summaryrefslogtreecommitdiff
path: root/packages/pasjpeg/src/jfdctflt.pas
diff options
context:
space:
mode:
Diffstat (limited to 'packages/pasjpeg/src/jfdctflt.pas')
-rw-r--r--packages/pasjpeg/src/jfdctflt.pas176
1 files changed, 176 insertions, 0 deletions
diff --git a/packages/pasjpeg/src/jfdctflt.pas b/packages/pasjpeg/src/jfdctflt.pas
new file mode 100644
index 0000000000..9dddb4fb25
--- /dev/null
+++ b/packages/pasjpeg/src/jfdctflt.pas
@@ -0,0 +1,176 @@
+Unit JFDctFlt;
+
+{$N+}
+{ This file contains a floating-point implementation of the
+ forward DCT (Discrete Cosine Transform).
+
+ This implementation should be more accurate than either of the integer
+ DCT implementations. However, it may not give the same results on all
+ machines because of differences in roundoff behavior. Speed will depend
+ on the hardware's floating point capacity.
+
+ A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ on each column. Direct algorithms are also available, but they are
+ much more complex and seem not to be any faster when reduced to code.
+
+ This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ JPEG textbook (see REFERENCES section in file README). The following code
+ is based directly on figure 4-8 in P&M.
+ While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ possible to arrange the computation so that many of the multiplies are
+ simple scalings of the final outputs. These multiplies can then be
+ folded into the multiplications or divisions by the JPEG quantization
+ table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ to be done in the DCT itself.
+ The primary disadvantage of this method is that with a fixed-point
+ implementation, accuracy is lost due to imprecise representation of the
+ scaled quantization values. However, that problem does not arise if
+ we use floating point arithmetic. }
+
+{ Original : jfdctflt.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
+
+interface
+
+{$I jconfig.inc}
+
+uses
+ jmorecfg,
+ jinclude,
+ jpeglib,
+ jdct; { Private declarations for DCT subsystem }
+
+
+{ Perform the forward DCT on one block of samples.}
+
+{GLOBAL}
+procedure jpeg_fdct_float (var data : array of FAST_FLOAT);
+
+implementation
+
+{ This module is specialized to the case DCTSIZE = 8. }
+
+{$ifndef DCTSIZE_IS_8}
+ Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
+{$endif}
+
+
+{ Perform the forward DCT on one block of samples.}
+
+{GLOBAL}
+procedure jpeg_fdct_float (var data : array of FAST_FLOAT);
+type
+ PWorkspace = ^TWorkspace;
+ TWorkspace = array [0..DCTSIZE2-1] of FAST_FLOAT;
+var
+ tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : FAST_FLOAT;
+ tmp10, tmp11, tmp12, tmp13 : FAST_FLOAT;
+ z1, z2, z3, z4, z5, z11, z13 : FAST_FLOAT;
+ dataptr : PWorkspace;
+ ctr : int;
+begin
+ { Pass 1: process rows. }
+
+ dataptr := PWorkspace(@data);
+ for ctr := DCTSIZE-1 downto 0 do
+ begin
+ tmp0 := dataptr^[0] + dataptr^[7];
+ tmp7 := dataptr^[0] - dataptr^[7];
+ tmp1 := dataptr^[1] + dataptr^[6];
+ tmp6 := dataptr^[1] - dataptr^[6];
+ tmp2 := dataptr^[2] + dataptr^[5];
+ tmp5 := dataptr^[2] - dataptr^[5];
+ tmp3 := dataptr^[3] + dataptr^[4];
+ tmp4 := dataptr^[3] - dataptr^[4];
+
+ { Even part }
+
+ tmp10 := tmp0 + tmp3; { phase 2 }
+ tmp13 := tmp0 - tmp3;
+ tmp11 := tmp1 + tmp2;
+ tmp12 := tmp1 - tmp2;
+
+ dataptr^[0] := tmp10 + tmp11; { phase 3 }
+ dataptr^[4] := tmp10 - tmp11;
+
+ z1 := (tmp12 + tmp13) * ({FAST_FLOAT}(0.707106781)); { c4 }
+ dataptr^[2] := tmp13 + z1; { phase 5 }
+ dataptr^[6] := tmp13 - z1;
+
+ { Odd part }
+
+ tmp10 := tmp4 + tmp5; { phase 2 }
+ tmp11 := tmp5 + tmp6;
+ tmp12 := tmp6 + tmp7;
+
+ { The rotator is modified from fig 4-8 to avoid extra negations. }
+ z5 := (tmp10 - tmp12) * ( {FAST_FLOAT}(0.382683433)); { c6 }
+ z2 := {FAST_FLOAT}(0.541196100) * tmp10 + z5; { c2-c6 }
+ z4 := {FAST_FLOAT}(1.306562965) * tmp12 + z5; { c2+c6 }
+ z3 := tmp11 * {FAST_FLOAT} (0.707106781); { c4 }
+
+ z11 := tmp7 + z3; { phase 5 }
+ z13 := tmp7 - z3;
+
+ dataptr^[5] := z13 + z2; { phase 6 }
+ dataptr^[3] := z13 - z2;
+ dataptr^[1] := z11 + z4;
+ dataptr^[7] := z11 - z4;
+
+ Inc(FAST_FLOAT_PTR(dataptr), DCTSIZE); { advance pointer to next row }
+ end;
+
+ { Pass 2: process columns. }
+
+ dataptr := PWorkspace(@data);
+ for ctr := DCTSIZE-1 downto 0 do
+ begin
+ tmp0 := dataptr^[DCTSIZE*0] + dataptr^[DCTSIZE*7];
+ tmp7 := dataptr^[DCTSIZE*0] - dataptr^[DCTSIZE*7];
+ tmp1 := dataptr^[DCTSIZE*1] + dataptr^[DCTSIZE*6];
+ tmp6 := dataptr^[DCTSIZE*1] - dataptr^[DCTSIZE*6];
+ tmp2 := dataptr^[DCTSIZE*2] + dataptr^[DCTSIZE*5];
+ tmp5 := dataptr^[DCTSIZE*2] - dataptr^[DCTSIZE*5];
+ tmp3 := dataptr^[DCTSIZE*3] + dataptr^[DCTSIZE*4];
+ tmp4 := dataptr^[DCTSIZE*3] - dataptr^[DCTSIZE*4];
+
+ { Even part }
+
+ tmp10 := tmp0 + tmp3; { phase 2 }
+ tmp13 := tmp0 - tmp3;
+ tmp11 := tmp1 + tmp2;
+ tmp12 := tmp1 - tmp2;
+
+ dataptr^[DCTSIZE*0] := tmp10 + tmp11; { phase 3 }
+ dataptr^[DCTSIZE*4] := tmp10 - tmp11;
+
+ z1 := (tmp12 + tmp13) * {FAST_FLOAT} (0.707106781); { c4 }
+ dataptr^[DCTSIZE*2] := tmp13 + z1; { phase 5 }
+ dataptr^[DCTSIZE*6] := tmp13 - z1;
+
+ { Odd part }
+
+ tmp10 := tmp4 + tmp5; { phase 2 }
+ tmp11 := tmp5 + tmp6;
+ tmp12 := tmp6 + tmp7;
+
+ { The rotator is modified from fig 4-8 to avoid extra negations. }
+ z5 := (tmp10 - tmp12) * {FAST_FLOAT} (0.382683433); { c6 }
+ z2 := {FAST_FLOAT} (0.541196100) * tmp10 + z5; { c2-c6 }
+ z4 := {FAST_FLOAT} (1.306562965) * tmp12 + z5; { c2+c6 }
+ z3 := tmp11 * {FAST_FLOAT} (0.707106781); { c4 }
+
+ z11 := tmp7 + z3; { phase 5 }
+ z13 := tmp7 - z3;
+
+ dataptr^[DCTSIZE*5] := z13 + z2; { phase 6 }
+ dataptr^[DCTSIZE*3] := z13 - z2;
+ dataptr^[DCTSIZE*1] := z11 + z4;
+ dataptr^[DCTSIZE*7] := z11 - z4;
+
+ Inc(FAST_FLOAT_PTR(dataptr)); { advance pointer to next column }
+ end;
+end;
+
+end.