm_xor_si128(tempA, bitmask);
		tempB   = _mm_sub_epi32(tempB, bitmask);
		total_err2 = _mm_add_epi32(total_err2,tempB);
		tempB = _mm_sub_epi32(tempA,prev_err2);
		prev_err2 = tempA;
		/* Next three intrinsics calculate tempA as abs of tempB */
		bitmask = _mm_srai_epi32(tempB, 31);
		tempA   = _mm_xor_si128(tempB, bitmask);
		tempA   = _mm_sub_epi32(tempA, bitmask);
		total_err3 = _mm_add_epi32(total_err3,tempA);
		tempA = _mm_sub_epi32(tempB,prev_err3);
		prev_err3 = tempB;
		/* Next three intrinsics calculate tempB as abs of tempA */
		bitmask = _mm_srai_epi32(tempA, 31);
		tempB   = _mm_xor_si128(tempA, bitmask);
		tempB   = _mm_sub_epi32(tempB, bitmask);
		total_err4 = _mm_add_epi32(total_err4,tempB);
	}
	_mm_storeu_si128((__m128i*)data_scalar,total_err0);
	total_error_0 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
	_mm_storeu_si128((__m128i*)data_scalar,total_err1);
	total_error_1 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
	_mm_storeu_si128((__m128i*)data_scalar,total_err2);
	total_error_2 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
	_mm_storeu_si128((__m128i*)data_scalar,total_err3);
	total_error_3 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
	_mm_storeu_si128((__m128i*)data_scalar,total_err4);
	total_error_4 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];

	/* Now the remainder of samples needs to be processed */
	i *= 4;
	if(data_len % 4 > 0){
		FLAC__int32 last_error_0 = data[i-1];
		FLAC__int32 last_error_1 = data[i-1] - data[i-2];
		FLAC__int32 last_error_2 = last_error_1 - (data[i-2] - data[i-3]);
		FLAC__int32 last_error_3 = last_error_2 - (data[i-2] - 2*data[i-3] + data[i-4]);
		FLAC__int32 error, save;
		for(; i < data_len_int; i++) {
			error  = data[i]     ; total_error_0 += local_abs(error);                      save = error;
			error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
			error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
			error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
			error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
		}
	}

	/* prefer lower order */
	if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
		order = 0;
	else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4))
		order = 1;
	else if(total_error_2 <= flac_min(total_error_3, total_error_4))
		order = 2;
	else if(total_error_3 <= total_error_4)
		order = 3;
	else
		order = 4;

	/* Estimate the expected number of bits per residual signal sample. */
	/* 'total_error*' is linearly related to the variance of the residual */
	/* signal, so we use it directly to compute E(|x|) */
	FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_4 == 0);

	residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);

	return order;
}

FLAC__SSE_TARGET("sse2")
uint32_t FLAC__fixed_compute_best_predictor_wide_intrin_sse2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
{
	FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
	uint32_t i, order;

	__m128i total_err0, total_err1, total_err3;

	{
		FLAC__int32 itmp;
		__m128i last_error, zero = _mm_setzero_si128();

		last_error = _mm_cvtsi32_si128(data[-1]);							// 0   0   0   le0
		itmp = data[-2];
		last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
		last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));	// 0   0   le0 le1
		itmp -= data[-3];
		last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
		last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));	// 0   le0 le1 le2
		itmp -= data[-3] - data[-4];
		last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
		last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));	// le0 le1 le2 le3

		total_err0 = total_err1 = total_err3 = _mm_setzero_si128();
		for(i = 0; i < data_len; i++) {
			__m128i err0, err1, tmp;
			err0 = _mm_cvtsi32_si128(data[i]);								// 0   0   0   e0
			err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0));			// e0  e0  e0  e0
#if 1 /* OPT_SSE */
			err1 = _mm_sub_epi32(err1, last_error);
			last_error = _mm_srli_si128(last_error, 4);						// 0   le0 le1 le2
			err1 = _mm_sub_epi32(err1, last_error);
			last_error = _mm_srli_si128(last_error, 4);						// 0   0   le0 le1
			err1 = _mm_sub_epi32(err1, last_error);
			last_error = _mm_srli_si128(last_error, 4);						// 0   0   0   le0
			err1 = _mm_sub_epi32(err1, last_error);							// e1  e2  e3  e4
#else
			last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8));	// le0  le1  le2+le0  le3+le1
			last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4));	// le0  le1+le0  le2+le0+le1  le3+le1+le2+le0
			err1 = _mm_sub_epi32(err1, last_error);							// e1  e2  e3  e4
#endif
			tmp = _mm_slli_si128(err0, 12);									// e0   0   0   0
			last_error = _mm_srli_si128(err1, 4);							//  0  e1  e2  e3
			last_error = _mm_or_si128(last_error, tmp);						// e0  e1  e2  e3

			tmp = _mm_srai_epi32(err0, 31);
			err0 = _mm_xor_si128(err0, tmp);
			err0 = _mm_sub_epi32(err0, tmp);
			tmp = _mm_srai_epi32(err1, 31);
			err1 = _mm_xor_si128(err1, tmp);
			err1 = _mm_sub_epi32(err1, tmp);

			total_err0 = _mm_add_epi64(total_err0, err0);					//        0       te0
			err0 = _mm_unpacklo_epi32(err1, zero);							//   0  |e3|   0  |e4|
			err1 = _mm_unpackhi_epi32(err1, zero);							//   0  |e1|   0  |e2|
			total_err3 = _mm_add_epi64(total_err3, err0);					//       te3      te4
			total_err1 = _mm_add_epi64(total_err1, err1);					//       te1      te2
		}
	}

	m128i_to_i64(total_error_0, total_err0);
	m128i_to_i64(total_error_4, total_err3);
	m128i_to_i64(total_error_2, total_err1);
	total_err3 = _mm_srli_si128(total_err3,	8);							//         0      te3
	total_err1 = _mm_srli_si128(total_err1, 8);							//         0      te1
	m128i_to_i64(total_error_3, total_err3);
	m128i_to_i64(total_error_1, total_err1);

	/* prefer lower order */
	if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
		order = 0;
	else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4))
		order = 1;
	else if(total_error_2 <= flac_min(total_error_3, total_error_4))
		order = 2;
	else if(total_error_3 <= total_error_4)
		order = 3;
	else
		order = 4;

	/* Estimate the expected number of bits per residual signal sample. */
	/* 'total_error*' is linearly related to the variance of the residual */
	/* signal, so we use it directly to compute E(|x|) */
	FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
	FLAC__ASSERT(data_len > 0 || total_error_4 == 0);

	residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);

	return order;
}

#endif /* FLAC__SSE2_SUPPORTED */
#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
#endif /* FLAC__NO_ASM */
#endif /* FLAC__INTEGER_ONLY_LIBRARY */