summaryrefslogtreecommitdiff
path: root/compiler/powerpc/nppccnv.pas
blob: 668dc37e38d498576f33ea02b99ebaa55a66528a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
{
    Copyright (c) 1998-2002 by Florian Klaempfl

    Generate PowerPC assembler for type converting nodes

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 ****************************************************************************
}
unit nppccnv;

{$i fpcdefs.inc}

interface

    uses
      node,ncnv,ncgcnv,ngppccnv;

    type
       tppctypeconvnode = class(tgenppctypeconvnode)
         protected
         { procedure second_int_to_int;override; }
         { procedure second_string_to_string;override; }
         { procedure second_cstring_to_pchar;override; }
         { procedure second_string_to_chararray;override; }
         { procedure second_array_to_pointer;override; }
          function first_int_to_real: tnode; override;
         { procedure second_pointer_to_array;override; }
         { procedure second_chararray_to_string;override; }
         { procedure second_char_to_string;override; }
          procedure second_int_to_real;override;
         { procedure second_real_to_real;override; }
         { procedure second_cord_to_pointer;override; }
         { procedure second_proc_to_procvar;override; }
         { procedure second_bool_to_int;override; }
         { procedure second_int_to_bool;override; }
         { procedure second_set_to_set;override;  }
         { procedure second_ansistring_to_pchar;override; }
         { procedure second_pchar_to_string;override; }
         { procedure second_class_to_intf;override; }
         { procedure second_char_to_char;override; }
       end;

implementation

   uses
      verbose,globtype,globals,systems,
      symconst,symdef,aasmbase,aasmtai,aasmdata,
      defutil,symcpu,
      cgbase,cgutils,pass_1,pass_2,
      ncon,ncal,
      ncgutil,procinfo,
      cpubase,aasmcpu,
      rgobj,tgobj,cgobj,hlcgobj;


{*****************************************************************************
                             FirstTypeConv
*****************************************************************************}

    function tppctypeconvnode.first_int_to_real: tnode;
      var
        fname: string[19];
      begin
        { converting a 64bit integer to a float requires a helper }
        if is_64bitint(left.resultdef) or
                is_currency(left.resultdef) then
          begin
            { hack to avoid double division by 10000, as it's       }
            { already done by typecheckpass.resultdef_int_to_real }
            if is_currency(left.resultdef) then
              left.resultdef := s64inttype;
            if is_signed(left.resultdef) then
              fname := 'fpc_int64_to_double'
            else
              fname := 'fpc_qword_to_double';
            result := ccallnode.createintern(fname,ccallparanode.create(
              left,nil));
            left:=nil;
            firstpass(result);
            exit;
          end
        else
          { other integers are supposed to be 32 bit }
          begin
            if is_signed(left.resultdef) then
              inserttypeconv(left,s32inttype)
            else
              inserttypeconv(left,u32inttype);
            firstpass(left);
          end;
        result := nil;
        expectloc:=LOC_FPUREGISTER;
      end;


{*****************************************************************************
                             SecondTypeConv
*****************************************************************************}

    procedure tppctypeconvnode.second_int_to_real;

      type
        tdummyarray = packed array[0..7] of byte;

      const
         dummy1: int64 = $4330000080000000;
         dummy2: int64 = $4330000000000000;

      var
        tempconst: tnode;
        ref: treference;
        valuereg, tempreg, leftreg, tmpfpureg: tregister;
        size: tcgsize;
        signed : boolean;
      begin
        location_reset(location,LOC_FPUREGISTER,def_cgsize(resultdef));

        { the code here comes from the PowerPC Compiler Writer's Guide }

        { * longint to double                               }
        { addis R0,R0,0x4330  # R0 = 0x43300000             }
        { stw R0,disp(R1)     # store upper half            }
        { xoris R3,R3,0x8000  # flip sign bit               }
        { stw R3,disp+4(R1)   # store lower half            }
        { lfd FR1,disp(R1)    # float load double of value  }
        { fsub FR1,FR1,FR2    # subtract 0x4330000080000000 }

        { * cardinal to double                              }
        { addis R0,R0,0x4330  # R0 = 0x43300000             }
        { stw R0,disp(R1)     # store upper half            }
        { stw R3,disp+4(R1)   # store lower half            }
        { lfd FR1,disp(R1)    # float load double of value  }
        { fsub FR1,FR1,FR2    # subtract 0x4330000000000000 }
        tg.Gettemp(current_asmdata.CurrAsmList,8,8,tt_normal,ref);

        signed := is_signed(left.resultdef);

        { we need a certain constant for the conversion, so create it here }
        if signed then
          tempconst :=
            crealconstnode.create(double(tdummyarray(dummy1)),
            pbestrealtype^)
        else
          tempconst :=
            crealconstnode.create(double(tdummyarray(dummy2)),
            pbestrealtype^);

        typecheckpass(tempconst);
        firstpass(tempconst);
        secondpass(tempconst);
        if (tempconst.location.loc <> LOC_CREFERENCE) or
           { has to be handled by a helper }
           is_64bitint(left.resultdef) then
          internalerror(200110011);

        if not(left.location.loc in [LOC_REGISTER,LOC_CREGISTER,LOC_REFERENCE,LOC_CREFERENCE]) then
          hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,left.resultdef,false);
        case left.location.loc of
          LOC_REGISTER:
            begin
              leftreg := left.location.register;
              valuereg := leftreg;
            end;
          LOC_CREGISTER:
            begin
              leftreg := left.location.register;
              if signed then
                valuereg := cg.getintregister(current_asmdata.CurrAsmList,OS_INT)
              else
                valuereg := leftreg;
            end;
          LOC_REFERENCE,LOC_CREFERENCE:
            begin
              leftreg := cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
              valuereg := leftreg;
              if signed then
                size := OS_S32
              else
                size := OS_32;
              cg.a_load_ref_reg(current_asmdata.CurrAsmList,def_cgsize(left.resultdef),
                size,left.location.reference,leftreg);
            end
          else
            internalerror(200110012);
         end;
         tempreg := cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
         current_asmdata.CurrAsmList.concat(taicpu.op_reg_const(A_LIS,tempreg,$4330));
         cg.a_load_reg_ref(current_asmdata.CurrAsmList,OS_32,OS_32,tempreg,ref);
         if signed then
           current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_const(A_XORIS,valuereg,
             { xoris expects a unsigned 16 bit int (FK) }
             leftreg,$8000));
         inc(ref.offset,4);
         cg.a_load_reg_ref(current_asmdata.CurrAsmList,OS_32,OS_32,valuereg,ref);
         dec(ref.offset,4);

         tmpfpureg := cg.getfpuregister(current_asmdata.CurrAsmList,OS_F64);
         cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,OS_F64,OS_F64,tempconst.location.reference,
           tmpfpureg);
         tempconst.free;

         location.register := cg.getfpuregister(current_asmdata.CurrAsmList,OS_F64);
         cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,OS_F64,OS_F64,ref,location.register);

         tg.ungetiftemp(current_asmdata.CurrAsmList,ref);

         current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg_reg(A_FSUB,location.register,
           location.register,tmpfpureg));

        { make sure the precision is correct }
        if (tfloatdef(resultdef).floattype = s32real) then
           current_asmdata.CurrAsmList.concat(taicpu.op_reg_reg(A_FRSP,location.register,
             location.register));
       end;

begin
   ctypeconvnode:=tppctypeconvnode;
end.