summaryrefslogtreecommitdiff
path: root/packages/pasjpeg/src/jidctred.pas
blob: f7818d7d83ae201a3d6cb25bd687ebeed907b3b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
Unit JIDctRed;


{ This file contains inverse-DCT routines that produce reduced-size output:
  either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.

  The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
  algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
  with an 8-to-4 step that produces the four averages of two adjacent outputs
  (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
  These steps were derived by computing the corresponding values at the end
  of the normal LL&M code, then simplifying as much as possible.

  1x1 is trivial: just take the DC coefficient divided by 8.

  See jidctint.c for additional comments. }


{ Original : jidctred.c ; Copyright (C) 1994-1998, Thomas G. Lane. }

interface

{$I jconfig.inc}

uses
  jmorecfg,
  jinclude,
  jpeglib,
  jdct;                 { Private declarations for DCT subsystem }

{ Perform dequantization and inverse DCT on one block of coefficients,
  producing a reduced-size 1x1 output block. }

{GLOBAL}
procedure jpeg_idct_1x1 (cinfo : j_decompress_ptr;
                         compptr : jpeg_component_info_ptr;
                         coef_block : JCOEFPTR;
                         output_buf : JSAMPARRAY;
                         output_col : JDIMENSION);

{ Perform dequantization and inverse DCT on one block of coefficients,
  producing a reduced-size 2x2 output block. }

{GLOBAL}
procedure jpeg_idct_2x2 (cinfo : j_decompress_ptr;
                         compptr : jpeg_component_info_ptr;
                         coef_block : JCOEFPTR;
                         output_buf : JSAMPARRAY;
                         output_col : JDIMENSION);

{ Perform dequantization and inverse DCT on one block of coefficients,
  producing a reduced-size 4x4 output block. }

{GLOBAL}
procedure jpeg_idct_4x4 (cinfo : j_decompress_ptr;
                         compptr : jpeg_component_info_ptr;
                         coef_block : JCOEFPTR;
                         output_buf : JSAMPARRAY;
                         output_col : JDIMENSION);

implementation

{ This module is specialized to the case DCTSIZE = 8. }

{$ifndef DCTSIZE_IS_8}
  Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
{$endif}


{ Scaling is the same as in jidctint.c. }

{$ifdef BITS_IN_JSAMPLE_IS_8}
const
  CONST_BITS = 13;
  PASS1_BITS = 2;
{$else}
const
  CONST_BITS = 13;
  PASS1_BITS = 1;       { lose a little precision to avoid overflow }
{$endif}

const
  FIX_0_211164243 = INT32(Round((INT32(1) shl CONST_BITS) * 0.211164243)); {1730}
  FIX_0_509795579 = INT32(Round((INT32(1) shl CONST_BITS) * 0.509795579)); {4176}
  FIX_0_601344887 = INT32(Round((INT32(1) shl CONST_BITS) * 0.601344887)); {4926}
  FIX_0_720959822 = INT32(Round((INT32(1) shl CONST_BITS) * 0.720959822)); {5906}
  FIX_0_765366865 = INT32(Round((INT32(1) shl CONST_BITS) * 0.765366865)); {6270}
  FIX_0_850430095 = INT32(Round((INT32(1) shl CONST_BITS) * 0.850430095)); {6967}
  FIX_0_899976223 = INT32(Round((INT32(1) shl CONST_BITS) * 0.899976223)); {7373}
  FIX_1_061594337 = INT32(Round((INT32(1) shl CONST_BITS) * 1.061594337)); {8697}
  FIX_1_272758580 = INT32(Round((INT32(1) shl CONST_BITS) * 1.272758580)); {10426}
  FIX_1_451774981 = INT32(Round((INT32(1) shl CONST_BITS) * 1.451774981)); {11893}
  FIX_1_847759065 = INT32(Round((INT32(1) shl CONST_BITS) * 1.847759065)); {15137}
  FIX_2_172734803 = INT32(Round((INT32(1) shl CONST_BITS) * 2.172734803)); {17799}
  FIX_2_562915447 = INT32(Round((INT32(1) shl CONST_BITS) * 2.562915447)); {20995}
  FIX_3_624509785 = INT32(Round((INT32(1) shl CONST_BITS) * 3.624509785)); {29692}


{ Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
  For 8-bit samples with the recommended scaling, all the variable
  and constant values involved are no more than 16 bits wide, so a
  16x16->32 bit multiply can be used instead of a full 32x32 multiply.
  For 12-bit samples, a full 32-bit multiplication will be needed. }

{$ifdef BITS_IN_JSAMPLE_IS_8}

   {function Multiply(X, Y: Integer): integer; assembler;
   asm
     mov ax, X
     imul Y
     mov al, ah
     mov ah, dl
   end;}

   {MULTIPLY16C16(var,const)}
   function Multiply(X, Y: Integer): INT32;
   begin
     Multiply := X*INT32(Y);
   end;


{$else}
   function Multiply(X, Y: INT32): INT32;
   begin
     Multiply := X*Y;
   end;
{$endif}


{ Dequantize a coefficient by multiplying it by the multiplier-table
  entry; produce an int result.  In this module, both inputs and result
  are 16 bits or less, so either int or short multiply will work. }

function DEQUANTIZE(coef,quantval : int) : int;
begin
  Dequantize := ( ISLOW_MULT_TYPE(coef) * quantval);
end;


{ Descale and correctly round an INT32 value that's scaled by N bits.
  We assume RIGHT_SHIFT rounds towards minus infinity, so adding
  the fudge factor is correct for either sign of X. }

function DESCALE(x : INT32; n : int) : INT32;
var
  shift_temp : INT32;
begin
{$ifdef RIGHT_SHIFT_IS_UNSIGNED}
  shift_temp := x + (INT32(1) shl (n-1));
  if shift_temp < 0 then
    Descale :=  (shift_temp shr n) or ((not INT32(0)) shl (32-n))
  else
    Descale :=  (shift_temp shr n);
{$else}
  Descale := (x + (INT32(1) shl (n-1)) shr n;
{$endif}
end;

{ Perform dequantization and inverse DCT on one block of coefficients,
  producing a reduced-size 4x4 output block. }

{GLOBAL}
procedure jpeg_idct_4x4 (cinfo : j_decompress_ptr;
                         compptr : jpeg_component_info_ptr;
                         coef_block : JCOEFPTR;
                         output_buf : JSAMPARRAY;
                         output_col : JDIMENSION);
type
  PWorkspace = ^TWorkspace;
  TWorkspace = array[0..(DCTSIZE*4)-1] of int; { buffers data between passes }
var
  tmp0, tmp2, tmp10, tmp12 : INT32;
  z1, z2, z3, z4 : INT32;
  inptr : JCOEFPTR;
  quantptr : ISLOW_MULT_TYPE_FIELD_PTR;
  wsptr : PWorkspace;
  outptr : JSAMPROW;
  range_limit : JSAMPROW;
  ctr : int;
  workspace : TWorkspace;       { buffers data between passes }
  {SHIFT_TEMPS}
var
  dcval : int;
var
  dcval_ : JSAMPLE;
begin
{ Each IDCT routine is responsible for range-limiting its results and
  converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could
  be quite far out of range if the input data is corrupt, so a bulletproof
  range-limiting step is required.  We use a mask-and-table-lookup method
  to do the combined operations quickly.  See the comments with
  prepare_range_limit_table (in jdmaster.c) for more info. }

  range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));

  { Pass 1: process columns from input, store into work array. }

  inptr := coef_block;
  quantptr := ISLOW_MULT_TYPE_FIELD_PTR (compptr^.dct_table);
  wsptr := @workspace;
  for ctr := DCTSIZE downto 1 do
  begin
    { Don't bother to process column 4, because second pass won't use it }
    if (ctr = DCTSIZE-4) then
    begin
      Inc(JCOEF_PTR(inptr));
      Inc(ISLOW_MULT_TYPE_PTR(quantptr));
      Inc(int_ptr(wsptr));

      continue;
    end;
    if (inptr^[DCTSIZE*1]=0) and (inptr^[DCTSIZE*2]=0) and (inptr^[DCTSIZE*3]=0) and
       (inptr^[DCTSIZE*5]=0) and (inptr^[DCTSIZE*6]=0) and (inptr^[DCTSIZE*7]=0) then
    begin
      { AC terms all zero; we need not examine term 4 for 4x4 output }
      dcval := (ISLOW_MULT_TYPE(inptr^[DCTSIZE*0]) *
                      quantptr^[DCTSIZE*0]) shl PASS1_BITS;

      wsptr^[DCTSIZE*0] := dcval;
      wsptr^[DCTSIZE*1] := dcval;
      wsptr^[DCTSIZE*2] := dcval;
      wsptr^[DCTSIZE*3] := dcval;

      Inc(JCOEF_PTR(inptr));
      Inc(ISLOW_MULT_TYPE_PTR(quantptr));
      Inc(int_ptr(wsptr));

      continue;
    end;

    { Even part }

    tmp0 := (ISLOW_MULT_TYPE(inptr^[DCTSIZE*0]) * quantptr^[DCTSIZE*0]);

    tmp0 := tmp0 shl (CONST_BITS+1);

    z2 := (ISLOW_MULT_TYPE(inptr^[DCTSIZE*2]) * quantptr^[DCTSIZE*2]);
    z3 := (ISLOW_MULT_TYPE(inptr^[DCTSIZE*6]) * quantptr^[DCTSIZE*6]);

    tmp2 := MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);

    tmp10 := tmp0 + tmp2;
    tmp12 := tmp0 - tmp2;

    { Odd part }

    z1 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*7]) * quantptr^[DCTSIZE*7];
    z2 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*5]) * quantptr^[DCTSIZE*5];
    z3 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*3]) * quantptr^[DCTSIZE*3];
    z4 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*1]) * quantptr^[DCTSIZE*1];

    tmp0 := MULTIPLY(z1, - FIX_0_211164243) { sqrt(2) * (c3-c1) }
          + MULTIPLY(z2, FIX_1_451774981) { sqrt(2) * (c3+c7) }
          + MULTIPLY(z3, - FIX_2_172734803) { sqrt(2) * (-c1-c5) }
          + MULTIPLY(z4, FIX_1_061594337); { sqrt(2) * (c5+c7) }

    tmp2 := MULTIPLY(z1, - FIX_0_509795579) { sqrt(2) * (c7-c5) }
          + MULTIPLY(z2, - FIX_0_601344887) { sqrt(2) * (c5-c1) }
          + MULTIPLY(z3, FIX_0_899976223) { sqrt(2) * (c3-c7) }
          + MULTIPLY(z4, FIX_2_562915447); { sqrt(2) * (c1+c3) }

    { Final output stage }

    wsptr^[DCTSIZE*0] := int(DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1));
    wsptr^[DCTSIZE*3] := int(DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1));
    wsptr^[DCTSIZE*1] := int(DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1));
    wsptr^[DCTSIZE*2] := int(DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1));

    Inc(JCOEF_PTR(inptr));
    Inc(ISLOW_MULT_TYPE_PTR(quantptr));
    Inc(int_ptr(wsptr));
  end;

  { Pass 2: process 4 rows from work array, store into output array. }

  wsptr := @workspace;
  for ctr := 0 to pred(4) do
  begin
    outptr := JSAMPROW(@ output_buf^[ctr]^[output_col]);
    { It's not clear whether a zero row test is worthwhile here ... }

{$ifndef NO_ZERO_ROW_TEST}
    if (wsptr^[1]=0) and (wsptr^[2]=0) and (wsptr^[3]=0) and
       (wsptr^[5]=0) and (wsptr^[6]=0) and (wsptr^[7]=0) then
    begin
      { AC terms all zero }
      dcval_ := range_limit^[int(DESCALE(INT32(wsptr^[0]), PASS1_BITS+3))
                                  and RANGE_MASK];

      outptr^[0] := dcval_;
      outptr^[1] := dcval_;
      outptr^[2] := dcval_;
      outptr^[3] := dcval_;

      Inc(int_ptr(wsptr), DCTSIZE);     { advance pointer to next row }
      continue;
    end;
{$endif}

    { Even part }

    tmp0 := (INT32(wsptr^[0])) shl (CONST_BITS+1);

    tmp2 := MULTIPLY(INT32(wsptr^[2]), FIX_1_847759065)
          + MULTIPLY(INT32(wsptr^[6]), - FIX_0_765366865);

    tmp10 := tmp0 + tmp2;
    tmp12 := tmp0 - tmp2;

    { Odd part }

    z1 := INT32(wsptr^[7]);
    z2 := INT32(wsptr^[5]);
    z3 := INT32(wsptr^[3]);
    z4 := INT32(wsptr^[1]);

    tmp0 := MULTIPLY(z1, - FIX_0_211164243) { sqrt(2) * (c3-c1) }
          + MULTIPLY(z2, FIX_1_451774981) { sqrt(2) * (c3+c7) }
          + MULTIPLY(z3, - FIX_2_172734803) { sqrt(2) * (-c1-c5) }
          + MULTIPLY(z4, FIX_1_061594337); { sqrt(2) * (c5+c7) }

    tmp2 := MULTIPLY(z1, - FIX_0_509795579) { sqrt(2) * (c7-c5) }
          + MULTIPLY(z2, - FIX_0_601344887) { sqrt(2) * (c5-c1) }
          + MULTIPLY(z3, FIX_0_899976223) { sqrt(2) * (c3-c7) }
          + MULTIPLY(z4, FIX_2_562915447); { sqrt(2) * (c1+c3) }

    { Final output stage }

    outptr^[0] := range_limit^[ int(DESCALE(tmp10 + tmp2,
                                          CONST_BITS+PASS1_BITS+3+1))
                            and RANGE_MASK];
    outptr^[3] := range_limit^[ int(DESCALE(tmp10 - tmp2,
                                          CONST_BITS+PASS1_BITS+3+1))
                            and RANGE_MASK];
    outptr^[1] := range_limit^[ int(DESCALE(tmp12 + tmp0,
                                          CONST_BITS+PASS1_BITS+3+1))
                            and RANGE_MASK];
    outptr^[2] := range_limit^[ int(DESCALE(tmp12 - tmp0,
                                          CONST_BITS+PASS1_BITS+3+1))
                            and RANGE_MASK];

    Inc(int_ptr(wsptr), DCTSIZE);       { advance pointer to next row }
  end;
end;


{ Perform dequantization and inverse DCT on one block of coefficients,
  producing a reduced-size 2x2 output block. }

{GLOBAL}
procedure jpeg_idct_2x2 (cinfo : j_decompress_ptr;
                         compptr : jpeg_component_info_ptr;
                         coef_block : JCOEFPTR;
                         output_buf : JSAMPARRAY;
                         output_col : JDIMENSION);
type
  PWorkspace = ^TWorkspace;
  TWorkspace = array[0..(DCTSIZE*2)-1] of int; { buffers data between passes }
var
  tmp0, tmp10, z1 : INT32;
  inptr : JCOEFPTR;
  quantptr : ISLOW_MULT_TYPE_FIELD_PTR;
  wsptr : PWorkspace;
  outptr : JSAMPROW;
  range_limit : JSAMPROW;
  ctr : int;
  workspace : TWorkspace;  { buffers data between passes }
  {SHIFT_TEMPS}
var
  dcval : int;
var
  dcval_ : JSAMPLE;
begin
{ Each IDCT routine is responsible for range-limiting its results and
  converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could
  be quite far out of range if the input data is corrupt, so a bulletproof
  range-limiting step is required.  We use a mask-and-table-lookup method
  to do the combined operations quickly.  See the comments with
  prepare_range_limit_table (in jdmaster.c) for more info. }

  range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));
  { Pass 1: process columns from input, store into work array. }

  inptr := coef_block;
  quantptr := ISLOW_MULT_TYPE_FIELD_PTR (compptr^.dct_table);
  wsptr := @workspace;
  for ctr := DCTSIZE downto 1 do
  begin
    { Don't bother to process columns 2,4,6 }
    if (ctr = DCTSIZE-2) or (ctr = DCTSIZE-4) or (ctr = DCTSIZE-6) then
    begin
      Inc(JCOEF_PTR(inptr));
      Inc(ISLOW_MULT_TYPE_PTR(quantptr));
      Inc(int_ptr(wsptr));

      continue;
    end;
    if (inptr^[DCTSIZE*1]=0) and (inptr^[DCTSIZE*3]=0) and
       (inptr^[DCTSIZE*5]=0) and (inptr^[DCTSIZE*7]=0) then
    begin
      { AC terms all zero; we need not examine terms 2,4,6 for 2x2 output }
      dcval := (ISLOW_MULT_TYPE(inptr^[DCTSIZE*0]) *
                 quantptr^[DCTSIZE*0]) shl PASS1_BITS;

      wsptr^[DCTSIZE*0] := dcval;
      wsptr^[DCTSIZE*1] := dcval;

      Inc(JCOEF_PTR(inptr));
      Inc(ISLOW_MULT_TYPE_PTR(quantptr));
      Inc(int_ptr(wsptr));

      continue;
    end;

    { Even part }

    z1 := (ISLOW_MULT_TYPE(inptr^[DCTSIZE*0]) * quantptr^[DCTSIZE*0]);

    tmp10 := z1 shl (CONST_BITS+2);

    { Odd part }

    z1 := (ISLOW_MULT_TYPE(inptr^[DCTSIZE*7]) * quantptr^[DCTSIZE*7]);
    tmp0 := MULTIPLY(z1, - FIX_0_720959822); { sqrt(2) * (c7-c5+c3-c1) }
    z1 := (ISLOW_MULT_TYPE(inptr^[DCTSIZE*5]) * quantptr^[DCTSIZE*5]);
    Inc(tmp0, MULTIPLY(z1, FIX_0_850430095)); { sqrt(2) * (-c1+c3+c5+c7) }
    z1 := (ISLOW_MULT_TYPE(inptr^[DCTSIZE*3]) * quantptr^[DCTSIZE*3]);
    Inc(tmp0, MULTIPLY(z1, - FIX_1_272758580)); { sqrt(2) * (-c1+c3-c5-c7) }
    z1 := (ISLOW_MULT_TYPE(inptr^[DCTSIZE*1]) * quantptr^[DCTSIZE*1]);
    Inc(tmp0, MULTIPLY(z1, FIX_3_624509785)); { sqrt(2) * (c1+c3+c5+c7) }

    { Final output stage }

    wsptr^[DCTSIZE*0] := int (DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2));
    wsptr^[DCTSIZE*1] := int (DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2));

    Inc(JCOEF_PTR(inptr));
    Inc(ISLOW_MULT_TYPE_PTR(quantptr));
    Inc(int_ptr(wsptr));
  end;

  { Pass 2: process 2 rows from work array, store into output array. }

  wsptr := @workspace;
  for ctr := 0 to pred(2) do
  begin
    outptr := JSAMPROW(@ output_buf^[ctr]^[output_col]);
    { It's not clear whether a zero row test is worthwhile here ... }

{$ifndef NO_ZERO_ROW_TEST}
    if (wsptr^[1]=0) and (wsptr^[3]=0) and (wsptr^[5]=0) and (wsptr^[7]= 0) then
    begin
      { AC terms all zero }
      dcval_ := range_limit^[ int(DESCALE(INT32(wsptr^[0]), PASS1_BITS+3))
                                  and RANGE_MASK];

      outptr^[0] := dcval_;
      outptr^[1] := dcval_;

      Inc(int_ptr(wsptr), DCTSIZE);     { advance pointer to next row }
      continue;
    end;
{$endif}

    { Even part }

    tmp10 := (INT32 (wsptr^[0])) shl (CONST_BITS+2);

    { Odd part }

    tmp0 := MULTIPLY( INT32(wsptr^[7]), - FIX_0_720959822) { sqrt(2) * (c7-c5+c3-c1) }
          + MULTIPLY( INT32(wsptr^[5]), FIX_0_850430095) { sqrt(2) * (-c1+c3+c5+c7) }
          + MULTIPLY( INT32(wsptr^[3]), - FIX_1_272758580) { sqrt(2) * (-c1+c3-c5-c7) }
          + MULTIPLY( INT32(wsptr^[1]), FIX_3_624509785); { sqrt(2) * (c1+c3+c5+c7) }

    { Final output stage }

    outptr^[0] := range_limit^[ int(DESCALE(tmp10 + tmp0,
                                          CONST_BITS+PASS1_BITS+3+2))
                            and RANGE_MASK];
    outptr^[1] := range_limit^[ int(DESCALE(tmp10 - tmp0,
                                          CONST_BITS+PASS1_BITS+3+2))
                            and RANGE_MASK];

    Inc(int_ptr(wsptr), DCTSIZE);               { advance pointer to next row }
  end;
end;


{ Perform dequantization and inverse DCT on one block of coefficients,
  producing a reduced-size 1x1 output block. }

{GLOBAL}
procedure jpeg_idct_1x1 (cinfo : j_decompress_ptr;
                         compptr : jpeg_component_info_ptr;
                         coef_block : JCOEFPTR;
                         output_buf : JSAMPARRAY;
                         output_col : JDIMENSION);
var
  dcval : int;
  quantptr : ISLOW_MULT_TYPE_FIELD_PTR;
  range_limit : JSAMPROW;
  {SHIFT_TEMPS}
begin
{ Each IDCT routine is responsible for range-limiting its results and
  converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could
  be quite far out of range if the input data is corrupt, so a bulletproof
  range-limiting step is required.  We use a mask-and-table-lookup method
  to do the combined operations quickly.  See the comments with
  prepare_range_limit_table (in jdmaster.c) for more info. }

  range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));
  { Pass 1: process columns from input, store into work array. }

  { We hardly need an inverse DCT routine for this: just take the
    average pixel value, which is one-eighth of the DC coefficient. }

  quantptr := ISLOW_MULT_TYPE_FIELD_PTR (compptr^.dct_table);
  dcval := (ISLOW_MULT_TYPE(coef_block^[0]) * quantptr^[0]);
  dcval := int (DESCALE( INT32(dcval), 3));

  output_buf^[0]^[output_col] := range_limit^[dcval and RANGE_MASK];
end;

end.