summaryrefslogtreecommitdiff
path: root/packages/numlib
diff options
context:
space:
mode:
authormaciej <maciej@3ad0048d-3df7-0310-abae-a5850022a9f2>2018-04-18 22:12:43 +0000
committermaciej <maciej@3ad0048d-3df7-0310-abae-a5850022a9f2>2018-04-18 22:12:43 +0000
commitdf05d44e26a7879db91f2c6ab852cde59f7c5c8a (patch)
tree1738f3491da1751571911cbbdd8f90ffda27e237 /packages/numlib
parent53ee64b5473ceeddd96afa818fea66da1a43266f (diff)
downloadfpc-df05d44e26a7879db91f2c6ab852cde59f7c5c8a.tar.gz
* Add monotone cubic Hermite spline. Patch by Marcin Wiazowski. Issue #33588
* More unified code with Lazarus ipf_fix module git-svn-id: https://svn.freepascal.org/svn/fpc/trunk@38786 3ad0048d-3df7-0310-abae-a5850022a9f2
Diffstat (limited to 'packages/numlib')
-rw-r--r--packages/numlib/src/ipf.pas186
1 files changed, 171 insertions, 15 deletions
diff --git a/packages/numlib/src/ipf.pas b/packages/numlib/src/ipf.pas
index df13d0569d..7f5f70aca3 100644
--- a/packages/numlib/src/ipf.pas
+++ b/packages/numlib/src/ipf.pas
@@ -32,6 +32,12 @@ interface
uses typ, mdt, dsl, sle, spe;
+type
+ THermiteSplineType = (
+ hstMonotone // preserves monotonicity of the interpolated function by using
+ // a Fritsch-Carlson algorithm
+ );
+
{ Determine natural cubic spline "s" for data set (x,y), output to (a,d2a)
term=1 success,
=2 failure calculating "s"
@@ -52,7 +58,36 @@ Does NOT take source points into account.}
procedure ipfsmm(n: ArbInt; var x, y, d2s, minv, maxv: ArbFloat;
var term: ArbInt);
-{Calculate n-degree polynomal b for dataset (x,y) with m elements
+{Calculates tangents for each data point (d1s), for a given array of input data
+ points (x,y), by using a selected variant of a Hermite cubic spline interpolation.
+ Inputs:
+ hst - algorithm selection
+ n - highest array index
+ x[0..n] - array of X values (one value for each data point)
+ y[0..n] - array of Y values (one value for each data point)
+ Outputs:
+ d1s[0..n] - array of tangent values (one value for each data point)
+ term - status: 1 if function succeeded, 3 if less than two data points given
+}
+procedure ipfish(hst: THermiteSplineType; n: ArbInt; var x, y, d1s: ArbFloat; var term: ArbInt);
+
+{Calculates interpolated function value for a given array of input data points
+ (x,y) and tangents for each data point (d1s), for input value t, by using a
+ Hermite cubic spline interpolation; d1s array can be obtained by calling the
+ ipfish procedure.
+ Inputs:
+ n - highest array index
+ x[0..n] - array of X values (one value for each data point)
+ y[0..n] - array of Y values (one value for each data point)
+ d1s[0..n] - array of tangent values (one value for each data point)
+ t - input value X
+ Outputs:
+ term - status: 1 if function succeeded, 3 if less than two data points given
+ result - interpolated function value Y
+}
+function ipfsph(n: ArbInt; var x, y, d1s: ArbFloat; t: ArbFloat; var term: ArbInt): ArbFloat;
+
+{Calculate n-degree polynomal b for dataset (x,y) with n elements
using the least squares method.}
procedure ipfpol(m, n: ArbInt; var x, y, b: ArbFloat; var term: ArbInt);
@@ -81,7 +116,7 @@ implementation
procedure ipffsn(n: ArbInt; var x, y, a, d2a: ArbFloat; var term: ArbInt);
-var i, j, sr, n1s, ns1, ns2: ArbInt;
+var i, sr, n1s, ns1, ns2: ArbInt;
s, lam, lam0, lam1, lambda, ey, ca, p, q, r: ArbFloat;
px, py, pd, pa, pd2a,
h, z, diagb, dinv, qty, qtdinvq, c, t, tl: ^arfloat1;
@@ -89,8 +124,9 @@ var i, j, sr, n1s, ns1, ns2: ArbInt;
procedure solve; {n, py, qty, h, qtdinvq, dinv, lam, t, pa, pd2a, term}
var i: ArbInt;
- p, q, r, ca: ArbFloat;
+ p, q, r: ArbFloat;
f, c: ^arfloat1;
+ ca: ArbFloat = 0.0;
begin
getmem(f, 3*ns1); getmem(c, ns1);
for i:=1 to n-1 do
@@ -513,7 +549,7 @@ procedure ipfpol(m, n: ArbInt; var x, y, b: ArbFloat; var term: ArbInt);
var i, ns: ArbInt;
fsum: ArbFloat;
- px, py, alfa, beta: ^arfloat1;
+ py, alfa, beta: ^arfloat1;
pb, a: ^arfloat0;
begin
if (n<0) or (m<1)
@@ -554,18 +590,22 @@ end; {ipfpol}
procedure ipfisn(n: ArbInt; var x, y, d2s: ArbFloat; var term: ArbInt);
var
- s, i : ArbInt;
- p, q, ca : ArbFloat;
+ s, i, L : ArbInt;
+ p, q : ArbFloat;
px, py, h, b, t : ^arfloat0;
pd2s : ^arfloat1;
+ ca : ArbFloat = 0.0;
begin
- px:=@x; py:=@y; pd2s:=@d2s;
term:=1;
- if n < 2
+ if n < 1
then
begin
term:=3; exit
- end; {n<2}
+ end; {n<1}
+ if n = 1 then
+ exit;
+
+ px:=@x; py:=@y; pd2s:=@d2s;
s:=sizeof(ArbFloat);
getmem(h, n*s);
getmem(b, (n-1)*s);
@@ -583,7 +623,8 @@ begin
begin
q:=1/h^[i-1]; b^[i-2]:=py^[i]*q-py^[i-1]*(p+q)+py^[i-2]*p; p:=q
end;
- slegpb(n-1, 1, {2,} t^[1], b^[0], pd2s^[1], ca, term);
+ if n > 2 then L := 1 else L := 0;
+ slegpb(n-1, L, {2,} t^[1], b^[0], pd2s^[1], ca, term);
freemem(h, n*s);
freemem(b, (n-1)*s);
freemem(t, 2*(n-1)*s);
@@ -598,13 +639,21 @@ var
i, j, m : ArbInt;
d, s3, h, dy : ArbFloat;
begin
- i:=1; term:=1;
- if n<2
+ term:=1;
+ if n<1
then
begin
term:=3; exit
- end; {n<2}
+ end; {n<1}
px:=@x; py:=@y; pd2s:=@d2s;
+ if n = 1
+ then
+ begin
+ h:=px^[1]-px^[0];
+ dy:=(py^[1]-py^[0])/h;
+ ipfspn:=py^[0]+(t-px^[0])*dy
+ end { n = 1 }
+ else
if t <= px^[0]
then
begin
@@ -655,7 +704,7 @@ begin
dy:=(py^[i+1]-py^[i])/h-h*(2*pd2s^[i]+pd2s^[i+1])/6;
ipfspn:=py^[i]+d*(dy+d*(pd2s^[i]/2+d*s3/6))
end
- end { x[0] < t < x[n] }
+ end { x[0] < t < x[n] }
end; {ipfspn}
procedure ipfsmm(
@@ -714,15 +763,122 @@ var
begin
term:=1;
- if n<2 then begin
+ if n<1 then begin
term:=3;
exit;
end;
+ if n = 1 then
+ exit;
px:=@x; py:=@y; pd2s:=@d2s;
for i:=0 to n-1 do
MinMaxOnSegment;
end;
+procedure ipfish(hst: THermiteSplineType; n: ArbInt; var x, y, d1s: ArbFloat; var term: ArbInt);
+var
+ px, py, pd1s : ^arfloat0;
+ i : ArbInt;
+ dks : array of ArbFloat;
+begin
+ term:=1;
+ if n < 1 then
+ begin
+ term:=3;
+ exit;
+ end;
+ px:=@x;
+ py:=@y;
+ pd1s:=@d1s;
+
+ {Monotone cubic Hermite interpolation}
+ {See: https://en.wikipedia.org/wiki/Monotone_cubic_interpolation
+ and: https://en.wikipedia.org/wiki/Cubic_Hermite_spline}
+
+ {For each two adjacent data points, calculate tangent of the segment between them}
+ SetLength(dks,n);
+ for i:=0 to n-1 do
+ dks[i]:=(py^[i+1]-py^[i])/(px^[i+1]-px^[i]);
+
+ {As proposed by Fritsch and Carlson: For each data point - except the first and
+ the last one - assign point's tangent (stored in a "d1s" array) as an average
+ of tangents of the two adjacent segments (this is called 3PD, three-point
+ difference) - but only if both tangents are either positive (segments are
+ raising) or negative (segments are falling); in all other cases there is a local
+ extremum at the data point, or a non-monotonic range begins/continues/ends there,
+ so spline at this point must be flat to preserve monotonicity - so assign point's
+ tangent as zero}
+ for i:=0 to n-2 do
+ if ((dks[i] > 0) and (dks[i+1] > 0)) or ((dks[i] < 0) and (dks[i+1] < 0)) then
+ pd1s^[i+1]:=0.5*(dks[i]+dks[i+1])
+ else
+ pd1s^[i+1]:=0;
+
+ {For the first and the last data point, assign point's tangent as a tangent of
+ the adjacent segment (this is called one-sided difference)}
+ pd1s^[0]:=dks[0];
+ pd1s^[n]:=dks[n-1];
+
+ {As proposed by Fritsch and Carlson: Reduce point's tangent if needed, to prevent
+ overshoot}
+ for i:=0 to n-1 do
+ if dks[i] <> 0 then
+ try
+ if pd1s^[i]/dks[i] > 3 then
+ pd1s^[i]:=3*dks[i];
+ if pd1s^[i+1]/dks[i] > 3 then
+ pd1s^[i+1]:=3*dks[i];
+ except
+ {There may be an exception for dks[i] values that are very close to zero}
+ pd1s^[i]:=0;
+ pd1s^[i+1]:=0;
+ end;
+
+ {Addition to the original algorithm: For the first and the last data point,
+ modify point's tangent in such a way that the cubic Hermite interpolation
+ polynomial has its inflection point exactly at the data point - so there
+ will be a smooth transition to the extrapolated part of the graph}
+ pd1s^[0]:=1.5*dks[0]-0.5*pd1s^[1];
+ pd1s^[n]:=1.5*dks[n-1]-0.5*pd1s^[n-1];
+end; {ipfish}
+
+function ipfsph(n: ArbInt; var x, y, d1s: ArbFloat; t: ArbFloat; var term: ArbInt): ArbFloat;
+var
+ px, py, pd1s : ^arfloat0;
+ i, j, m : ArbInt;
+ h : ArbFloat;
+begin
+ term:=1;
+ if n < 1 then
+ begin
+ term:=3;
+ exit;
+ end;
+ px:=@x;
+ py:=@y;
+ pd1s:=@d1s;
+ if t <= px^[0] then
+ ipfsph:=py^[0]+(t-px^[0])*pd1s^[0]
+ else
+ if t >= px^[n] then
+ ipfsph:=py^[n]+(t-px^[n])*pd1s^[n]
+ else
+ begin
+ i:=0;
+ j:=n;
+ while j <> i+1 do
+ begin
+ m:=(i+j) div 2;
+ if t>=px^[m] then
+ i:=m
+ else
+ j:=m;
+ end; {j}
+ h:=px^[i+1]-px^[i];
+ t:=(t-px^[i])/h;
+ ipfsph:= py^[i]*(1+2*t)*Sqr(1-t) + h*pd1s^[i]*t*Sqr(1-t) + py^[i+1]*Sqr(t)*(3-2*t) + h*pd1s^[i+1]*Sqr(t)*(t-1);
+ end;
+end; {ipfsph}
+
function p(x, a, z:complex): ArbFloat;
begin
x.sub(a);