summaryrefslogtreecommitdiff
path: root/FreeRTOS/Demo/CORTEX_MPU_STM32L4_Discovery_GCC_IAR_Keil/ST_Code/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc.c
diff options
context:
space:
mode:
authorgaurav-aws <gaurav-aws@1d2547de-c912-0410-9cb9-b8ca96c0e9e2>2020-01-01 00:35:42 +0000
committergaurav-aws <gaurav-aws@1d2547de-c912-0410-9cb9-b8ca96c0e9e2>2020-01-01 00:35:42 +0000
commit2d6a1a26bba881159920fa616171e175ef8d6364 (patch)
tree698598ccbf3bb7c8c043f1e33b2462a6636b273d /FreeRTOS/Demo/CORTEX_MPU_STM32L4_Discovery_GCC_IAR_Keil/ST_Code/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc.c
parentcc23e86352e98a433c88236867450b77f0c6a1d5 (diff)
downloadfreertos-2d6a1a26bba881159920fa616171e175ef8d6364.tar.gz
Rename STM32Cube to GCC for STM32L4 Discovery projects as GCC is
the compiler used. git-svn-id: http://svn.code.sf.net/p/freertos/code/trunk@2788 1d2547de-c912-0410-9cb9-b8ca96c0e9e2
Diffstat (limited to 'FreeRTOS/Demo/CORTEX_MPU_STM32L4_Discovery_GCC_IAR_Keil/ST_Code/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc.c')
-rw-r--r--FreeRTOS/Demo/CORTEX_MPU_STM32L4_Discovery_GCC_IAR_Keil/ST_Code/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc.c1869
1 files changed, 1869 insertions, 0 deletions
diff --git a/FreeRTOS/Demo/CORTEX_MPU_STM32L4_Discovery_GCC_IAR_Keil/ST_Code/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc.c b/FreeRTOS/Demo/CORTEX_MPU_STM32L4_Discovery_GCC_IAR_Keil/ST_Code/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc.c
new file mode 100644
index 000000000..9709d0679
--- /dev/null
+++ b/FreeRTOS/Demo/CORTEX_MPU_STM32L4_Discovery_GCC_IAR_Keil/ST_Code/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc.c
@@ -0,0 +1,1869 @@
+/**
+ ******************************************************************************
+ * @file stm32l4xx_hal_rcc.c
+ * @author MCD Application Team
+ * @brief RCC HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Reset and Clock Control (RCC) peripheral:
+ * + Initialization and de-initialization functions
+ * + Peripheral Control functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### RCC specific features #####
+ ==============================================================================
+ [..]
+ After reset the device is running from Multiple Speed Internal oscillator
+ (4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache
+ and I-Cache are disabled, and all peripherals are off except internal
+ SRAM, Flash and JTAG.
+
+ (+) There is no prescaler on High speed (AHBs) and Low speed (APBs) busses:
+ all peripherals mapped on these busses are running at MSI speed.
+ (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
+ (+) All GPIOs are in analog mode, except the JTAG pins which
+ are assigned to be used for debug purpose.
+
+ [..]
+ Once the device started from reset, the user application has to:
+ (+) Configure the clock source to be used to drive the System clock
+ (if the application needs higher frequency/performance)
+ (+) Configure the System clock frequency and Flash settings
+ (+) Configure the AHB and APB busses prescalers
+ (+) Enable the clock for the peripheral(s) to be used
+ (+) Configure the clock source(s) for peripherals which clocks are not
+ derived from the System clock (SAIx, RTC, ADC, USB OTG FS/SDMMC1/RNG)
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.</center></h2>
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l4xx_hal.h"
+
+/** @addtogroup STM32L4xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup RCC RCC
+ * @brief RCC HAL module driver
+ * @{
+ */
+
+#ifdef HAL_RCC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup RCC_Private_Constants RCC Private Constants
+ * @{
+ */
+#define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT
+#define HSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
+#define MSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
+#if defined(RCC_CSR_LSIPREDIV)
+#define LSI_TIMEOUT_VALUE 17U /* 17 ms (16 ms starting time + 1) */
+#else
+#define LSI_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
+#endif /* RCC_CSR_LSIPREDIV */
+#define HSI48_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
+#define PLL_TIMEOUT_VALUE 2U /* 2 ms (minimum Tick + 1) */
+#define CLOCKSWITCH_TIMEOUT_VALUE 5000U /* 5 s */
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/** @defgroup RCC_Private_Macros RCC Private Macros
+ * @{
+ */
+#define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
+#define MCO1_GPIO_PORT GPIOA
+#define MCO1_PIN GPIO_PIN_8
+
+#define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \
+ (MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (__HAL_RCC_PLLSOURCE__)))
+/**
+ * @}
+ */
+
+/* Private variables ---------------------------------------------------------*/
+
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup RCC_Private_Functions RCC Private Functions
+ * @{
+ */
+static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange);
+#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
+static uint32_t RCC_GetSysClockFreqFromPLLSource(void);
+#endif
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup RCC_Exported_Functions RCC Exported Functions
+ * @{
+ */
+
+/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+ @verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..]
+ This section provides functions allowing to configure the internal and external oscillators
+ (HSE, HSI, LSE, MSI, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1
+ and APB2).
+
+ [..] Internal/external clock and PLL configuration
+ (+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through
+ the PLL as System clock source.
+
+ (+) MSI (Mutiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ.
+ It can be used to generate the clock for the USB OTG FS (48 MHz).
+ The number of flash wait states is automatically adjusted when MSI range is updated with
+ HAL_RCC_OscConfig() and the MSI is used as System clock source.
+
+ (+) LSI (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC
+ clock source.
+
+ (+) HSE (high-speed external): 4 to 48 MHz crystal oscillator used directly or
+ through the PLL as System clock source. Can be used also optionally as RTC clock source.
+
+ (+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source.
+
+ (+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
+ (++) The first output is used to generate the high speed system clock (up to 80MHz).
+ (++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
+ the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz).
+ (++) The third output is used to generate an accurate clock to achieve
+ high-quality audio performance on SAI interface.
+
+ (+) PLLSAI1 (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
+ (++) The first output is used to generate SAR ADC1 clock.
+ (++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
+ the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz).
+ (++) The Third output is used to generate an accurate clock to achieve
+ high-quality audio performance on SAI interface.
+
+ (+) PLLSAI2 (clocked by HSI, HSE or MSI) providing up to two independent output clocks:
+ (++) The first output is used to generate SAR ADC2 clock.
+ (++) The second output is used to generate an accurate clock to achieve
+ high-quality audio performance on SAI interface.
+
+ (+) CSS (Clock security system): once enabled, if a HSE clock failure occurs
+ (HSE used directly or through PLL as System clock source), the System clock
+ is automatically switched to HSI and an interrupt is generated if enabled.
+ The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt)
+ exception vector.
+
+ (+) MCO (microcontroller clock output): used to output MSI, LSI, HSI, LSE, HSE or
+ main PLL clock (through a configurable prescaler) on PA8 pin.
+
+ [..] System, AHB and APB busses clocks configuration
+ (+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI,
+ HSE and main PLL.
+ The AHB clock (HCLK) is derived from System clock through configurable
+ prescaler and used to clock the CPU, memory and peripherals mapped
+ on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
+ from AHB clock through configurable prescalers and used to clock
+ the peripherals mapped on these busses. You can use
+ "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
+
+ -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
+
+ (+@) SAI: the SAI clock can be derived either from a specific PLL (PLLSAI1) or (PLLSAI2) or
+ from an external clock mapped on the SAI_CKIN pin.
+ You have to use HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
+ (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
+ divided by 2 to 31.
+ You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function
+ to configure this clock.
+ (+@) USB OTG FS, SDMMC1 and RNG: USB OTG FS requires a frequency equal to 48 MHz
+ to work correctly, while the SDMMC1 and RNG peripherals require a frequency
+ equal or lower than to 48 MHz. This clock is derived of the main PLL or PLLSAI1
+ through PLLQ divider. You have to enable the peripheral clock and use
+ HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
+ (+@) IWDG clock which is always the LSI clock.
+
+
+ (+) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 80 MHz.
+ The clock source frequency should be adapted depending on the device voltage range
+ as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter.
+
+ @endverbatim
+
+ Table 1. HCLK clock frequency for STM32L4Rx/STM32L4Sx devices
+ +--------------------------------------------------------+
+ | Latency | HCLK clock frequency (MHz) |
+ | |--------------------------------------|
+ | | voltage range 1 | voltage range 2 |
+ | | 1.2 V | 1.0 V |
+ |-----------------|-------------------|------------------|
+ |0WS(1 CPU cycles)| 0 < HCLK <= 20 | 0 < HCLK <= 8 |
+ |-----------------|-------------------|------------------|
+ |1WS(2 CPU cycles)| 20 < HCLK <= 40 | 8 < HCLK <= 16 |
+ |-----------------|-------------------|------------------|
+ |2WS(3 CPU cycles)| 40 < HCLK <= 60 | 16 < HCLK <= 26 |
+ |-----------------|-------------------|------------------|
+ |3WS(4 CPU cycles)| 60 < HCLK <= 80 | 16 < HCLK <= 26 |
+ |-----------------|-------------------|------------------|
+ |4WS(5 CPU cycles)| 80 < HCLK <= 100 | 16 < HCLK <= 26 |
+ |-----------------|-------------------|------------------|
+ |5WS(6 CPU cycles)| 100 < HCLK <= 120 | 16 < HCLK <= 26 |
+ +--------------------------------------------------------+
+
+ Table 2. HCLK clock frequency for other STM32L4 devices
+ +-------------------------------------------------------+
+ | Latency | HCLK clock frequency (MHz) |
+ | |-------------------------------------|
+ | | voltage range 1 | voltage range 2 |
+ | | 1.2 V | 1.0 V |
+ |-----------------|------------------|------------------|
+ |0WS(1 CPU cycles)| 0 < HCLK <= 16 | 0 < HCLK <= 6 |
+ |-----------------|------------------|------------------|
+ |1WS(2 CPU cycles)| 16 < HCLK <= 32 | 6 < HCLK <= 12 |
+ |-----------------|------------------|------------------|
+ |2WS(3 CPU cycles)| 32 < HCLK <= 48 | 12 < HCLK <= 18 |
+ |-----------------|------------------|------------------|
+ |3WS(4 CPU cycles)| 48 < HCLK <= 64 | 18 < HCLK <= 26 |
+ |-----------------|------------------|------------------|
+ |4WS(5 CPU cycles)| 64 < HCLK <= 80 | 18 < HCLK <= 26 |
+ +-------------------------------------------------------+
+ * @{
+ */
+
+/**
+ * @brief Reset the RCC clock configuration to the default reset state.
+ * @note The default reset state of the clock configuration is given below:
+ * - MSI ON and used as system clock source
+ * - HSE, HSI, PLL, PLLSAI1 and PLLSAI2 OFF
+ * - AHB, APB1 and APB2 prescalers set to 1.
+ * - CSS, MCO1 OFF
+ * - All interrupts disabled
+ * - All interrupt and reset flags cleared
+ * @note This function does not modify the configuration of the
+ * - Peripheral clock sources
+ * - LSI, LSE and RTC clocks (Backup domain)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCC_DeInit(void)
+{
+ uint32_t tickstart;
+
+ /* Reset to default System clock */
+ /* Set MSION bit */
+ SET_BIT(RCC->CR, RCC_CR_MSION);
+
+ /* Insure MSIRDY bit is set before writing default MSIRANGE value */
+ /* Get start tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till MSI is ready */
+ while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U)
+ {
+ if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Set MSIRANGE default value */
+ MODIFY_REG(RCC->CR, RCC_CR_MSIRANGE, RCC_MSIRANGE_6);
+
+ /* Reset CFGR register (MSI is selected as system clock source) */
+ CLEAR_REG(RCC->CFGR);
+
+ /* Update the SystemCoreClock global variable for MSI as system clock source */
+ SystemCoreClock = MSI_VALUE;
+
+ /* Configure the source of time base considering new system clock settings */
+ if(HAL_InitTick(uwTickPrio) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Insure MSI selected as system clock source */
+ /* Get start tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till system clock source is ready */
+ while(READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RCC_CFGR_SWS_MSI)
+ {
+ if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Reset HSION, HSIKERON, HSIASFS, HSEON, HSECSSON, PLLON, PLLSAIxON bits */
+#if defined(RCC_PLLSAI2_SUPPORT)
+
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON | RCC_CR_PLLSAI2ON);
+
+#elif defined(RCC_PLLSAI1_SUPPORT)
+
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON);
+
+#else
+
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON);
+
+#endif /* RCC_PLLSAI2_SUPPORT */
+
+ /* Insure PLLRDY, PLLSAI1RDY and PLLSAI2RDY (if present) are reset */
+ /* Get start tick */
+ tickstart = HAL_GetTick();
+
+#if defined(RCC_PLLSAI2_SUPPORT)
+
+ while(READ_BIT(RCC->CR, RCC_CR_PLLRDY | RCC_CR_PLLSAI1RDY | RCC_CR_PLLSAI2RDY) != 0U)
+
+#elif defined(RCC_PLLSAI1_SUPPORT)
+
+ while(READ_BIT(RCC->CR, RCC_CR_PLLRDY | RCC_CR_PLLSAI1RDY) != 0U)
+
+#else
+
+ while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
+
+#endif
+ {
+ if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Reset PLLCFGR register */
+ CLEAR_REG(RCC->PLLCFGR);
+ SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN_4 );
+
+#if defined(RCC_PLLSAI1_SUPPORT)
+
+ /* Reset PLLSAI1CFGR register */
+ CLEAR_REG(RCC->PLLSAI1CFGR);
+ SET_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N_4 );
+
+#endif /* RCC_PLLSAI1_SUPPORT */
+
+#if defined(RCC_PLLSAI2_SUPPORT)
+
+ /* Reset PLLSAI2CFGR register */
+ CLEAR_REG(RCC->PLLSAI2CFGR);
+ SET_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N_4 );
+
+#endif /* RCC_PLLSAI2_SUPPORT */
+
+ /* Reset HSEBYP bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
+
+ /* Disable all interrupts */
+ CLEAR_REG(RCC->CIER);
+
+ /* Clear all interrupt flags */
+ WRITE_REG(RCC->CICR, 0xFFFFFFFFU);
+
+ /* Clear all reset flags */
+ SET_BIT(RCC->CSR, RCC_CSR_RMVF);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initialize the RCC Oscillators according to the specified parameters in the
+ * RCC_OscInitTypeDef.
+ * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * contains the configuration information for the RCC Oscillators.
+ * @note The PLL is not disabled when used as system clock.
+ * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
+ * supported by this macro. User should request a transition to LSE Off
+ * first and then LSE On or LSE Bypass.
+ * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
+ * supported by this macro. User should request a transition to HSE Off
+ * first and then HSE On or HSE Bypass.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
+{
+ uint32_t tickstart;
+ HAL_StatusTypeDef status;
+ uint32_t sysclk_source, pll_config;
+
+ /* Check Null pointer */
+ if(RCC_OscInitStruct == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
+
+ sysclk_source = __HAL_RCC_GET_SYSCLK_SOURCE();
+ pll_config = __HAL_RCC_GET_PLL_OSCSOURCE();
+
+ /*----------------------------- MSI Configuration --------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
+ assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
+ assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));
+
+ /* Check if MSI is used as system clock or as PLL source when PLL is selected as system clock */
+ if((sysclk_source == RCC_CFGR_SWS_MSI) ||
+ ((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_config == RCC_PLLSOURCE_MSI)))
+ {
+ if((READ_BIT(RCC->CR, RCC_CR_MSIRDY) != 0U) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Otherwise, just the calibration and MSI range change are allowed */
+ else
+ {
+ /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
+ must be correctly programmed according to the frequency of the CPU clock
+ (HCLK) and the supply voltage of the device. */
+ if(RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE())
+ {
+ /* First increase number of wait states update if necessary */
+ if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Selects the Multiple Speed oscillator (MSI) clock range .*/
+ __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
+ /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
+ __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
+ }
+ else
+ {
+ /* Else, keep current flash latency while decreasing applies */
+ /* Selects the Multiple Speed oscillator (MSI) clock range .*/
+ __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
+ /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
+ __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
+
+ /* Decrease number of wait states update if necessary */
+ if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+ }
+
+ /* Update the SystemCoreClock global variable */
+ SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU);
+
+ /* Configure the source of time base considering new system clocks settings*/
+ status = HAL_InitTick(uwTickPrio);
+ if(status != HAL_OK)
+ {
+ return status;
+ }
+ }
+ }
+ else
+ {
+ /* Check the MSI State */
+ if(RCC_OscInitStruct->MSIState != RCC_MSI_OFF)
+ {
+ /* Enable the Internal High Speed oscillator (MSI). */
+ __HAL_RCC_MSI_ENABLE();
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ /* Wait till MSI is ready */
+ while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U)
+ {
+ if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ /* Selects the Multiple Speed oscillator (MSI) clock range .*/
+ __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
+ /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
+ __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
+
+ }
+ else
+ {
+ /* Disable the Internal High Speed oscillator (MSI). */
+ __HAL_RCC_MSI_DISABLE();
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ /* Wait till MSI is ready */
+ while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) != 0U)
+ {
+ if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*------------------------------- HSE Configuration ------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
+
+ /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
+ if((sysclk_source == RCC_CFGR_SWS_HSE) ||
+ ((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_config == RCC_PLLSOURCE_HSE)))
+ {
+ if((READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
+ {
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ /* Set the new HSE configuration ---------------------------------------*/
+ __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
+
+ /* Check the HSE State */
+ if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
+ {
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSE is ready */
+ while(READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U)
+ {
+ if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSE is disabled */
+ while(READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U)
+ {
+ if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*----------------------------- HSI Configuration --------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
+ assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
+
+ /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
+ if((sysclk_source == RCC_CFGR_SWS_HSI) ||
+ ((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_config == RCC_PLLSOURCE_HSI)))
+ {
+ /* When HSI is used as system clock it will not be disabled */
+ if((READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF))
+ {
+ return HAL_ERROR;
+ }
+ /* Otherwise, just the calibration is allowed */
+ else
+ {
+ /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
+ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
+ }
+ }
+ else
+ {
+ /* Check the HSI State */
+ if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
+ {
+ /* Enable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is ready */
+ while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
+ {
+ if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
+ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
+ }
+ else
+ {
+ /* Disable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is disabled */
+ while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) != 0U)
+ {
+ if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*------------------------------ LSI Configuration -------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
+
+ /* Check the LSI State */
+ if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
+ {
+#if defined(RCC_CSR_LSIPREDIV)
+ uint32_t csr_temp = RCC->CSR;
+
+ /* Check LSI division factor */
+ assert_param(IS_RCC_LSIDIV(RCC_OscInitStruct->LSIDiv));
+
+ if (RCC_OscInitStruct->LSIDiv != (csr_temp & RCC_CSR_LSIPREDIV))
+ {
+ if (((csr_temp & RCC_CSR_LSIRDY) == RCC_CSR_LSIRDY) && \
+ ((csr_temp & RCC_CSR_LSION) != RCC_CSR_LSION))
+ {
+ /* If LSIRDY is set while LSION is not enabled,
+ LSIPREDIV can't be updated */
+ return HAL_ERROR;
+ }
+
+ /* Turn off LSI before changing RCC_CSR_LSIPREDIV */
+ if ((csr_temp & RCC_CSR_LSION) == RCC_CSR_LSION)
+ {
+ __HAL_RCC_LSI_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is disabled */
+ while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U)
+ {
+ if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Set LSI division factor */
+ MODIFY_REG(RCC->CSR, RCC_CSR_LSIPREDIV, RCC_OscInitStruct->LSIDiv);
+ }
+#endif /* RCC_CSR_LSIPREDIV */
+
+ /* Enable the Internal Low Speed oscillator (LSI). */
+ __HAL_RCC_LSI_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is ready */
+ while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == 0U)
+ {
+ if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Disable the Internal Low Speed oscillator (LSI). */
+ __HAL_RCC_LSI_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is disabled */
+ while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != 0U)
+ {
+ if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ /*------------------------------ LSE Configuration -------------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
+ {
+ FlagStatus pwrclkchanged = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
+
+ /* Update LSE configuration in Backup Domain control register */
+ /* Requires to enable write access to Backup Domain of necessary */
+ if(HAL_IS_BIT_CLR(RCC->APB1ENR1, RCC_APB1ENR1_PWREN))
+ {
+ __HAL_RCC_PWR_CLK_ENABLE();
+ pwrclkchanged = SET;
+ }
+
+ if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
+ {
+ /* Enable write access to Backup domain */
+ SET_BIT(PWR->CR1, PWR_CR1_DBP);
+
+ /* Wait for Backup domain Write protection disable */
+ tickstart = HAL_GetTick();
+
+ while(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
+ {
+ if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Set the new LSE configuration -----------------------------------------*/
+#if defined(RCC_BDCR_LSESYSDIS)
+ if((RCC_OscInitStruct->LSEState & RCC_BDCR_LSEON) != 0U)
+ {
+ /* Set LSESYSDIS bit according to LSE propagation option (enabled or disabled) */
+ MODIFY_REG(RCC->BDCR, RCC_BDCR_LSESYSDIS, (RCC_OscInitStruct->LSEState & RCC_BDCR_LSESYSDIS));
+
+ if((RCC_OscInitStruct->LSEState & RCC_BDCR_LSEBYP) != 0U)
+ {
+ /* LSE oscillator bypass enable */
+ SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
+ SET_BIT(RCC->BDCR, RCC_BDCR_LSEON);
+ }
+ else
+ {
+ /* LSE oscillator enable */
+ SET_BIT(RCC->BDCR, RCC_BDCR_LSEON);
+ }
+ }
+ else
+ {
+ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON);
+ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
+ }
+#else
+ __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
+#endif /* RCC_BDCR_LSESYSDIS */
+
+ /* Check the LSE State */
+ if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
+ {
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is ready */
+ while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == 0U)
+ {
+ if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is disabled */
+ while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != 0U)
+ {
+ if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+#if defined(RCC_BDCR_LSESYSDIS)
+ /* By default, stop disabling LSE propagation */
+ CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSESYSDIS);
+#endif /* RCC_BDCR_LSESYSDIS */
+ }
+
+ /* Restore clock configuration if changed */
+ if(pwrclkchanged == SET)
+ {
+ __HAL_RCC_PWR_CLK_DISABLE();
+ }
+ }
+#if defined(RCC_HSI48_SUPPORT)
+ /*------------------------------ HSI48 Configuration -----------------------*/
+ if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
+
+ /* Check the LSI State */
+ if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
+ {
+ /* Enable the Internal Low Speed oscillator (HSI48). */
+ __HAL_RCC_HSI48_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI48 is ready */
+ while(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) == 0U)
+ {
+ if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Disable the Internal Low Speed oscillator (HSI48). */
+ __HAL_RCC_HSI48_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI48 is disabled */
+ while(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) != 0U)
+ {
+ if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+#endif /* RCC_HSI48_SUPPORT */
+ /*-------------------------------- PLL Configuration -----------------------*/
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
+
+ if(RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE)
+ {
+ /* Check if the PLL is used as system clock or not */
+ if(sysclk_source != RCC_CFGR_SWS_PLL)
+ {
+ if(RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
+ assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
+ assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
+#if defined(RCC_PLLP_SUPPORT)
+ assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
+#endif /* RCC_PLLP_SUPPORT */
+ assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
+ assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));
+
+ /* Disable the main PLL. */
+ __HAL_RCC_PLL_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is ready */
+ while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
+ {
+ if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Configure the main PLL clock source, multiplication and division factors. */
+ __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
+ RCC_OscInitStruct->PLL.PLLM,
+ RCC_OscInitStruct->PLL.PLLN,
+#if defined(RCC_PLLP_SUPPORT)
+ RCC_OscInitStruct->PLL.PLLP,
+#endif
+ RCC_OscInitStruct->PLL.PLLQ,
+ RCC_OscInitStruct->PLL.PLLR);
+
+ /* Enable the main PLL. */
+ __HAL_RCC_PLL_ENABLE();
+
+ /* Enable PLL System Clock output. */
+ __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK);
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is ready */
+ while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
+ {
+ if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Disable the main PLL. */
+ __HAL_RCC_PLL_DISABLE();
+
+ /* Disable all PLL outputs to save power if no PLLs on */
+#if defined(RCC_PLLSAI1_SUPPORT) && defined(RCC_CR_PLLSAI2RDY)
+ if(READ_BIT(RCC->CR, (RCC_CR_PLLSAI1RDY | RCC_CR_PLLSAI2RDY)) == 0U)
+ {
+ MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
+ }
+#elif defined(RCC_PLLSAI1_SUPPORT)
+ if(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) == 0U)
+ {
+ MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
+ }
+#else
+ MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
+#endif /* RCC_PLLSAI1_SUPPORT && RCC_CR_PLLSAI2RDY */
+
+#if defined(RCC_PLLSAI2_SUPPORT)
+ __HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI3CLK);
+#elif defined(RCC_PLLSAI1_SUPPORT)
+ __HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI2CLK);
+#else
+ __HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLL_SYSCLK | RCC_PLL_48M1CLK);
+#endif /* RCC_PLLSAI2_SUPPORT */
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is disabled */
+ while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
+ {
+ if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Check if there is a request to disable the PLL used as System clock source */
+ if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF)
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ pll_config = RCC->PLLCFGR;
+ /* Do not return HAL_ERROR if request repeats the current configuration */
+ if((READ_BIT(pll_config, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) ||
+ (READ_BIT(pll_config, RCC_PLLCFGR_PLLM) != ((RCC_OscInitStruct->PLL.PLLM - 1U) << RCC_PLLCFGR_PLLM_Pos)) ||
+ (READ_BIT(pll_config, RCC_PLLCFGR_PLLN) != (RCC_OscInitStruct->PLL.PLLN << RCC_PLLCFGR_PLLN_Pos)) ||
+#if defined(RCC_PLLP_SUPPORT)
+#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
+ (READ_BIT(pll_config, RCC_PLLCFGR_PLLPDIV) != (RCC_OscInitStruct->PLL.PLLP << RCC_PLLCFGR_PLLPDIV_Pos)) ||
+#else
+ (READ_BIT(pll_config, RCC_PLLCFGR_PLLP) != ((RCC_OscInitStruct->PLL.PLLP == RCC_PLLP_DIV7) ? 0U : 1U)) ||
+#endif
+#endif
+ (READ_BIT(pll_config, RCC_PLLCFGR_PLLQ) != ((((RCC_OscInitStruct->PLL.PLLQ) >> 1U) - 1U) << RCC_PLLCFGR_PLLQ_Pos)) ||
+ (READ_BIT(pll_config, RCC_PLLCFGR_PLLR) != ((((RCC_OscInitStruct->PLL.PLLR) >> 1U) - 1U) << RCC_PLLCFGR_PLLR_Pos)))
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Initialize the CPU, AHB and APB busses clocks according to the specified
+ * parameters in the RCC_ClkInitStruct.
+ * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * contains the configuration information for the RCC peripheral.
+ * @param FLatency FLASH Latency
+ * This parameter can be one of the following values:
+ * @arg FLASH_LATENCY_0 FLASH 0 Latency cycle
+ * @arg FLASH_LATENCY_1 FLASH 1 Latency cycle
+ * @arg FLASH_LATENCY_2 FLASH 2 Latency cycles
+ * @arg FLASH_LATENCY_3 FLASH 3 Latency cycles
+ * @arg FLASH_LATENCY_4 FLASH 4 Latency cycles
+ @if STM32L4S9xx
+ * @arg FLASH_LATENCY_5 FLASH 5 Latency cycles
+ * @arg FLASH_LATENCY_6 FLASH 6 Latency cycles
+ * @arg FLASH_LATENCY_7 FLASH 7 Latency cycles
+ * @arg FLASH_LATENCY_8 FLASH 8 Latency cycles
+ * @arg FLASH_LATENCY_9 FLASH 9 Latency cycles
+ * @arg FLASH_LATENCY_10 FLASH 10 Latency cycles
+ * @arg FLASH_LATENCY_11 FLASH 11 Latency cycles
+ * @arg FLASH_LATENCY_12 FLASH 12 Latency cycles
+ * @arg FLASH_LATENCY_13 FLASH 13 Latency cycles
+ * @arg FLASH_LATENCY_14 FLASH 14 Latency cycles
+ * @arg FLASH_LATENCY_15 FLASH 15 Latency cycles
+ @endif
+ *
+ * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
+ * and updated by HAL_RCC_GetHCLKFreq() function called within this function
+ *
+ * @note The MSI is used by default as system clock source after
+ * startup from Reset, wake-up from STANDBY mode. After restart from Reset,
+ * the MSI frequency is set to its default value 4 MHz.
+ *
+ * @note The HSI can be selected as system clock source after
+ * from STOP modes or in case of failure of the HSE used directly or indirectly
+ * as system clock (if the Clock Security System CSS is enabled).
+ *
+ * @note A switch from one clock source to another occurs only if the target
+ * clock source is ready (clock stable after startup delay or PLL locked).
+ * If a clock source which is not yet ready is selected, the switch will
+ * occur when the clock source is ready.
+ *
+ * @note You can use HAL_RCC_GetClockConfig() function to know which clock is
+ * currently used as system clock source.
+ *
+ * @note Depending on the device voltage range, the software has to set correctly
+ * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
+ * (for more details refer to section above "Initialization/de-initialization functions")
+ * @retval None
+ */
+HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
+{
+ uint32_t tickstart;
+#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
+ uint32_t hpre = RCC_SYSCLK_DIV1;
+#endif
+ HAL_StatusTypeDef status;
+
+ /* Check Null pointer */
+ if(RCC_ClkInitStruct == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
+ assert_param(IS_FLASH_LATENCY(FLatency));
+
+ /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
+ must be correctly programmed according to the frequency of the CPU clock
+ (HCLK) and the supply voltage of the device. */
+
+ /* Increasing the number of wait states because of higher CPU frequency */
+ if(FLatency > __HAL_FLASH_GET_LATENCY())
+ {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLatency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if(__HAL_FLASH_GET_LATENCY() != FLatency)
+ {
+ return HAL_ERROR;
+ }
+ }
+
+ /*------------------------- SYSCLK Configuration ---------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
+ {
+ assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
+
+ /* PLL is selected as System Clock Source */
+ if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
+ {
+ /* Check the PLL ready flag */
+ if(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
+ {
+ return HAL_ERROR;
+ }
+#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
+ /* Undershoot management when selection PLL as SYSCLK source and frequency above 80Mhz */
+ /* Compute target PLL output frequency */
+ if(RCC_GetSysClockFreqFromPLLSource() > 80000000U)
+ {
+ if(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) == RCC_SYSCLK_DIV1)
+ {
+ /* Intermediate step with HCLK prescaler 2 necessary before to go over 80Mhz */
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV2);
+ hpre = RCC_SYSCLK_DIV2;
+ }
+ else if((((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) && (RCC_ClkInitStruct->AHBCLKDivider == RCC_SYSCLK_DIV1))
+ {
+ /* Intermediate step with HCLK prescaler 2 necessary before to go over 80Mhz */
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV2);
+ hpre = RCC_SYSCLK_DIV2;
+ }
+ else
+ {
+ /* nothing to do */
+ }
+ }
+#endif
+ }
+ else
+ {
+ /* HSE is selected as System Clock Source */
+ if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
+ {
+ /* Check the HSE ready flag */
+ if(READ_BIT(RCC->CR, RCC_CR_HSERDY) == 0U)
+ {
+ return HAL_ERROR;
+ }
+ }
+ /* MSI is selected as System Clock Source */
+ else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI)
+ {
+ /* Check the MSI ready flag */
+ if(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U)
+ {
+ return HAL_ERROR;
+ }
+ }
+ /* HSI is selected as System Clock Source */
+ else
+ {
+ /* Check the HSI ready flag */
+ if(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
+ {
+ return HAL_ERROR;
+ }
+ }
+#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
+ /* Overshoot management when going down from PLL as SYSCLK source and frequency above 80Mhz */
+ if(HAL_RCC_GetSysClockFreq() > 80000000U)
+ {
+ /* Intermediate step with HCLK prescaler 2 necessary before to go under 80Mhz */
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV2);
+ hpre = RCC_SYSCLK_DIV2;
+ }
+#endif
+
+ }
+
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ while(__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))
+ {
+ if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /*-------------------------- HCLK Configuration --------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
+ {
+ assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
+ }
+#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
+ else
+ {
+ /* Is intermediate HCLK prescaler 2 applied internally, complete with HCLK prescaler 1 */
+ if(hpre == RCC_SYSCLK_DIV2)
+ {
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV1);
+ }
+ }
+#endif
+
+ /* Decreasing the number of wait states because of lower CPU frequency */
+ if(FLatency < __HAL_FLASH_GET_LATENCY())
+ {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLatency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if(__HAL_FLASH_GET_LATENCY() != FLatency)
+ {
+ return HAL_ERROR;
+ }
+ }
+
+ /*-------------------------- PCLK1 Configuration ---------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
+ {
+ assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
+ }
+
+ /*-------------------------- PCLK2 Configuration ---------------------------*/
+ if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
+ {
+ assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U));
+ }
+
+ /* Update the SystemCoreClock global variable */
+ SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU);
+
+ /* Configure the source of time base considering new system clocks settings*/
+ status = HAL_InitTick(uwTickPrio);
+
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
+ * @brief RCC clocks control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to:
+
+ (+) Ouput clock to MCO pin.
+ (+) Retrieve current clock frequencies.
+ (+) Enable the Clock Security System.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Select the clock source to output on MCO pin(PA8).
+ * @note PA8 should be configured in alternate function mode.
+ * @param RCC_MCOx specifies the output direction for the clock source.
+ * For STM32L4xx family this parameter can have only one value:
+ * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
+ * @param RCC_MCOSource specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO
+ * @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee
+ * @arg @ref RCC_MCO1SOURCE_PLLCLK main PLL clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source
+ * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
+ @if STM32L443xx
+ * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48
+ @endif
+ * @param RCC_MCODiv specifies the MCO prescaler.
+ * This parameter can be one of the following values:
+ * @arg @ref RCC_MCODIV_1 no division applied to MCO clock
+ * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock
+ * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock
+ * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock
+ * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
+ * @retval None
+ */
+void HAL_RCC_MCOConfig( uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
+{
+ GPIO_InitTypeDef GPIO_InitStruct;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_MCO(RCC_MCOx));
+ assert_param(IS_RCC_MCODIV(RCC_MCODiv));
+ assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
+
+ /* Prevent unused argument(s) compilation warning if no assert_param check */
+ UNUSED(RCC_MCOx);
+
+ /* MCO Clock Enable */
+ __MCO1_CLK_ENABLE();
+
+ /* Configue the MCO1 pin in alternate function mode */
+ GPIO_InitStruct.Pin = MCO1_PIN;
+ GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
+ GPIO_InitStruct.Pull = GPIO_NOPULL;
+ GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
+ HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
+
+ /* Mask MCOSEL[] and MCOPRE[] bits then set MCO1 clock source and prescaler */
+ MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), (RCC_MCOSource | RCC_MCODiv ));
+}
+
+/**
+ * @brief Return the SYSCLK frequency.
+ *
+ * @note The system frequency computed by this function is not the real
+ * frequency in the chip. It is calculated based on the predefined
+ * constant and the selected clock source:
+ * @note If SYSCLK source is MSI, function returns values based on MSI
+ * Value as defined by the MSI range.
+ * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
+ * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
+ * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**),
+ * HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors.
+ * @note (*) HSI_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value
+ * 16 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature.
+ * @note (**) HSE_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value
+ * 8 MHz), user has to ensure that HSE_VALUE is same as the real
+ * frequency of the crystal used. Otherwise, this function may
+ * have wrong result.
+ *
+ * @note The result of this function could be not correct when using fractional
+ * value for HSE crystal.
+ *
+ * @note This function can be used by the user application to compute the
+ * baudrate for the communication peripherals or configure other parameters.
+ *
+ * @note Each time SYSCLK changes, this function must be called to update the
+ * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
+ *
+ *
+ * @retval SYSCLK frequency
+ */
+uint32_t HAL_RCC_GetSysClockFreq(void)
+{
+ uint32_t msirange = 0U, sysclockfreq = 0U;
+ uint32_t pllvco, pllsource, pllr, pllm; /* no init needed */
+ uint32_t sysclk_source, pll_oscsource;
+
+ sysclk_source = __HAL_RCC_GET_SYSCLK_SOURCE();
+ pll_oscsource = __HAL_RCC_GET_PLL_OSCSOURCE();
+
+ if((sysclk_source == RCC_CFGR_SWS_MSI) ||
+ ((sysclk_source == RCC_CFGR_SWS_PLL) && (pll_oscsource == RCC_PLLSOURCE_MSI)))
+ {
+ /* MSI or PLL with MSI source used as system clock source */
+
+ /* Get SYSCLK source */
+ if(READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == 0U)
+ { /* MSISRANGE from RCC_CSR applies */
+ msirange = READ_BIT(RCC->CSR, RCC_CSR_MSISRANGE) >> RCC_CSR_MSISRANGE_Pos;
+ }
+ else
+ { /* MSIRANGE from RCC_CR applies */
+ msirange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE) >> RCC_CR_MSIRANGE_Pos;
+ }
+ /*MSI frequency range in HZ*/
+ msirange = MSIRangeTable[msirange];
+
+ if(sysclk_source == RCC_CFGR_SWS_MSI)
+ {
+ /* MSI used as system clock source */
+ sysclockfreq = msirange;
+ }
+ }
+ else if(sysclk_source == RCC_CFGR_SWS_HSI)
+ {
+ /* HSI used as system clock source */
+ sysclockfreq = HSI_VALUE;
+ }
+ else if(sysclk_source == RCC_CFGR_SWS_HSE)
+ {
+ /* HSE used as system clock source */
+ sysclockfreq = HSE_VALUE;
+ }
+ else
+ {
+ /* unexpected case: sysclockfreq at 0 */
+ }
+
+ if(sysclk_source == RCC_CFGR_SWS_PLL)
+ {
+ /* PLL used as system clock source */
+
+ /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE) * PLLN / PLLM
+ SYSCLK = PLL_VCO / PLLR
+ */
+ pllsource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC);
+
+ switch (pllsource)
+ {
+ case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
+ pllvco = HSI_VALUE;
+ break;
+
+ case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
+ pllvco = HSE_VALUE;
+ break;
+
+ case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
+ default:
+ pllvco = msirange;
+ break;
+ }
+ pllm = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U ;
+ pllvco = (pllvco * (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)) / pllm;
+ pllr = ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U ) * 2U;
+ sysclockfreq = pllvco / pllr;
+ }
+
+ return sysclockfreq;
+}
+
+/**
+ * @brief Return the HCLK frequency.
+ * @note Each time HCLK changes, this function must be called to update the
+ * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
+ *
+ * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency.
+ * @retval HCLK frequency in Hz
+ */
+uint32_t HAL_RCC_GetHCLKFreq(void)
+{
+ return SystemCoreClock;
+}
+
+/**
+ * @brief Return the PCLK1 frequency.
+ * @note Each time PCLK1 changes, this function must be called to update the
+ * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
+ * @retval PCLK1 frequency in Hz
+ */
+uint32_t HAL_RCC_GetPCLK1Freq(void)
+{
+ /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
+ return (HAL_RCC_GetHCLKFreq() >> (APBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_Pos] & 0x1FU));
+}
+
+/**
+ * @brief Return the PCLK2 frequency.
+ * @note Each time PCLK2 changes, this function must be called to update the
+ * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
+ * @retval PCLK2 frequency in Hz
+ */
+uint32_t HAL_RCC_GetPCLK2Freq(void)
+{
+ /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
+ return (HAL_RCC_GetHCLKFreq()>> (APBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_Pos] & 0x1FU));
+}
+
+/**
+ * @brief Configure the RCC_OscInitStruct according to the internal
+ * RCC configuration registers.
+ * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
+ * will be configured.
+ * @retval None
+ */
+void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
+{
+ /* Check the parameters */
+ assert_param(RCC_OscInitStruct != (void *)NULL);
+
+ /* Set all possible values for the Oscillator type parameter ---------------*/
+#if defined(RCC_HSI48_SUPPORT)
+ RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \
+ RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48;
+#else
+ RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \
+ RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
+#endif /* RCC_HSI48_SUPPORT */
+
+ /* Get the HSE configuration -----------------------------------------------*/
+ if(READ_BIT(RCC->CR, RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
+ }
+ else if(READ_BIT(RCC->CR, RCC_CR_HSEON) == RCC_CR_HSEON)
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
+ }
+
+ /* Get the MSI configuration -----------------------------------------------*/
+ if(READ_BIT(RCC->CR, RCC_CR_MSION) == RCC_CR_MSION)
+ {
+ RCC_OscInitStruct->MSIState = RCC_MSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->MSIState = RCC_MSI_OFF;
+ }
+
+ RCC_OscInitStruct->MSICalibrationValue = READ_BIT(RCC->ICSCR, RCC_ICSCR_MSITRIM) >> RCC_ICSCR_MSITRIM_Pos;
+ RCC_OscInitStruct->MSIClockRange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE);
+
+ /* Get the HSI configuration -----------------------------------------------*/
+ if(READ_BIT(RCC->CR, RCC_CR_HSION) == RCC_CR_HSION)
+ {
+ RCC_OscInitStruct->HSIState = RCC_HSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
+ }
+
+ RCC_OscInitStruct->HSICalibrationValue = READ_BIT(RCC->ICSCR, RCC_ICSCR_HSITRIM) >> RCC_ICSCR_HSITRIM_Pos;
+
+ /* Get the LSE configuration -----------------------------------------------*/
+ if(READ_BIT(RCC->BDCR, RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
+ {
+#if defined(RCC_BDCR_LSESYSDIS)
+ if((RCC->BDCR & RCC_BDCR_LSESYSDIS) == RCC_BDCR_LSESYSDIS)
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS_RTC_ONLY;
+ }
+ else
+#endif /* RCC_BDCR_LSESYSDIS */
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
+ }
+ }
+ else if(READ_BIT(RCC->BDCR, RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
+ {
+#if defined(RCC_BDCR_LSESYSDIS)
+ if((RCC->BDCR & RCC_BDCR_LSESYSDIS) == RCC_BDCR_LSESYSDIS)
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_ON_RTC_ONLY;
+ }
+ else
+#endif /* RCC_BDCR_LSESYSDIS */
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_ON;
+ }
+ }
+ else
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
+ }
+
+ /* Get the LSI configuration -----------------------------------------------*/
+ if(READ_BIT(RCC->CSR, RCC_CSR_LSION) == RCC_CSR_LSION)
+ {
+ RCC_OscInitStruct->LSIState = RCC_LSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
+ }
+#if defined(RCC_CSR_LSIPREDIV)
+
+ /* Get the LSI configuration -----------------------------------------------*/
+ if((RCC->CSR & RCC_CSR_LSIPREDIV) == RCC_CSR_LSIPREDIV)
+ {
+ RCC_OscInitStruct->LSIDiv = RCC_LSI_DIV128;
+ }
+ else
+ {
+ RCC_OscInitStruct->LSIDiv = RCC_LSI_DIV1;
+ }
+#endif /* RCC_CSR_LSIPREDIV */
+
+#if defined(RCC_HSI48_SUPPORT)
+ /* Get the HSI48 configuration ---------------------------------------------*/
+ if(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON) == RCC_CRRCR_HSI48ON)
+ {
+ RCC_OscInitStruct->HSI48State = RCC_HSI48_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
+ }
+#else
+ RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
+#endif /* RCC_HSI48_SUPPORT */
+
+ /* Get the PLL configuration -----------------------------------------------*/
+ if(READ_BIT(RCC->CR, RCC_CR_PLLON) == RCC_CR_PLLON)
+ {
+ RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
+ }
+ RCC_OscInitStruct->PLL.PLLSource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC);
+ RCC_OscInitStruct->PLL.PLLM = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U;
+ RCC_OscInitStruct->PLL.PLLN = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos;
+ RCC_OscInitStruct->PLL.PLLQ = (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ) >> RCC_PLLCFGR_PLLQ_Pos) + 1U) << 1U);
+ RCC_OscInitStruct->PLL.PLLR = (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U) << 1U);
+#if defined(RCC_PLLP_SUPPORT)
+#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
+ RCC_OscInitStruct->PLL.PLLP = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPDIV) >> RCC_PLLCFGR_PLLPDIV_Pos;
+#else
+ if(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP) != 0U)
+ {
+ RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV17;
+ }
+ else
+ {
+ RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV7;
+ }
+#endif /* RCC_PLLP_DIV_2_31_SUPPORT */
+#endif /* RCC_PLLP_SUPPORT */
+}
+
+/**
+ * @brief Configure the RCC_ClkInitStruct according to the internal
+ * RCC configuration registers.
+ * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
+ * will be configured.
+ * @param pFLatency Pointer on the Flash Latency.
+ * @retval None
+ */
+void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
+{
+ /* Check the parameters */
+ assert_param(RCC_ClkInitStruct != (void *)NULL);
+ assert_param(pFLatency != (void *)NULL);
+
+ /* Set all possible values for the Clock type parameter --------------------*/
+ RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
+
+ /* Get the SYSCLK configuration --------------------------------------------*/
+ RCC_ClkInitStruct->SYSCLKSource = READ_BIT(RCC->CFGR, RCC_CFGR_SW);
+
+ /* Get the HCLK configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->AHBCLKDivider = READ_BIT(RCC->CFGR, RCC_CFGR_HPRE);
+
+ /* Get the APB1 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB1CLKDivider = READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1);
+
+ /* Get the APB2 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB2CLKDivider = (READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2) >> 3U);
+
+ /* Get the Flash Wait State (Latency) configuration ------------------------*/
+ *pFLatency = __HAL_FLASH_GET_LATENCY();
+}
+
+/**
+ * @brief Enable the Clock Security System.
+ * @note If a failure is detected on the HSE oscillator clock, this oscillator
+ * is automatically disabled and an interrupt is generated to inform the
+ * software about the failure (Clock Security System Interrupt, CSSI),
+ * allowing the MCU to perform rescue operations. The CSSI is linked to
+ * the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.
+ * @note The Clock Security System can only be cleared by reset.
+ * @retval None
+ */
+void HAL_RCC_EnableCSS(void)
+{
+ SET_BIT(RCC->CR, RCC_CR_CSSON) ;
+}
+
+/**
+ * @brief Handle the RCC Clock Security System interrupt request.
+ * @note This API should be called under the NMI_Handler().
+ * @retval None
+ */
+void HAL_RCC_NMI_IRQHandler(void)
+{
+ /* Check RCC CSSF interrupt flag */
+ if(__HAL_RCC_GET_IT(RCC_IT_CSS))
+ {
+ /* RCC Clock Security System interrupt user callback */
+ HAL_RCC_CSSCallback();
+
+ /* Clear RCC CSS pending bit */
+ __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
+ }
+}
+
+/**
+ * @brief RCC Clock Security System interrupt callback.
+ * @retval none
+ */
+__weak void HAL_RCC_CSSCallback(void)
+{
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_RCC_CSSCallback should be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Private function prototypes -----------------------------------------------*/
+/** @addtogroup RCC_Private_Functions
+ * @{
+ */
+/**
+ * @brief Update number of Flash wait states in line with MSI range and current
+ voltage range.
+ * @param msirange MSI range value from RCC_MSIRANGE_0 to RCC_MSIRANGE_11
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange)
+{
+ uint32_t vos;
+ uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */
+
+ if(__HAL_RCC_PWR_IS_CLK_ENABLED())
+ {
+ vos = HAL_PWREx_GetVoltageRange();
+ }
+ else
+ {
+ __HAL_RCC_PWR_CLK_ENABLE();
+ vos = HAL_PWREx_GetVoltageRange();
+ __HAL_RCC_PWR_CLK_DISABLE();
+ }
+
+ if(vos == PWR_REGULATOR_VOLTAGE_SCALE1)
+ {
+ if(msirange > RCC_MSIRANGE_8)
+ {
+ /* MSI > 16Mhz */
+ if(msirange > RCC_MSIRANGE_10)
+ {
+ /* MSI 48Mhz */
+ latency = FLASH_LATENCY_2; /* 2WS */
+ }
+ else
+ {
+ /* MSI 24Mhz or 32Mhz */
+ latency = FLASH_LATENCY_1; /* 1WS */
+ }
+ }
+ /* else MSI <= 16Mhz default FLASH_LATENCY_0 0WS */
+ }
+ else
+ {
+#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
+ if(msirange >= RCC_MSIRANGE_8)
+ {
+ /* MSI >= 16Mhz */
+ latency = FLASH_LATENCY_2; /* 2WS */
+ }
+ else
+ {
+ if(msirange == RCC_MSIRANGE_7)
+ {
+ /* MSI 8Mhz */
+ latency = FLASH_LATENCY_1; /* 1WS */
+ }
+ /* else MSI < 8Mhz default FLASH_LATENCY_0 0WS */
+ }
+#else
+ if(msirange > RCC_MSIRANGE_8)
+ {
+ /* MSI > 16Mhz */
+ latency = FLASH_LATENCY_3; /* 3WS */
+ }
+ else
+ {
+ if(msirange == RCC_MSIRANGE_8)
+ {
+ /* MSI 16Mhz */
+ latency = FLASH_LATENCY_2; /* 2WS */
+ }
+ else if(msirange == RCC_MSIRANGE_7)
+ {
+ /* MSI 8Mhz */
+ latency = FLASH_LATENCY_1; /* 1WS */
+ }
+ /* else MSI < 8Mhz default FLASH_LATENCY_0 0WS */
+ }
+#endif
+ }
+
+ __HAL_FLASH_SET_LATENCY(latency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if(__HAL_FLASH_GET_LATENCY() != latency)
+ {
+ return HAL_ERROR;
+ }
+
+ return HAL_OK;
+}
+
+#if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx)
+/**
+ * @brief Compute SYSCLK frequency based on PLL SYSCLK source.
+ * @retval SYSCLK frequency
+ */
+static uint32_t RCC_GetSysClockFreqFromPLLSource(void)
+{
+ uint32_t msirange = 0U;
+ uint32_t pllvco, pllsource, pllr, pllm, sysclockfreq; /* no init needed */
+
+ if(__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_MSI)
+ {
+ /* Get MSI range source */
+ if(READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == 0U)
+ { /* MSISRANGE from RCC_CSR applies */
+ msirange = READ_BIT(RCC->CSR, RCC_CSR_MSISRANGE) >> RCC_CSR_MSISRANGE_Pos;
+ }
+ else
+ { /* MSIRANGE from RCC_CR applies */
+ msirange = READ_BIT(RCC->CR, RCC_CR_MSIRANGE) >> RCC_CR_MSIRANGE_Pos;
+ }
+ /*MSI frequency range in HZ*/
+ msirange = MSIRangeTable[msirange];
+ }
+
+ /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE) * PLLN / PLLM
+ SYSCLK = PLL_VCO / PLLR
+ */
+ pllsource = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC);
+
+ switch (pllsource)
+ {
+ case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
+ pllvco = HSI_VALUE;
+ break;
+
+ case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
+ pllvco = HSE_VALUE;
+ break;
+
+ case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
+ default:
+ pllvco = msirange;
+ break;
+ }
+ pllm = (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> RCC_PLLCFGR_PLLM_Pos) + 1U ;
+ pllvco = (pllvco * (READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos)) / pllm;
+ pllr = ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR) >> RCC_PLLCFGR_PLLR_Pos) + 1U ) * 2U;
+ sysclockfreq = pllvco / pllr;
+
+ return sysclockfreq;
+}
+#endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_RCC_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/