summaryrefslogtreecommitdiff
path: root/packages/pasjpeg/src/jfdctfst.pas
diff options
context:
space:
mode:
Diffstat (limited to 'packages/pasjpeg/src/jfdctfst.pas')
-rw-r--r--packages/pasjpeg/src/jfdctfst.pas237
1 files changed, 237 insertions, 0 deletions
diff --git a/packages/pasjpeg/src/jfdctfst.pas b/packages/pasjpeg/src/jfdctfst.pas
new file mode 100644
index 0000000000..faf4121bc7
--- /dev/null
+++ b/packages/pasjpeg/src/jfdctfst.pas
@@ -0,0 +1,237 @@
+Unit JFDctFst;
+
+{ This file contains a fast, not so accurate integer implementation of the
+ forward DCT (Discrete Cosine Transform).
+
+ A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ on each column. Direct algorithms are also available, but they are
+ much more complex and seem not to be any faster when reduced to code.
+
+ This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ JPEG textbook (see REFERENCES section in file README). The following code
+ is based directly on figure 4-8 in P&M.
+ While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ possible to arrange the computation so that many of the multiplies are
+ simple scalings of the final outputs. These multiplies can then be
+ folded into the multiplications or divisions by the JPEG quantization
+ table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ to be done in the DCT itself.
+ The primary disadvantage of this method is that with fixed-point math,
+ accuracy is lost due to imprecise representation of the scaled
+ quantization values. The smaller the quantization table entry, the less
+ precise the scaled value, so this implementation does worse with high-
+ quality-setting files than with low-quality ones. }
+
+{ Original: jfdctfst.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
+
+
+interface
+
+{$I jconfig.inc}
+
+uses
+ jmorecfg,
+ jinclude,
+ jpeglib,
+ jdct; { Private declarations for DCT subsystem }
+
+
+{ Perform the forward DCT on one block of samples. }
+
+{GLOBAL}
+procedure jpeg_fdct_ifast (var data : array of DCTELEM);
+
+implementation
+
+{ This module is specialized to the case DCTSIZE = 8. }
+
+{$ifndef DCTSIZE_IS_8}
+ Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
+{$endif}
+
+
+{ Scaling decisions are generally the same as in the LL&M algorithm;
+ see jfdctint.c for more details. However, we choose to descale
+ (right shift) multiplication products as soon as they are formed,
+ rather than carrying additional fractional bits into subsequent additions.
+ This compromises accuracy slightly, but it lets us save a few shifts.
+ More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
+ everywhere except in the multiplications proper; this saves a good deal
+ of work on 16-bit-int machines.
+
+ Again to save a few shifts, the intermediate results between pass 1 and
+ pass 2 are not upscaled, but are represented only to integral precision.
+
+ A final compromise is to represent the multiplicative constants to only
+ 8 fractional bits, rather than 13. This saves some shifting work on some
+ machines, and may also reduce the cost of multiplication (since there
+ are fewer one-bits in the constants). }
+
+const
+ CONST_BITS = 8;
+const
+ CONST_SCALE = (INT32(1) shl CONST_BITS);
+
+
+const
+ FIX_0_382683433 = INT32(Round(CONST_SCALE * 0.382683433)); {98}
+ FIX_0_541196100 = INT32(Round(CONST_SCALE * 0.541196100)); {139}
+ FIX_0_707106781 = INT32(Round(CONST_SCALE * 0.707106781)); {181}
+ FIX_1_306562965 = INT32(Round(CONST_SCALE * 1.306562965)); {334}
+
+{ Descale and correctly round an INT32 value that's scaled by N bits.
+ We assume RIGHT_SHIFT rounds towards minus infinity, so adding
+ the fudge factor is correct for either sign of X. }
+
+function DESCALE(x : INT32; n : int) : INT32;
+var
+ shift_temp : INT32;
+begin
+{ We can gain a little more speed, with a further compromise in accuracy,
+ by omitting the addition in a descaling shift. This yields an incorrectly
+ rounded result half the time... }
+{$ifndef USE_ACCURATE_ROUNDING}
+ shift_temp := x;
+{$else}
+ shift_temp := x + (INT32(1) shl (n-1));
+{$endif}
+
+{$ifdef RIGHT_SHIFT_IS_UNSIGNED}
+ if shift_temp < 0 then
+ Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n))
+ else
+{$endif}
+ Descale := (shift_temp shr n);
+end;
+
+{ Multiply a DCTELEM variable by an INT32 constant, and immediately
+ descale to yield a DCTELEM result. }
+
+
+ function MULTIPLY(X : DCTELEM; Y: INT32): DCTELEM;
+ begin
+ Multiply := DeScale((X) * (Y), CONST_BITS);
+ end;
+
+
+{ Perform the forward DCT on one block of samples. }
+
+{GLOBAL}
+procedure jpeg_fdct_ifast (var data : array of DCTELEM);
+type
+ PWorkspace = ^TWorkspace;
+ TWorkspace = array [0..DCTSIZE2-1] of DCTELEM;
+var
+ tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : DCTELEM;
+ tmp10, tmp11, tmp12, tmp13 : DCTELEM;
+ z1, z2, z3, z4, z5, z11, z13 : DCTELEM;
+ dataptr : PWorkspace;
+ ctr : int;
+ {SHIFT_TEMPS}
+begin
+ { Pass 1: process rows. }
+
+ dataptr := PWorkspace(@data);
+ for ctr := DCTSIZE-1 downto 0 do
+ begin
+ tmp0 := dataptr^[0] + dataptr^[7];
+ tmp7 := dataptr^[0] - dataptr^[7];
+ tmp1 := dataptr^[1] + dataptr^[6];
+ tmp6 := dataptr^[1] - dataptr^[6];
+ tmp2 := dataptr^[2] + dataptr^[5];
+ tmp5 := dataptr^[2] - dataptr^[5];
+ tmp3 := dataptr^[3] + dataptr^[4];
+ tmp4 := dataptr^[3] - dataptr^[4];
+
+ { Even part }
+
+ tmp10 := tmp0 + tmp3; { phase 2 }
+ tmp13 := tmp0 - tmp3;
+ tmp11 := tmp1 + tmp2;
+ tmp12 := tmp1 - tmp2;
+
+ dataptr^[0] := tmp10 + tmp11; { phase 3 }
+ dataptr^[4] := tmp10 - tmp11;
+
+ z1 := MULTIPLY(tmp12 + tmp13, FIX_0_707106781); { c4 }
+ dataptr^[2] := tmp13 + z1; { phase 5 }
+ dataptr^[6] := tmp13 - z1;
+
+ { Odd part }
+
+ tmp10 := tmp4 + tmp5; { phase 2 }
+ tmp11 := tmp5 + tmp6;
+ tmp12 := tmp6 + tmp7;
+
+ { The rotator is modified from fig 4-8 to avoid extra negations. }
+ z5 := MULTIPLY(tmp10 - tmp12, FIX_0_382683433); { c6 }
+ z2 := MULTIPLY(tmp10, FIX_0_541196100) + z5; { c2-c6 }
+ z4 := MULTIPLY(tmp12, FIX_1_306562965) + z5; { c2+c6 }
+ z3 := MULTIPLY(tmp11, FIX_0_707106781); { c4 }
+
+ z11 := tmp7 + z3; { phase 5 }
+ z13 := tmp7 - z3;
+
+ dataptr^[5] := z13 + z2; { phase 6 }
+ dataptr^[3] := z13 - z2;
+ dataptr^[1] := z11 + z4;
+ dataptr^[7] := z11 - z4;
+
+ Inc(DCTELEMPTR(dataptr), DCTSIZE); { advance pointer to next row }
+ end;
+
+ { Pass 2: process columns. }
+
+ dataptr := PWorkspace(@data);
+ for ctr := DCTSIZE-1 downto 0 do
+ begin
+ tmp0 := dataptr^[DCTSIZE*0] + dataptr^[DCTSIZE*7];
+ tmp7 := dataptr^[DCTSIZE*0] - dataptr^[DCTSIZE*7];
+ tmp1 := dataptr^[DCTSIZE*1] + dataptr^[DCTSIZE*6];
+ tmp6 := dataptr^[DCTSIZE*1] - dataptr^[DCTSIZE*6];
+ tmp2 := dataptr^[DCTSIZE*2] + dataptr^[DCTSIZE*5];
+ tmp5 := dataptr^[DCTSIZE*2] - dataptr^[DCTSIZE*5];
+ tmp3 := dataptr^[DCTSIZE*3] + dataptr^[DCTSIZE*4];
+ tmp4 := dataptr^[DCTSIZE*3] - dataptr^[DCTSIZE*4];
+
+ { Even part }
+
+ tmp10 := tmp0 + tmp3; { phase 2 }
+ tmp13 := tmp0 - tmp3;
+ tmp11 := tmp1 + tmp2;
+ tmp12 := tmp1 - tmp2;
+
+ dataptr^[DCTSIZE*0] := tmp10 + tmp11; { phase 3 }
+ dataptr^[DCTSIZE*4] := tmp10 - tmp11;
+
+ z1 := MULTIPLY(tmp12 + tmp13, FIX_0_707106781); { c4 }
+ dataptr^[DCTSIZE*2] := tmp13 + z1; { phase 5 }
+ dataptr^[DCTSIZE*6] := tmp13 - z1;
+
+ { Odd part }
+
+ tmp10 := tmp4 + tmp5; { phase 2 }
+ tmp11 := tmp5 + tmp6;
+ tmp12 := tmp6 + tmp7;
+
+ { The rotator is modified from fig 4-8 to avoid extra negations. }
+ z5 := MULTIPLY(tmp10 - tmp12, FIX_0_382683433); { c6 }
+ z2 := MULTIPLY(tmp10, FIX_0_541196100) + z5; { c2-c6 }
+ z4 := MULTIPLY(tmp12, FIX_1_306562965) + z5; { c2+c6 }
+ z3 := MULTIPLY(tmp11, FIX_0_707106781); { c4 }
+
+ z11 := tmp7 + z3; { phase 5 }
+ z13 := tmp7 - z3;
+
+ dataptr^[DCTSIZE*5] := z13 + z2; { phase 6 }
+ dataptr^[DCTSIZE*3] := z13 - z2;
+ dataptr^[DCTSIZE*1] := z11 + z4;
+ dataptr^[DCTSIZE*7] := z11 - z4;
+
+ Inc(DCTELEMPTR(dataptr)); { advance pointer to next column }
+ end;
+end;
+
+end.