diff options
Diffstat (limited to 'packages/base/pasjpeg/jidct2d.pas')
-rw-r--r-- | packages/base/pasjpeg/jidct2d.pas | 1048 |
1 files changed, 0 insertions, 1048 deletions
diff --git a/packages/base/pasjpeg/jidct2d.pas b/packages/base/pasjpeg/jidct2d.pas deleted file mode 100644 index bd277502af..0000000000 --- a/packages/base/pasjpeg/jidct2d.pas +++ /dev/null @@ -1,1048 +0,0 @@ -Unit JIDct2D; - -{ This file contains a fast, not so accurate integer implementation of the - inverse DCT (Discrete Cosine Transform). In the IJG code, this routine - must also perform dequantization of the input coefficients. - - - A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT - on each row (or vice versa, but it's more convenient to emit a row at - a time). Direct algorithms are also available, but they are much more - complex and seem not to be any faster when reduced to code. - - The Feig direct 2D scaled Discrete Cosine Transform extends Arai, Agui - and Nakajima fast scaled DCT to 2D (464 adds and 80 mult.) with further - computational saving (462 adds, 54 mults and 6 shits). - - The forward DCT is described with flow diagrams from the Pennebaker& - Mitchell JPEG book. The inverse DCT flow diagrams are obtained - from the inverse matrices. Scaling must be done accordingly. - - Jacques NOMSSI NZALI, May 16th 1995 } - - -interface - -uses - jmorecfg, - jinclude, - jpeglib, - jdct; { Private declarations for DCT subsystem } - -{$I jconfig.inc} - -{ Perform dequantization and inverse DCT on one block of coefficients. } - -{GLOBAL} -procedure jpeg_idct_i2d (cinfo : j_decompress_ptr; - compptr : jpeg_component_info_ptr; - coef_block : JCOEFPTR; - output_buf : JSAMPARRAY; - output_col : JDIMENSION); - -implementation - -{ This module is specialized to the case DCTSIZE = 8. } - -{$ifndef DCTSIZE_IS_8} - Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err } -{$endif} - -{ Scaling decisions are generally the same as in the LL&M algorithm; - see jidctint.c for more details. However, we choose to descale - (right shift) multiplication products as soon as they are formed, - rather than carrying additional fractional bits into subsequent additions. - This compromises accuracy slightly, but it lets us save a few shifts. - More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) - everywhere except in the multiplications proper; this saves a good deal - of work on 16-bit-int machines. - - The dequantized coefficients are not integers because the AA&N scaling - factors have been incorporated. We represent them scaled up by PASS1_BITS, - so that the first and second IDCT rounds have the same input scaling. - For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to - avoid a descaling shift; this compromises accuracy rather drastically - for small quantization table entries, but it saves a lot of shifts. - For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, - so we use a much larger scaling factor to preserve accuracy. - - A final compromise is to represent the multiplicative constants to only - 8 fractional bits, rather than 13. This saves some shifting work on some - machines, and may also reduce the cost of multiplication (since there - are fewer one-bits in the constants). } - -{$ifdef BITS_IN_JSAMPLE_IS_8} -const - CONST_BITS = 8; - PASS1_BITS = 2; -{$else} - CONST_BITS = 8; - PASS1_BITS = 1; { lose a little precision to avoid overflow } -{$endif} - - -{ Convert a positive real constant to an integer scaled by CONST_SCALE. } -const - CONST_SCALE = (INT32(1) shl CONST_BITS); -const - FIX_1_082392200 = INT32(Round(CONST_SCALE*1.082392200)); {277} - FIX_1_414213562 = INT32(Round(CONST_SCALE*1.414213562)); {362} - FIX_1_847759065 = INT32(Round(CONST_SCALE*1.847759065)); {473} - FIX_2_613125930 = INT32(Round(CONST_SCALE*2.613125930)); {669} - - -{ Descale and correctly round an INT32 value that's scaled by N bits. - We assume RIGHT_SHIFT rounds towards minus infinity, so adding - the fudge factor is correct for either sign of X. } - -function DESCALE(x : INT32; n : int) : INT32; -var - shift_temp : INT32; -begin -{$ifdef USE_ACCURATE_ROUNDING} - shift_temp := x + (INT32(1) shl (n-1)); -{$else} -{ We can gain a little more speed, with a further compromise in accuracy, - by omitting the addition in a descaling shift. This yields an incorrectly - rounded result half the time... } - shift_temp := x; -{$endif} - -{$ifdef RIGHT_SHIFT_IS_UNSIGNED} - if shift_temp < 0 then - Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n)) - else -{$endif} - Descale := (shift_temp shr n); - -end; - - -{ Multiply a DCTELEM variable by an INT32 constant, and immediately - descale to yield a DCTELEM result. } - - {(DCTELEM( DESCALE((var) * (const), CONST_BITS))} - function Multiply(Avar, Aconst: Integer): DCTELEM; - begin - Multiply := DCTELEM( Avar*INT32(Aconst) div CONST_SCALE); - end; - - - -{ Dequantize a coefficient by multiplying it by the multiplier-table - entry; produce a DCTELEM result. For 8-bit data a 16x16->16 - multiplication will do. For 12-bit data, the multiplier table is - declared INT32, so a 32-bit multiply will be used. } - -{$ifdef BITS_IN_JSAMPLE_IS_8} - function DEQUANTIZE(coef,quantval : int) : int; - begin - Dequantize := ( IFAST_MULT_TYPE(coef) * quantval); - end; - -{$else} -#define DEQUANTIZE(coef,quantval) \ - DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) -{$endif} - - -{ Like DESCALE, but applies to a DCTELEM and produces an int. - We assume that int right shift is unsigned if INT32 right shift is. } - -function IDESCALE(x : DCTELEM; n : int) : int; -{$ifdef BITS_IN_JSAMPLE_IS_8} -const - DCTELEMBITS = 16; { DCTELEM may be 16 or 32 bits } -{$else} -const - DCTELEMBITS = 32; { DCTELEM must be 32 bits } -{$endif} -var - ishift_temp : DCTELEM; -begin -{$ifndef USE_ACCURATE_ROUNDING} - ishift_temp := x + (INT32(1) shl (n-1)); -{$else} -{ We can gain a little more speed, with a further compromise in accuracy, - by omitting the addition in a descaling shift. This yields an incorrectly - rounded result half the time... } - ishift_temp := x; -{$endif} - -{$ifdef RIGHT_SHIFT_IS_UNSIGNED} - if ishift_temp < 0 then - IDescale := (ishift_temp shr n) - or ((not DCTELEM(0)) shl (DCTELEMBITS-n)) - else -{$endif} - IDescale := (ishift_temp shr n); -end; - - - -{ Perform dequantization and inverse DCT on one block of coefficients. } - -{GLOBAL} -procedure jpeg_idct_i2d (cinfo : j_decompress_ptr; - compptr : jpeg_component_info_ptr; - coef_block : JCOEFPTR; - output_buf : JSAMPARRAY; - output_col : JDIMENSION); -Const - CONST_IC4 = 1.414213562; { 1/0.707106781; } - FP_IC4 = FIX_1_414213562; - FP_I_C4_2 = FP_IC4; - -type - PWorkspace = ^TWorkspace; - TWorkspace = coef_bits_field; { buffers data between passes } - - Procedure N1(var x, y : integer); { rotator 1 } - Const - FP_a5 = FIX_1_847759065; - FP_a4 = FIX_2_613125930; - FP_a2 = FIX_1_082392200; - var - z5, tmp : integer; - begin - tmp := x; - - z5 := Multiply(tmp + y, FP_a5); { c6 } - x := Multiply(y, FP_a2) - z5; { c2-c6 } - y := Multiply(tmp, -FP_a4) + z5; { c2+c6 } - end; - - Procedure N2(var x, y : integer); { N1 scaled by c4 } - Const - FP_b5 = Integer(Round(CONST_SCALE*1.847759065*CONST_IC4)); - FP_b4 = Integer(Round(CONST_SCALE*2.613125930*CONST_IC4)); - FP_b2 = Integer(Round(CONST_SCALE*1.082392200*CONST_IC4)); - var - z5, tmp : integer; - begin - tmp := x; - - z5 := Multiply(tmp + y, FP_b5); - x := Multiply(y, FP_b2) - z5; - y := Multiply(tmp,-FP_b4) + z5; - end; - -var - column, row : byte; - -var - tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : DCTELEM; - tmp10, tmp11, tmp12, tmp13 : DCTELEM; - z10, z11, z12, z13 : DCTELEM; - inptr : JCOEFPTR; - - quantptr : IFAST_MULT_TYPE_FIELD_PTR; - wsptr : PWorkspace; - outptr : JSAMPROW; - range_limit : JSAMPROW; - ctr : int; - workspace : TWorkspace; { buffers data between passes } - {SHIFT_TEMPS { for DESCALE } - {ISHIFT_TEMPS { for IDESCALE } -var - dcval : int; -var - dcval_ : JSAMPLE; -begin -{ Each IDCT routine is responsible for range-limiting its results and - converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could - be quite far out of range if the input data is corrupt, so a bulletproof - range-limiting step is required. We use a mask-and-table-lookup method - to do the combined operations quickly. See the comments with - prepare_range_limit_table (in jdmaster.c) for more info. } - - range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE])); - { Pass 1: process columns from input, store into work array. } - - inptr := coef_block; - quantptr := IFAST_MULT_TYPE_FIELD_PTR(compptr^.dct_table); - wsptr := @workspace; - for ctr := pred(DCTSIZE) downto 0 do - begin - { short-circuiting is not easily done here } - // bbo := @outptr; - for num := 0 to Pred(count) do - begin - { R1 x R1 } - for column := 7 downto 0 do - BEGIN - tmp5 := inptr^[1*RowSize + column]; - - inptr^[1*RowSize + column] := inptr^[4*RowSize + column]; - - tmp7 := inptr^[3*RowSize + column]; - - a := inptr^[2*RowSize + column]; - b := inptr^[6*RowSize + column]; - inptr^[2*RowSize + column] := a - b; - inptr^[3*RowSize + column] := a + b; - - a := inptr^[5*RowSize + column]; - inptr^[4*RowSize + column] := a - tmp7; - z13 := a + tmp7; - - b := inptr^[7*RowSize + column]; - inptr^[6*RowSize + column] := tmp5 - b; - z11 := tmp5 + b; - - inptr^[5*RowSize + column] := z11 - z13; - inptr^[7*RowSize + column] := z11 + z13; - END; - - { Even part } - - tmp0 := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]); - tmp1 := DEQUANTIZE(inptr^[DCTSIZE*2], quantptr^[DCTSIZE*2]); - tmp2 := DEQUANTIZE(inptr^[DCTSIZE*4], quantptr^[DCTSIZE*4]); - tmp3 := DEQUANTIZE(inptr^[DCTSIZE*6], quantptr^[DCTSIZE*6]); - - tmp10 := tmp0 + tmp2; { phase 3 } - tmp11 := tmp0 - tmp2; - - tmp13 := tmp1 + tmp3; { phases 5-3 } - tmp12 := MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; { 2*c4 } - - tmp0 := tmp10 + tmp13; { phase 2 } - tmp3 := tmp10 - tmp13; - tmp1 := tmp11 + tmp12; - tmp2 := tmp11 - tmp12; - - { Odd part } - - tmp4 := DEQUANTIZE(inptr^[DCTSIZE*1], quantptr^[DCTSIZE*1]); - tmp5 := DEQUANTIZE(inptr^[DCTSIZE*3], quantptr^[DCTSIZE*3]); - tmp6 := DEQUANTIZE(inptr^[DCTSIZE*5], quantptr^[DCTSIZE*5]); - tmp7 := DEQUANTIZE(inptr^[DCTSIZE*7], quantptr^[DCTSIZE*7]); - - z13 := tmp6 + tmp5; { phase 6 } - z10 := tmp6 - tmp5; - z11 := tmp4 + tmp7; - z12 := tmp4 - tmp7; - - tmp7 := z11 + z13; { phase 5 } - tmp11 := MULTIPLY(z11 - z13, FIX_1_414213562); { 2*c4 } - - z5 := MULTIPLY(z10 + z12, FIX_1_847759065); { 2*c2 } - tmp10 := MULTIPLY(z12, FIX_1_082392200) - z5; { 2*(c2-c6) } - tmp12 := MULTIPLY(z10, - FIX_2_613125930) + z5; { -2*(c2+c6) } - - tmp6 := tmp12 - tmp7; { phase 2 } - tmp5 := tmp11 - tmp6; - tmp4 := tmp10 + tmp5; - - wsptr^[DCTSIZE*0] := int (tmp0 + tmp7); - wsptr^[DCTSIZE*7] := int (tmp0 - tmp7); - wsptr^[DCTSIZE*1] := int (tmp1 + tmp6); - wsptr^[DCTSIZE*6] := int (tmp1 - tmp6); - wsptr^[DCTSIZE*2] := int (tmp2 + tmp5); - wsptr^[DCTSIZE*5] := int (tmp2 - tmp5); - wsptr^[DCTSIZE*4] := int (tmp3 + tmp4); - wsptr^[DCTSIZE*3] := int (tmp3 - tmp4); - - Inc(JCOEF_PTR(inptr)); { advance pointers to next column } - Inc(IFAST_MULT_TYPE_PTR(quantptr)); - Inc(int_ptr(wsptr)); - end; - - { Pass 2: process rows from work array, store into output array. } - { Note that we must descale the results by a factor of 8 == 2**3, } - { and also undo the PASS1_BITS scaling. } - - wsptr := @workspace; - for ctr := 0 to pred(DCTSIZE) do - begin - outptr := JSAMPROW(@output_buf^[ctr]^[output_col]); - { Rows of zeroes can be exploited in the same way as we did with columns. - However, the column calculation has created many nonzero AC terms, so - the simplification applies less often (typically 5% to 10% of the time). - On machines with very fast multiplication, it's possible that the - test takes more time than it's worth. In that case this section - may be commented out. } - -{$ifndef NO_ZERO_ROW_TEST} - if ((wsptr^[1]) or (wsptr^[2]) or (wsptr^[3]) or (wsptr^[4]) or (wsptr^[5]) or - (wsptr^[6]) or (wsptr^[7]) = 0) then - begin - { AC terms all zero } - JSAMPLE(dcval_) := range_limit^[IDESCALE(wsptr^[0], PASS1_BITS+3) - and RANGE_MASK]; - - outptr^[0] := dcval_; - outptr^[1] := dcval_; - outptr^[2] := dcval_; - outptr^[3] := dcval_; - outptr^[4] := dcval_; - outptr^[5] := dcval_; - outptr^[6] := dcval_; - outptr^[7] := dcval_; - - Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row } - continue; - end; -{$endif} - - { Even part } - - tmp10 := (DCTELEM(wsptr^[0]) + DCTELEM(wsptr^[4])); - tmp11 := (DCTELEM(wsptr^[0]) - DCTELEM(wsptr^[4])); - - tmp13 := (DCTELEM(wsptr^[2]) + DCTELEM(wsptr^[6])); - tmp12 := MULTIPLY(DCTELEM(wsptr^[2]) - DCTELEM(wsptr^[6]), FIX_1_414213562) - - tmp13; - - tmp0 := tmp10 + tmp13; - tmp3 := tmp10 - tmp13; - tmp1 := tmp11 + tmp12; - tmp2 := tmp11 - tmp12; - - { Odd part } - - z13 := DCTELEM(wsptr^[5]) + DCTELEM(wsptr^[3]); - z10 := DCTELEM(wsptr^[5]) - DCTELEM(wsptr^[3]); - z11 := DCTELEM(wsptr^[1]) + DCTELEM(wsptr^[7]); - z12 := DCTELEM(wsptr^[1]) - DCTELEM(wsptr^[7]); - - tmp7 := z11 + z13; { phase 5 } - tmp11 := MULTIPLY(z11 - z13, FIX_1_414213562); { 2*c4 } - - z5 := MULTIPLY(z10 + z12, FIX_1_847759065); { 2*c2 } - tmp10 := MULTIPLY(z12, FIX_1_082392200) - z5; { 2*(c2-c6) } - tmp12 := MULTIPLY(z10, - FIX_2_613125930) + z5; { -2*(c2+c6) } - - tmp6 := tmp12 - tmp7; { phase 2 } - tmp5 := tmp11 - tmp6; - tmp4 := tmp10 + tmp5; - - { Final output stage: scale down by a factor of 8 and range-limit } - - outptr^[0] := range_limit^[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[7] := range_limit^[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[1] := range_limit^[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[6] := range_limit^[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[2] := range_limit^[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[5] := range_limit^[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[4] := range_limit^[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[3] := range_limit^[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) - and RANGE_MASK]; - - Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row } - end; -end; - -end. ----------------------------------------------------------- -type - matasm = array[0..DCTSIZE2-1] of integer; - bmatrix = array[0..DCTSIZE2-1] of byte; - bmatrixptr = ^bmatrix; -procedure ANN_IDCT(var coef_block :matasm; - var outptr :bmatrix); - - var coeffs :matasm; = coef_block - var outptr :bmatrix); output_buf - -Const - CONST_IC4 = 1.414213562; { 1/0.707106781; } - FP_IC4 = FIX_1_414213562; - FP_I_C4_2 = FP_IC4; - - Function Descale(x : integer):byte; - var y : integer; - begin - y := (x + (1 shl (16-1))+ (4 shl PASS_BITS)) div (8 shl PASS_BITS); - { DeScale := x sar (3 + PASS_BITS); - Borland Pascal SHR is unsigned } - if y < 0 then - descale := 0 - else - if y > $ff then - descale := $ff - else - descale := y; - end; - - function Multiply(X, Y: Integer): integer; assembler; - asm - mov ax, X - imul Y - mov al, ah - mov ah, dl - end; - - -Const - RowSize = 8; -var - a, b : integer; - - inptr : JCOEFPTR; - - outptr : bmatrixptr; - - num : integer; -begin -{ Each IDCT routine is responsible for range-limiting its results and - converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could - be quite far out of range if the input data is corrupt, so a bulletproof - range-limiting step is required. We use a mask-and-table-lookup method - to do the combined operations quickly. See the comments with - prepare_range_limit_table (in jdmaster.c) for more info. } - - range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE])); - { Pass 1: process columns from input, store into work array. } - - inptr := @coef_block; + ctr*RowSize - quantptr := IFAST_MULT_TYPE_FIELD_PTR(compptr^.dct_table); - - for ctr := pred(DCTSIZE) downto 0 do - BEGIN - tmp5 := inptr^[1]; - - inptr^[1] := inptr^[4]; - - tmp7 := inptr^[3]; - - a := inptr^[2]; - b := inptr^[6]; - inptr^[2] := a - b; - inptr^[3] := a + b; - - a := inptr^[5]; - inptr^[+ 4] := a - tmp7; - z13 := a + tmp7; - - b := inptr^[7]; - inptr^[6] := tmp5 - b; - z11 := tmp5 + b; - - inptr^[5] := z11 - z13; - inptr^[7] := z11 + z13; - END; - - { M x M tensor } - for row := 0 to 7 do - Case row of - 0,1,3,7: { M1 } - begin - inptr^[row*RowSize + 2] := Multiply(inptr^[row*RowSize + 2], FP_IC4); { 2/c4 } - inptr^[row*RowSize + 5] := Multiply(inptr^[row*RowSize + 5], FP_IC4); { 2/c4 } - - N1(inptr^[row*RowSize + 4], inptr^[row*RowSize + 6]); - end; - 2,5: { M2 } - begin - inptr^[row*RowSize + 0] := Multiply(inptr^[row*RowSize + 0], FP_IC4); - inptr^[row*RowSize + 1] := Multiply(inptr^[row*RowSize + 1], FP_IC4); - inptr^[row*RowSize + 3] := Multiply(inptr^[row*RowSize + 3], FP_IC4); - inptr^[row*RowSize + 7] := Multiply(inptr^[row*RowSize + 7], FP_IC4); - - inptr^[row*RowSize + 2] := inptr^[row*RowSize + 2] * 2; { shift } - inptr^[row*RowSize + 5] := inptr^[row*RowSize + 5] * 2; - - N2(inptr^[row*RowSize + 4], inptr^[row*RowSize + 6]); - end; - end; { Case } - - { M x N tensor } - { rows 4,6 } - begin - N1(inptr^[4*RowSize + 0], inptr^[6*RowSize + 0]); - N1(inptr^[4*RowSize + 1], inptr^[6*RowSize + 1]); - N1(inptr^[4*RowSize + 3], inptr^[6*RowSize + 3]); - N1(inptr^[4*RowSize + 7], inptr^[6*RowSize + 7]); - - N2(inptr^[4*RowSize + 2], inptr^[6*RowSize + 2]); - N2(inptr^[4*RowSize + 5], inptr^[6*RowSize + 5]); - - { N3 } - { two inverse matrices => same as FDCT } - tmp0 := inptr^[4*RowSize + 4]; - tmp3 := inptr^[6*RowSize + 6]; - tmp12 := (tmp0 + tmp3) * 2; - z10 := tmp0 - tmp3; - - tmp1 := inptr^[6*RowSize + 4]; - tmp2 := inptr^[4*RowSize + 6]; - tmp13 :=-(tmp1 - tmp2)*2; - z11 := tmp1 + tmp2; - - tmp0 := Multiply(z10 + z11, FP_I_C4_2); - tmp1 := Multiply(z10 - z11, FP_I_C4_2); - - - inptr^[4*RowSize + 4] := tmp12 + tmp0; - inptr^[6*RowSize + 4] := tmp1 + tmp13; - - inptr^[4*RowSize + 6] := tmp1 - tmp13; - inptr^[6*RowSize + 6] := tmp12 - tmp0; - end; - - { R2 x R2 } - - for row := 0 to 7 do - BEGIN - { Odd part } - tmp7 := inptr^[row*RowSize + 7]; - tmp6 := inptr^[row*RowSize + 6] - tmp7; - tmp5 := inptr^[row*RowSize + 5] - tmp6; - tmp4 :=-inptr^[row*RowSize + 4] - tmp5; - - { even part } - tmp0 := inptr^[row*RowSize + 0]; - tmp1 := inptr^[row*RowSize + 1]; - tmp10 := tmp0 + tmp1; - tmp11 := tmp0 - tmp1; - - tmp2 := inptr^[row*RowSize + 2]; - tmp13 := inptr^[row*RowSize + 3]; - tmp12 := tmp2 - tmp13; - - tmp0 := tmp10 + tmp13; - tmp3 := tmp10 - tmp13; - inptr^[row*RowSize + 0] := (tmp0 + tmp7); - inptr^[row*RowSize + 7] := (tmp0 - tmp7); - - inptr^[row*RowSize + 3] := (tmp3 + tmp4); - inptr^[row*RowSize + 4] := (tmp3 - tmp4); - - tmp1 := tmp11 + tmp12; - tmp2 := tmp11 - tmp12; - - inptr^[row*RowSize + 1] := (tmp1 + tmp6); - inptr^[row*RowSize + 6] := (tmp1 - tmp6); - - inptr^[row*RowSize + 2] := (tmp2 + tmp5); - inptr^[row*RowSize + 5] := (tmp2 - tmp5); - END; - - for ctr := 0 to pred(DCTSIZE) do - BEGIN - outptr := JSAMPROW(@output_buf^[ctr]^[output_col]); - { even part } - tmp0 := inptr^[0*RowSize + ctr]; - tmp1 := inptr^[1*RowSize + ctr]; - tmp2 := inptr^[2*RowSize + ctr]; - tmp3 := inptr^[3*RowSize + ctr]; - - tmp10 := tmp0 + tmp1; - tmp11 := tmp0 - tmp1; - - tmp13 := tmp3; - tmp12 := tmp2 - tmp3; - - tmp0 := tmp10 + tmp13; - tmp3 := tmp10 - tmp13; - - tmp1 := tmp11 + tmp12; - tmp2 := tmp11 - tmp12; - - { Odd part } - tmp4 := inptr^[4*RowSize + ctr]; - tmp5 := inptr^[5*RowSize + ctr]; - tmp6 := inptr^[6*RowSize + ctr]; - tmp7 := inptr^[7*RowSize + ctr]; - - tmp6 := tmp6 - tmp7; - tmp5 := tmp5 - tmp6; - tmp4 :=-tmp4 - tmp5; - - outptr^[0*RowSize + ctr] := DeScale(tmp0 + tmp7); - outptr^[7*RowSize + ctr] := DeScale(tmp0 - tmp7); - - outptr^[1*RowSize + ctr] := DeScale(tmp1 + tmp6); - outptr^[6*RowSize + ctr] := DeScale(tmp1 - tmp6); - - outptr^[2*RowSize + ctr] := DeScale(tmp2 + tmp5); - outptr^[5*RowSize + ctr] := DeScale(tmp2 - tmp5); - - outptr^[3*RowSize + ctr] := DeScale(tmp3 + tmp4); - outptr^[4*RowSize + ctr] := DeScale(tmp3 - tmp4); - - - { Final output stage: scale down by a factor of 8 and range-limit } - - outptr^[0] := range_limit^[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[7] := range_limit^[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[1] := range_limit^[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[6] := range_limit^[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[2] := range_limit^[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[5] := range_limit^[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[4] := range_limit^[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[3] := range_limit^[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) - and RANGE_MASK]; - END; - - Inc(bbo); - Inc(inptr); - End; -End; {----------------------------------------} - - -{GLOBAL} -procedure jpeg_idct_i2d (cinfo : j_decompress_ptr; - compptr : jpeg_component_info_ptr; - coef_block : JCOEFPTR; - output_buf : JSAMPARRAY; - output_col : JDIMENSION); - -procedure Feig_2D_IDCT(coef_block :imatrix; - output_buf : JSAMPARRAY); -Const - CONST_IC4 = 1.414213562; { 1/0.707106781; } - FP_IC4 = Integer(Round(IFX_CONST*CONST_IC4)); - FP_I_C4_2 = FP_IC4; - - Function Descale(x : integer):integer; - begin - DeScale := (x+ (4 shl PASS_BITS)) div (8 shl PASS_BITS); - { DeScale := x sar (3 + PASS_BITS); - Borland Pascal SHR is unsigned } - end; - { - function Multiply(X, Y: Integer): integer; - begin - Multiply := Integer( X*LongInt(Y) div IFX_CONST); - end; - } - function Multiply(X, Y: Integer): integer; assembler; - asm - mov ax, X - imul Y - mov al, ah - mov ah, dl - end; - - -var - z10, z11, z12, z13, - tmp0,tmp1,tmp2,tmp3, - tmp4,tmp5,tmp6,tmp7, - tmp10,tmp11, - tmp12,tmp13 : integer; - column, row : byte; - - Procedure N1(var x, y : integer); { rotator 1 } - Const - FP_a5 = Integer(Round(IFX_CONST*1.847759065)); - FP_a4 = Integer(Round(IFX_CONST*2.613125930)); - FP_a2 = Integer(Round(IFX_CONST*1.082392200)); - var - z5, tmp : integer; - begin - tmp := x; - - z5 := Multiply(tmp + y, FP_a5); { c6 } - x := Multiply(y, FP_a2) - z5; { c2-c6 } - y := Multiply(tmp, -FP_a4) + z5; { c2+c6 } - end; - - Procedure N2(var x, y : integer); { N1 scaled by c4 } - Const - FP_b5 = Integer(Round(IFX_CONST*1.847759065*CONST_IC4)); - FP_b4 = Integer(Round(IFX_CONST*2.613125930*CONST_IC4)); - FP_b2 = Integer(Round(IFX_CONST*1.082392200*CONST_IC4)); - var - z5, tmp : integer; - begin - tmp := x; - - z5 := Multiply(tmp + y, FP_b5); - x := Multiply(y, FP_b2) - z5; - y := Multiply(tmp,-FP_b4) + z5; - end; - -var - tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : DCTELEM; - tmp10, tmp11, tmp12, tmp13 : DCTELEM; - z10, z11, z12, z13 : DCTELEM; - inptr : JCOEFPTR; - - quantptr : IFAST_MULT_TYPE_FIELD_PTR; - wsptr : PWorkspace; - outptr : JSAMPROW; - range_limit : JSAMPROW; - ctr : int; - workspace : TWorkspace; { buffers data between passes } - {SHIFT_TEMPS { for DESCALE } - {ISHIFT_TEMPS { for IDESCALE } -var - dcval : int; -var - dcval_ : JSAMPLE; -begin -{ Each IDCT routine is responsible for range-limiting its results and - converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could - be quite far out of range if the input data is corrupt, so a bulletproof - range-limiting step is required. We use a mask-and-table-lookup method - to do the combined operations quickly. See the comments with - prepare_range_limit_table (in jdmaster.c) for more info. } - - range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE])); - { Pass 1: process columns from input, store into work array. } - - inptr := coef_block; - quantptr := IFAST_MULT_TYPE_FIELD_PTR(compptr^.dct_table); - wsptr := @workspace; - - { R1 x R1 } - for ctr := pred(DCTSIZE) downto 0 do - BEGIN - { even part } - tmp1 := DEQUANTIZE(inptr^[DCTSIZE*2], quantptr^[DCTSIZE*2]); - tmp3 := DEQUANTIZE(inptr^[DCTSIZE*6], quantptr^[DCTSIZE*6]); - - wsptr^[DCTSIZE*0] := int (DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0])); - wsptr^[DCTSIZE*1] := int (DEQUANTIZE(inptr^[DCTSIZE*4], quantptr^[DCTSIZE*4]); - - { Odd part } - - tmp6 := DEQUANTIZE(inptr^[DCTSIZE*5], quantptr^[DCTSIZE*5]); - tmp4 := DEQUANTIZE(inptr^[DCTSIZE*1], quantptr^[DCTSIZE*1]); - tmp7 := DEQUANTIZE(inptr^[DCTSIZE*7], quantptr^[DCTSIZE*7]); - tmp5 := DEQUANTIZE(inptr^[DCTSIZE*3], quantptr^[DCTSIZE*3]); - - - z13 := tmp6 + tmp5; - wsptr^[DCTSIZE*4] := int (tmp6 - tmp5); - - z11 := tmp4 + tmp7; - wsptr^[DCTSIZE*6] := int (tmp4 - tmp7); - - wsptr^[DCTSIZE*7] := int (z11 + z13); - wsptr^[DCTSIZE*5] := int (z11 - z13); - - wsptr^[DCTSIZE*3] := int (tmp1 + tmp3); - wsptr^[DCTSIZE*2] := int (tmp1 - tmp3); - - Inc(JCOEF_PTR(inptr)); { advance pointers to next column } - Inc(IFAST_MULT_TYPE_PTR(quantptr)); - Inc(int_ptr(wsptr)); - END; - - wsptr := @workspace[DCTSIZE*pred(DCTSIZE)]; - for row := pred(DCTSIZE) downto 0 do - BEGIN - { Odd part } - tmp5 := DCTELEM(wsptr^[1]); - tmp7 := DCTELEM(wsptr^[3]); - - { even part } - - {noop: - tmp0 := DCTELEM(wsptr^[0]); - wsptr^[0] := DCTELEM(tmp0);} - - {tmp2 := DCTELEM(wsptr^[4]);} - wsptr^[1] := wsptr^[4]; - - tmp1 := DCTELEM(wsptr^[2]); - tmp3 := DCTELEM(wsptr^[6]); - - wsptr^[2] := DCTELEM(tmp1 - tmp3); - wsptr^[3] := DCTELEM(tmp1 + tmp3); - - { Odd part } - tmp4 := DCTELEM(wsptr^[5]); - tmp6 := DCTELEM(wsptr^[7]); - - z13 := tmp4 + tmp7; - wsptr^[4] := DCTELEM(tmp4 - tmp7); - - z11 := tmp5 + tmp6; - wsptr^[6] := DCTELEM(tmp5 - tmp6); - - wsptr^[7] := DCTELEM(z11 + z13); - wsptr^[5] := DCTELEM(z11 - z13); - Dec(int_ptr(wsptr), DCTSIZE); { advance pointer to previous row } - END; - - { M x M tensor } - wsptr := @workspace[DCTSIZE*0]; - for row := 0 to pred(DCTSIZE) do - begin - Case row of - 0,1,3,7: { M1 } - begin - wsptr^[2] := Multiply(wsptr^[2], FP_IC4); { 2/c4 } - wsptr^[5] := Multiply(wsptr^[5], FP_IC4); { 2/c4 } - - N1(wsptr^[ 4], wsptr^[ 6]); - end; - 2,5: { M2 } - begin - wsptr^[0] := Multiply(wsptr^[0], FP_IC4); - wsptr^[1] := Multiply(wsptr^[1], FP_IC4); - wsptr^[3] := Multiply(wsptr^[3], FP_IC4); - wsptr^[7] := Multiply(wsptr^[7], FP_IC4); - - wsptr^[2] := wsptr^[2] * 2; { shift } - wsptr^[5] := wsptr^[5] * 2; - - N2(wsptr^[4], wsptr^[6]); - end; - end; { Case } - Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row } - end; - - { M x N tensor } - { rows 4,6 } - begin - N1(workspace[DCTSIZE*4+0], workspace[DCTSIZE*6+0]); - N1(workspace[DCTSIZE*4+1], workspace[DCTSIZE*6+1]); - N1(workspace[DCTSIZE*4+3], workspace[DCTSIZE*6+3]); - N1(workspace[DCTSIZE*4+7], workspace[DCTSIZE*6+7]); - - N2(workspace[DCTSIZE*4+2], workspace[DCTSIZE*6+2]); - N2(workspace[DCTSIZE*4+5], workspace[DCTSIZE*6+5]); - - { N3 } - tmp0 := workspace[DCTSIZE*4,4]; - tmp1 := workspace[DCTSIZE*6,4]; - tmp2 := workspace[DCTSIZE*4,6]; - tmp3 := workspace[DCTSIZE*6,6]; - - { two inverse matrices => same as FDCT } - z10 := tmp0 - tmp3; - z11 := tmp1 + tmp2; - - z12 := tmp0 + tmp3; - z13 := tmp1 - tmp2; - - tmp0 := Multiply(z10 + z11, FP_I_C4_2); - tmp1 := Multiply(z10 - z11, FP_I_C4_2); - - tmp2 := z12 * 2; { shifts } - tmp3 := z13 * (-2); - - - workspace[DCTSIZE*4,4] := tmp2 + tmp0; - workspace[DCTSIZE*6,4] := tmp1 + tmp3; - - workspace[DCTSIZE*4,6] := tmp1 - tmp3; - workspace[DCTSIZE*6,6] := tmp2 - tmp0; - end; - - { R2 x R2 } - - wsptr := @workspace; - for row := 0 to pred(DCTSIZE) do - BEGIN - { even part } - tmp0 := wsptr^[0]; - tmp2 := wsptr^[1]; - tmp1 := wsptr^[2]; - tmp3 := wsptr^[3]; - - tmp10 := tmp0 + tmp2; - tmp11 := tmp0 - tmp2; - - tmp12 := tmp1 - tmp3; - tmp13 := tmp3; - - tmp0 := tmp10 + tmp13; - tmp3 := tmp10 - tmp13; - - tmp2 := tmp11 + tmp12; - tmp1 := tmp11 - tmp12; - - { Odd part } - tmp4 := wsptr^[4]; - tmp5 := wsptr^[5]; - tmp6 := wsptr^[6]; - tmp7 := wsptr^[7]; - - tmp6 := tmp6 - tmp7; - tmp5 := tmp5 - tmp6; - tmp4 :=-tmp4 - tmp5; - - wsptr^[0] := (tmp0 + tmp7); - wsptr^[7] := (tmp0 - tmp7); - - wsptr^[1] := (tmp2 + tmp6); - wsptr^[6] := (tmp2 - tmp6); - - wsptr^[2] := (tmp1 + tmp5); - wsptr^[5] := (tmp1 - tmp5); - - wsptr^[3] := (tmp3 + tmp4); - wsptr^[4] := (tmp3 - tmp4); - - Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row } - END; - - wsptr := @workspace; - for ctr := 0 to pred(DCTSIZE) do - BEGIN - outptr := JSAMPROW(@output_buf^[ctr]^[output_col]); - { even part } - tmp0 := wsptr[0]; - tmp1 := wsptr[1]; - tmp2 := wsptr[2]; - tmp3 := wsptr[3]; - - tmp10 := tmp0 + tmp1; - tmp11 := tmp0 - tmp1; - - tmp13 := tmp3; - tmp12 := tmp2 - tmp3; - - tmp0 := tmp10 + tmp13; - tmp3 := tmp10 - tmp13; - - tmp1 := tmp11 + tmp12; - tmp2 := tmp11 - tmp12; - - { Odd part } - tmp4 := wsptr[4]; - tmp5 := wsptr[5]; - tmp6 := wsptr[6]; - tmp7 := wsptr[7]; - - tmp6 := tmp6 - tmp7; - tmp5 := tmp5 - tmp6; - tmp4 :=-tmp4 - tmp5; - - { Final output stage: scale down by a factor of 8 and range-limit } - - outptr^[0] := range_limit^[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[7] := range_limit^[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[1] := range_limit^[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[6] := range_limit^[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[2] := range_limit^[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[5] := range_limit^[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[4] := range_limit^[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) - and RANGE_MASK]; - outptr^[3] := range_limit^[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) - and RANGE_MASK]; - Inc(int_ptr(wsptr)); - END; -End; {----------------------------------------} - - -{----------------------------------------------------------------------} - |