summaryrefslogtreecommitdiff
path: root/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c
diff options
context:
space:
mode:
Diffstat (limited to 'FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c')
-rw-r--r--FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c2203
1 files changed, 2203 insertions, 0 deletions
diff --git a/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c b/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c
new file mode 100644
index 000000000..0db891b98
--- /dev/null
+++ b/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c
@@ -0,0 +1,2203 @@
+/* sp_int.c
+ *
+ * Copyright (C) 2006-2020 wolfSSL Inc.
+ *
+ * This file is part of wolfSSL.
+ *
+ * wolfSSL is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * wolfSSL is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
+ */
+
+/* Implementation by Sean Parkinson. */
+
+#ifdef HAVE_CONFIG_H
+ #include <config.h>
+#endif
+
+#include <wolfssl/wolfcrypt/settings.h>
+#include <wolfssl/wolfcrypt/error-crypt.h>
+#ifdef NO_INLINE
+ #include <wolfssl/wolfcrypt/misc.h>
+#else
+ #define WOLFSSL_MISC_INCLUDED
+ #include <wolfcrypt/src/misc.c>
+#endif
+
+/* SP Build Options:
+ * WOLFSSL_HAVE_SP_RSA: Enable SP RSA support
+ * WOLFSSL_HAVE_SP_DH: Enable SP DH support
+ * WOLFSSL_HAVE_SP_ECC: Enable SP ECC support
+ * WOLFSSL_SP_MATH: Use only single precision math and algorithms it supports (no fastmath tfm.c or normal integer.c)
+ * WOLFSSL_SP_SMALL: Use smaller version of code and avoid large stack variables
+ * WOLFSSL_SP_NO_MALLOC: Always use stack, no heap XMALLOC/XFREE allowed
+ * WOLFSSL_SP_NO_3072: Disable RSA/DH 3072-bit support
+ * WOLFSSL_SP_NO_2048: Disable RSA/DH 2048-bit support
+ * WOLFSSL_SP_4096: Enable RSA/RH 4096-bit support
+ * WOLFSSL_SP_384 Enable ECC 384-bit SECP384R1 support
+ * WOLFSSL_SP_NO_256 Disable ECC 256-bit SECP256R1 support
+ * WOLFSSL_SP_CACHE_RESISTANT Enable cache resistantant code
+ * WOLFSSL_SP_ASM Enable assembly speedups (detect platform)
+ * WOLFSSL_SP_X86_64_ASM Enable Intel x86 assembly speedups like AVX/AVX2
+ * WOLFSSL_SP_ARM32_ASM Enable Aarch32 assembly speedups
+ * WOLFSSL_SP_ARM64_ASM Enable Aarch64 assembly speedups
+ * WOLFSSL_SP_ARM_CORTEX_M_ASM Enable Cortex-M assembly speedups
+ * WOLFSSL_SP_ARM_THUMB_ASM Enable ARM Thumb assembly speedups (used with -mthumb)
+ */
+
+#ifdef WOLFSSL_SP_MATH
+
+#include <wolfssl/wolfcrypt/sp_int.h>
+
+#if defined(WOLFSSL_HAVE_SP_DH) || defined(WOLFSSL_HAVE_SP_RSA)
+
+WOLFSSL_LOCAL int sp_ModExp_1024(sp_int* base, sp_int* exp, sp_int* mod,
+ sp_int* res);
+WOLFSSL_LOCAL int sp_ModExp_1536(sp_int* base, sp_int* exp, sp_int* mod,
+ sp_int* res);
+WOLFSSL_LOCAL int sp_ModExp_2048(sp_int* base, sp_int* exp, sp_int* mod,
+ sp_int* res);
+WOLFSSL_LOCAL int sp_ModExp_3072(sp_int* base, sp_int* exp, sp_int* mod,
+ sp_int* res);
+WOLFSSL_LOCAL int sp_ModExp_4096(sp_int* base, sp_int* exp, sp_int* mod,
+ sp_int* res);
+
+#endif
+
+int sp_get_digit_count(sp_int *a)
+{
+ int ret;
+ if (!a)
+ ret = 0;
+ else
+ ret = a->used;
+ return ret;
+}
+
+/* Initialize the big number to be zero.
+ *
+ * a SP integer.
+ * returns MP_OKAY always.
+ */
+int sp_init(sp_int* a)
+{
+ a->used = 0;
+ a->size = SP_INT_DIGITS;
+
+ return MP_OKAY;
+}
+
+#if !defined(WOLFSSL_RSA_PUBLIC_ONLY) || (!defined(NO_DH) || defined(HAVE_ECC))
+/* Initialize up to six big numbers to be zero.
+ *
+ * a SP integer.
+ * b SP integer.
+ * c SP integer.
+ * d SP integer.
+ * e SP integer.
+ * f SP integer.
+ * returns MP_OKAY always.
+ */
+int sp_init_multi(sp_int* a, sp_int* b, sp_int* c, sp_int* d, sp_int* e,
+ sp_int* f)
+{
+ if (a != NULL) {
+ a->used = 0;
+ a->size = SP_INT_DIGITS;
+ }
+ if (b != NULL) {
+ b->used = 0;
+ b->size = SP_INT_DIGITS;
+ }
+ if (c != NULL) {
+ c->used = 0;
+ c->size = SP_INT_DIGITS;
+ }
+ if (d != NULL) {
+ d->used = 0;
+ d->size = SP_INT_DIGITS;
+ }
+ if (e != NULL) {
+ e->used = 0;
+ e->size = SP_INT_DIGITS;
+ }
+ if (f != NULL) {
+ f->used = 0;
+ f->size = SP_INT_DIGITS;
+ }
+
+ return MP_OKAY;
+}
+#endif
+
+/* Clear the data from the big number and set to zero.
+ *
+ * a SP integer.
+ */
+void sp_clear(sp_int* a)
+{
+ if (a != NULL) {
+ int i;
+
+ for (i=0; i<a->used; i++)
+ a->dp[i] = 0;
+ a->used = 0;
+ }
+}
+
+/* Calculate the number of 8-bit values required to represent the big number.
+ *
+ * a SP integer.
+ * returns the count.
+ */
+int sp_unsigned_bin_size(sp_int* a)
+{
+ int size = sp_count_bits(a);
+ return (size + 7) / 8;
+}
+
+/* Convert a number as an array of bytes in big-endian format to a big number.
+ *
+ * a SP integer.
+ * in Array of bytes.
+ * inSz Number of data bytes in array.
+ * returns BAD_FUNC_ARG when the number is too big to fit in an SP and
+ MP_OKAY otherwise.
+ */
+int sp_read_unsigned_bin(sp_int* a, const byte* in, int inSz)
+{
+ int err = MP_OKAY;
+ int i, j = 0, k;
+
+ if (inSz > SP_INT_DIGITS * (int)sizeof(a->dp[0])) {
+ err = MP_VAL;
+ }
+
+ if (err == MP_OKAY) {
+ for (i = inSz-1; i >= (SP_WORD_SIZE/8); i -= (SP_WORD_SIZE/8), j++) {
+ a->dp[j] = (((sp_int_digit)in[i-0]) << (0*8))
+ | (((sp_int_digit)in[i-1]) << (1*8))
+ | (((sp_int_digit)in[i-2]) << (2*8))
+ | (((sp_int_digit)in[i-3]) << (3*8));
+ #if SP_WORD_SIZE == 64
+ a->dp[j] |= (((sp_int_digit)in[i-4]) << (4*8))
+ | (((sp_int_digit)in[i-5]) << (5*8))
+ | (((sp_int_digit)in[i-6]) << (6*8))
+ | (((sp_int_digit)in[i-7]) << (7*8));
+ #endif
+ }
+ if (i >= 0) {
+ a->dp[j] = 0;
+ for (k = 0; k <= i; k++) {
+ a->dp[j] <<= 8;
+ a->dp[j] |= in[k];
+ }
+ }
+ a->used = j + 1;
+ }
+
+ sp_clamp(a);
+
+ return err;
+}
+
+#ifdef HAVE_ECC
+/* Convert a number as string in big-endian format to a big number.
+ * Only supports base-16 (hexadecimal).
+ * Negative values not supported.
+ *
+ * a SP integer.
+ * in NUL terminated string.
+ * radix Number of values in a digit.
+ * returns BAD_FUNC_ARG when radix not supported or value is negative, MP_VAL
+ * when a character is not valid and MP_OKAY otherwise.
+ */
+int sp_read_radix(sp_int* a, const char* in, int radix)
+{
+ int err = MP_OKAY;
+ int i, j = 0, k = 0;
+ char ch;
+
+ if ((radix != 16) || (*in == '-')) {
+ err = BAD_FUNC_ARG;
+ }
+
+ while (*in == '0') {
+ in++;
+ }
+
+ if (err == MP_OKAY) {
+ a->dp[0] = 0;
+ for (i = (int)(XSTRLEN(in) - 1); i >= 0; i--) {
+ ch = in[i];
+ if (ch >= '0' && ch <= '9')
+ ch -= '0';
+ else if (ch >= 'A' && ch <= 'F')
+ ch -= 'A' - 10;
+ else if (ch >= 'a' && ch <= 'f')
+ ch -= 'a' - 10;
+ else {
+ err = MP_VAL;
+ break;
+ }
+
+ a->dp[k] |= ((sp_int_digit)ch) << j;
+ j += 4;
+ if (k >= SP_INT_DIGITS - 1) {
+ err = MP_VAL;
+ break;
+ }
+ if (j == DIGIT_BIT)
+ a->dp[++k] = 0;
+ j &= SP_WORD_SIZE - 1;
+ }
+ }
+
+ if (err == MP_OKAY) {
+ a->used = k + 1;
+ if (a->dp[k] == 0)
+ a->used--;
+
+ for (k++; k < a->size; k++)
+ a->dp[k] = 0;
+
+ sp_clamp(a);
+ }
+
+ return err;
+}
+#endif
+
+/* Compare two big numbers.
+ *
+ * a SP integer.
+ * b SP integer.
+ * returns MP_GT if a is greater than b, MP_LT if a is less than b and MP_EQ
+ * when a equals b.
+ */
+int sp_cmp(sp_int* a, sp_int* b)
+{
+ int ret = MP_EQ;
+ int i;
+
+ if (a->used > b->used)
+ ret = MP_GT;
+ else if (a->used < b->used)
+ ret = MP_LT;
+ else {
+ for (i = a->used - 1; i >= 0; i--) {
+ if (a->dp[i] > b->dp[i]) {
+ ret = MP_GT;
+ break;
+ }
+ else if (a->dp[i] < b->dp[i]) {
+ ret = MP_LT;
+ break;
+ }
+ }
+ }
+ return ret;
+}
+
+/* Count the number of bits in the big number.
+ *
+ * a SP integer.
+ * returns the number of bits.
+ */
+int sp_count_bits(sp_int* a)
+{
+ int r = 0;
+ sp_int_digit d;
+
+ r = a->used - 1;
+ while (r >= 0 && a->dp[r] == 0)
+ r--;
+ if (r < 0)
+ r = 0;
+ else {
+ d = a->dp[r];
+ r *= SP_WORD_SIZE;
+ if (d >= (1L << (SP_WORD_SIZE / 2))) {
+ r += SP_WORD_SIZE;
+ while ((d & (1UL << (SP_WORD_SIZE - 1))) == 0) {
+ r--;
+ d <<= 1;
+ }
+ }
+ else {
+ while (d != 0) {
+ r++;
+ d >>= 1;
+ }
+ }
+ }
+
+ return r;
+}
+
+/* Determine if the most significant byte of the encoded big number as the top
+ * bit set.
+ *
+ * a SP integer.
+ * returns 1 when the top bit is set and 0 otherwise.
+ */
+int sp_leading_bit(sp_int* a)
+{
+ int bit = 0;
+ sp_int_digit d;
+
+ if (a->used > 0) {
+ d = a->dp[a->used - 1];
+ while (d > (sp_int_digit)0xff)
+ d >>= 8;
+ bit = (int)(d >> 7);
+ }
+
+ return bit;
+}
+
+#if !defined(NO_DH) || defined(HAVE_ECC) || defined(WC_RSA_BLINDING) || \
+ !defined(WOLFSSL_RSA_VERIFY_ONLY)
+/* Convert the big number to an array of bytes in big-endian format.
+ * The array must be large enough for encoded number - use mp_unsigned_bin_size
+ * to calculate the number of bytes required.
+ *
+ * a SP integer.
+ * out Array to put encoding into.
+ * returns MP_OKAY always.
+ */
+int sp_to_unsigned_bin(sp_int* a, byte* out)
+{
+ int i, j, b;
+ sp_int_digit d;
+
+ j = sp_unsigned_bin_size(a) - 1;
+ for (i=0; j>=0; i++) {
+ d = a->dp[i];
+ for (b = 0; b < SP_WORD_SIZE / 8; b++) {
+ out[j] = d;
+ if (--j < 0) {
+ break;
+ }
+ d >>= 8;
+ }
+ }
+
+ return MP_OKAY;
+}
+#endif
+
+/* Convert the big number to an array of bytes in big-endian format.
+ * The array must be large enough for encoded number - use mp_unsigned_bin_size
+ * to calculate the number of bytes required.
+ * Front-pads the output array with zeros make number the size of the array.
+ *
+ * a SP integer.
+ * out Array to put encoding into.
+ * outSz Size of the array.
+ * returns MP_OKAY always.
+ */
+int sp_to_unsigned_bin_len(sp_int* a, byte* out, int outSz)
+{
+ int i, j, b;
+
+ j = outSz - 1;
+ for (i=0; j>=0; i++) {
+ for (b = 0; b < SP_WORD_SIZE; b += 8) {
+ out[j--] = a->dp[i] >> b;
+ if (j < 0)
+ break;
+ }
+ }
+
+ return MP_OKAY;
+}
+
+#if !defined(WOLFSSL_RSA_PUBLIC_ONLY) || (!defined(NO_DH) || defined(HAVE_ECC))
+/* Ensure the data in the big number is zeroed.
+ *
+ * a SP integer.
+ */
+void sp_forcezero(sp_int* a)
+{
+ ForceZero(a->dp, a->used * sizeof(sp_int_digit));
+ a->used = 0;
+}
+#endif
+
+#if !defined(WOLFSSL_RSA_VERIFY_ONLY) || (!defined(NO_DH) || defined(HAVE_ECC))
+/* Copy value of big number a into r.
+ *
+ * a SP integer.
+ * r SP integer.
+ * returns MP_OKAY always.
+ */
+int sp_copy(sp_int* a, sp_int* r)
+{
+ if (a != r) {
+ XMEMCPY(r->dp, a->dp, a->used * sizeof(sp_int_digit));
+ r->used = a->used;
+ }
+ return MP_OKAY;
+}
+
+/* creates "a" then copies b into it */
+int sp_init_copy (sp_int * a, sp_int * b)
+{
+ int err;
+ if ((err = sp_init(a)) == MP_OKAY) {
+ if((err = sp_copy (b, a)) != MP_OKAY) {
+ sp_clear(a);
+ }
+ }
+ return err;
+}
+#endif
+
+/* Set the big number to be the value of the digit.
+ *
+ * a SP integer.
+ * d Digit to be set.
+ * returns MP_OKAY always.
+ */
+int sp_set(sp_int* a, sp_int_digit d)
+{
+ if (d == 0) {
+ a->dp[0] = d;
+ a->used = 0;
+ }
+ else {
+ a->dp[0] = d;
+ a->used = 1;
+ }
+ return MP_OKAY;
+}
+
+/* Recalculate the number of digits used.
+ *
+ * a SP integer.
+ */
+void sp_clamp(sp_int* a)
+{
+ int i;
+
+ for (i = a->used - 1; i >= 0 && a->dp[i] == 0; i--) {
+ }
+ a->used = i + 1;
+}
+
+#if !defined(WOLFSSL_RSA_VERIFY_ONLY) || (!defined(NO_DH) || defined(HAVE_ECC))
+/* Grow big number to be able to hold l digits.
+ * This function does nothing as the number of digits is fixed.
+ *
+ * a SP integer.
+ * l Number of digits.
+ * returns MP_MEM if the number of digits requested is more than available and
+ * MP_OKAY otherwise.
+ */
+int sp_grow(sp_int* a, int l)
+{
+ int err = MP_OKAY;
+
+ if (l > a->size)
+ err = MP_MEM;
+
+ return err;
+}
+
+/* Sub a one digit number from the big number.
+ *
+ * a SP integer.
+ * d Digit to subtract.
+ * r SP integer - result.
+ * returns MP_OKAY always.
+ */
+int sp_sub_d(sp_int* a, sp_int_digit d, sp_int* r)
+{
+ int i = 0;
+ sp_int_digit t;
+
+ r->used = a->used;
+ t = a->dp[0] - d;
+ if (t > a->dp[0]) {
+ for (++i; i < a->used; i++) {
+ r->dp[i] = a->dp[i] - 1;
+ if (r->dp[i] != (sp_int_digit)-1)
+ break;
+ }
+ }
+ r->dp[0] = t;
+ if (r != a) {
+ for (++i; i < a->used; i++)
+ r->dp[i] = a->dp[i];
+ }
+ sp_clamp(r);
+
+ return MP_OKAY;
+}
+#endif
+
+/* Compare a one digit number with a big number.
+ *
+ * a SP integer.
+ * d Digit to compare with.
+ * returns MP_GT if a is greater than d, MP_LT if a is less than d and MP_EQ
+ * when a equals d.
+ */
+int sp_cmp_d(sp_int *a, sp_int_digit d)
+{
+ int ret = MP_EQ;
+
+ /* special case for zero*/
+ if (a->used == 0) {
+ if (d == 0)
+ ret = MP_EQ;
+ else
+ ret = MP_LT;
+ }
+ else if (a->used > 1)
+ ret = MP_GT;
+ else {
+ /* compare the only digit of a to d */
+ if (a->dp[0] > d)
+ ret = MP_GT;
+ else if (a->dp[0] < d)
+ ret = MP_LT;
+ }
+
+ return ret;
+}
+
+#if !defined(NO_DH) || defined(HAVE_ECC) || !defined(WOLFSSL_RSA_VERIFY_ONLY)
+/* Left shift the number by number of bits.
+ * Bits may be larger than the word size.
+ *
+ * a SP integer.
+ * n Number of bits to shift.
+ * returns MP_OKAY always.
+ */
+static int sp_lshb(sp_int* a, int n)
+{
+ int i;
+
+ if (n >= SP_WORD_SIZE) {
+ sp_lshd(a, n / SP_WORD_SIZE);
+ n %= SP_WORD_SIZE;
+ }
+
+ if (n != 0) {
+ a->dp[a->used] = 0;
+ for (i = a->used - 1; i >= 0; i--) {
+ a->dp[i+1] |= a->dp[i] >> (SP_WORD_SIZE - n);
+ a->dp[i] = a->dp[i] << n;
+ }
+ if (a->dp[a->used] != 0)
+ a->used++;
+ }
+
+ return MP_OKAY;
+}
+
+/* Subtract two large numbers into result: r = a - b
+ * a must be greater than b.
+ *
+ * a SP integer.
+ * b SP integer.
+ * r SP integer.
+ * returns MP_OKAY always.
+ */
+int sp_sub(sp_int* a, sp_int* b, sp_int* r)
+{
+ int i;
+ sp_int_digit c = 0;
+ sp_int_digit t;
+
+ for (i = 0; i < a->used && i < b->used; i++) {
+ t = a->dp[i] - b->dp[i] - c;
+ if (c == 0)
+ c = t > a->dp[i];
+ else
+ c = t >= a->dp[i];
+ r->dp[i] = t;
+ }
+ for (; i < a->used; i++) {
+ r->dp[i] = a->dp[i] - c;
+ c &= (r->dp[i] == (sp_int_digit)-1);
+ }
+ r->used = i;
+ sp_clamp(r);
+
+ return MP_OKAY;
+}
+
+/* Shift a right by n bits into r: r = a >> n
+ *
+ * a SP integer operand.
+ * n Number of bits to shift.
+ * r SP integer result.
+ */
+void sp_rshb(sp_int* a, int n, sp_int* r)
+{
+ int i;
+ int j;
+
+ for (i = n / SP_WORD_SIZE, j = 0; i < a->used-1; i++, j++)
+ r->dp[i] = (a->dp[j] >> n) | (a->dp[j+1] << (SP_WORD_SIZE - n));
+ r->dp[i] = a->dp[j] >> n;
+ r->used = j + 1;
+ sp_clamp(r);
+}
+
+/* Multiply a by digit n and put result into r shifting up o digits.
+ * r = (a * n) << (o * SP_WORD_SIZE)
+ *
+ * a SP integer to be multiplied.
+ * n Number to multiply by.
+ * r SP integer result.
+ * o Number of digits to move result up by.
+ */
+static void _sp_mul_d(sp_int* a, sp_int_digit n, sp_int* r, int o)
+{
+ int i;
+ sp_int_word t = 0;
+
+ for (i = 0; i < o; i++)
+ r->dp[i] = 0;
+
+ for (i = 0; i < a->used; i++) {
+ t += (sp_int_word)n * a->dp[i];
+ r->dp[i + o] = (sp_int_digit)t;
+ t >>= SP_WORD_SIZE;
+ }
+
+ r->dp[i+o] = (sp_int_digit)t;
+ r->used = i+o+1;
+ sp_clamp(r);
+}
+
+/* Divide a by d and return the quotient in r and the remainder in rem.
+ * r = a / d; rem = a % d
+ *
+ * a SP integer to be divided.
+ * d SP integer to divide by.
+ * r SP integer of quotient.
+ * rem SP integer of remainder.
+ * returns MP_VAL when d is 0, MP_MEM when dynamic memory allocation fails and
+ * MP_OKAY otherwise.
+ */
+static int sp_div(sp_int* a, sp_int* d, sp_int* r, sp_int* rem)
+{
+ int err = MP_OKAY;
+ int ret;
+ int done = 0;
+ int i;
+ int s;
+#ifndef WOLFSSL_SP_DIV_32
+ sp_int_word w = 0;
+#endif
+ sp_int_digit dt;
+ sp_int_digit t;
+#ifdef WOLFSSL_SMALL_STACK
+ sp_int* sa = NULL;
+ sp_int* sd;
+ sp_int* tr;
+ sp_int* trial;
+#else
+ sp_int sa[1];
+ sp_int sd[1];
+ sp_int tr[1];
+ sp_int trial[1];
+#endif
+
+ if (sp_iszero(d))
+ err = MP_VAL;
+
+ ret = sp_cmp(a, d);
+ if (ret == MP_LT) {
+ if (rem != NULL) {
+ sp_copy(a, rem);
+ }
+ if (r != NULL) {
+ sp_set(r, 0);
+ }
+ done = 1;
+ }
+ else if (ret == MP_EQ) {
+ if (rem != NULL) {
+ sp_set(rem, 0);
+ }
+ if (r != NULL) {
+ sp_set(r, 1);
+ }
+ done = 1;
+ }
+ else if (sp_count_bits(a) == sp_count_bits(d)) {
+ /* a is greater than d but same bit length */
+ if (rem != NULL) {
+ sp_sub(a, d, rem);
+ }
+ if (r != NULL) {
+ sp_set(r, 1);
+ }
+ done = 1;
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (!done && err == MP_OKAY) {
+ sa = (sp_int*)XMALLOC(sizeof(sp_int) * 4, NULL, DYNAMIC_TYPE_BIGINT);
+ if (sa == NULL) {
+ err = MP_MEM;
+ }
+ }
+#endif
+
+ if (!done && err == MP_OKAY) {
+#ifdef WOLFSSL_SMALL_STACK
+ sd = &sa[1];
+ tr = &sa[2];
+ trial = &sa[3];
+#endif
+
+ sp_init(sa);
+ sp_init(sd);
+ sp_init(tr);
+ sp_init(trial);
+
+ s = sp_count_bits(d);
+ s = SP_WORD_SIZE - (s % SP_WORD_SIZE);
+ sp_copy(a, sa);
+ if (s != SP_WORD_SIZE) {
+ sp_lshb(sa, s);
+ sp_copy(d, sd);
+ sp_lshb(sd, s);
+ d = sd;
+ }
+
+ tr->used = sa->used - d->used + 1;
+ sp_clear(tr);
+ tr->used = sa->used - d->used + 1;
+ dt = d->dp[d->used-1];
+#ifndef WOLFSSL_SP_DIV_32
+ for (i = sa->used - 1; i >= d->used; ) {
+ if (sa->dp[i] > dt) {
+ t = (sp_int_digit)-1;
+ }
+ else {
+ w = ((sp_int_word)sa->dp[i] << SP_WORD_SIZE) | sa->dp[i-1];
+ w /= dt;
+ if (w > (sp_int_digit)-1) {
+ t = (sp_int_digit)-1;
+ }
+ else {
+ t = (sp_int_digit)w;
+ }
+ }
+
+ if (t > 0) {
+ _sp_mul_d(d, t, trial, i - d->used);
+ while (sp_cmp(trial, sa) == MP_GT) {
+ t--;
+ _sp_mul_d(d, t, trial, i - d->used);
+ }
+ sp_sub(sa, trial, sa);
+ tr->dp[i - d->used] += t;
+ if (tr->dp[i - d->used] < t)
+ tr->dp[i + 1 - d->used]++;
+ }
+ i = sa->used - 1;
+ }
+#else
+ {
+ sp_int_digit div = (dt >> (SP_WORD_SIZE / 2)) + 1;
+ for (i = sa->used - 1; i >= d->used; ) {
+ t = sa->dp[i] / div;
+ if ((t > 0) && (t << (SP_WORD_SIZE / 2) == 0))
+ t = (sp_int_digit)-1;
+ t <<= SP_WORD_SIZE / 2;
+ if (t == 0) {
+ t = sa->dp[i] << (SP_WORD_SIZE / 2);
+ t += sa->dp[i-1] >> (SP_WORD_SIZE / 2);
+ t /= div;
+ }
+
+ if (t > 0) {
+ _sp_mul_d(d, t, trial, i - d->used);
+ while (sp_cmp(trial, sa) == MP_GT) {
+ t--;
+ _sp_mul_d(d, t, trial, i - d->used);
+ }
+ sp_sub(sa, trial, sa);
+ tr->dp[i - d->used] += t;
+ if (tr->dp[i - d->used] < t)
+ tr->dp[i + 1 - d->used]++;
+ }
+ i = sa->used - 1;
+ }
+
+ while (sp_cmp(sa, d) != MP_LT) {
+ sp_sub(sa, d, sa);
+ sp_add_d(tr, 1, tr);
+ }
+ }
+#endif
+
+ sp_clamp(tr);
+
+ if (rem != NULL) {
+ if (s != SP_WORD_SIZE)
+ sp_rshb(sa, s, sa);
+ sp_copy(sa, rem);
+ }
+ if (r != NULL)
+ sp_copy(tr, r);
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (sa != NULL)
+ XFREE(sa, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+
+ return err;
+}
+
+
+#ifndef FREESCALE_LTC_TFM
+/* Calculate the remainder of dividing a by m: r = a mod m.
+ *
+ * a SP integer.
+ * m SP integer.
+ * r SP integer.
+ * returns MP_VAL when m is 0 and MP_OKAY otherwise.
+ */
+int sp_mod(sp_int* a, sp_int* m, sp_int* r)
+{
+ return sp_div(a, m, NULL, r);
+}
+#endif
+#endif
+
+/* Clear all data in the big number and sets value to zero.
+ *
+ * a SP integer.
+ */
+void sp_zero(sp_int* a)
+{
+ XMEMSET(a->dp, 0, a->size * sizeof(*a->dp));
+ a->used = 0;
+}
+
+/* Add a one digit number to the big number.
+ *
+ * a SP integer.
+ * d Digit to add.
+ * r SP integer - result.
+ * returns MP_OKAY always.
+ */
+int sp_add_d(sp_int* a, sp_int_digit d, sp_int* r)
+{
+ int i = 0;
+
+ r->used = a->used;
+ if (a->used == 0) {
+ r->used = 1;
+ }
+ r->dp[0] = a->dp[0] + d;
+ if (r->dp[i] < a->dp[i]) {
+ for (; i < a->used; i++) {
+ r->dp[i] = a->dp[i] + 1;
+ if (r->dp[i] != 0)
+ break;
+ }
+
+ if (i == a->used) {
+ r->used++;
+ r->dp[i] = 1;
+ }
+ }
+ for (; i < a->used; i++)
+ r->dp[i] = a->dp[i];
+
+ return MP_OKAY;
+}
+
+#if !defined(NO_DH) || defined(HAVE_ECC) || defined(WC_RSA_BLINDING) || \
+ !defined(WOLFSSL_RSA_VERIFY_ONLY)
+/* Left shift the big number by a number of digits.
+ * WIll chop off digits overflowing maximum size.
+ *
+ * a SP integer.
+ * s Number of digits to shift.
+ * returns MP_OKAY always.
+ */
+int sp_lshd(sp_int* a, int s)
+{
+ if (a->used + s > a->size)
+ a->used = a->size - s;
+
+ XMEMMOVE(a->dp + s, a->dp, a->used * sizeof(sp_int_digit));
+ a->used += s;
+ XMEMSET(a->dp, 0, s * sizeof(sp_int_digit));
+ sp_clamp(a);
+
+ return MP_OKAY;
+}
+#endif
+
+#if !defined(NO_PWDBASED) || defined(WOLFSSL_KEY_GEN) || !defined(NO_DH)
+/* Add two large numbers into result: r = a + b
+ *
+ * a SP integer.
+ * b SP integer.
+ * r SP integer.
+ * returns MP_OKAY always.
+ */
+int sp_add(sp_int* a, sp_int* b, sp_int* r)
+{
+ int i;
+ sp_int_digit c = 0;
+ sp_int_digit t;
+
+ for (i = 0; i < a->used && i < b->used; i++) {
+ t = a->dp[i] + b->dp[i] + c;
+ if (c == 0)
+ c = t < a->dp[i];
+ else
+ c = t <= a->dp[i];
+ r->dp[i] = t;
+ }
+ for (; i < a->used; i++) {
+ r->dp[i] = a->dp[i] + c;
+ c = (a->dp[i] != 0) && (r->dp[i] == 0);
+ }
+ for (; i < b->used; i++) {
+ r->dp[i] = b->dp[i] + c;
+ c = (b->dp[i] != 0) && (r->dp[i] == 0);
+ }
+ r->dp[i] = c;
+ r->used = (int)(i + c);
+
+ return MP_OKAY;
+}
+#endif /* !NO_PWDBASED || WOLFSSL_KEY_GEN || !NO_DH */
+
+#ifndef NO_RSA
+/* Set a number into the big number.
+ *
+ * a SP integer.
+ * b Value to set.
+ * returns MP_OKAY always.
+ */
+int sp_set_int(sp_int* a, unsigned long b)
+{
+ if (b == 0) {
+ a->used = 0;
+ a->dp[0] = 0;
+ }
+ else {
+ a->used = 1;
+ a->dp[0] = (sp_int_digit)b;
+ }
+
+ return MP_OKAY;
+}
+#endif /* !NO_RSA */
+
+#ifdef WC_MP_TO_RADIX
+/* Hex string characters. */
+static const char sp_hex_char[16] = {
+ '0', '1', '2', '3', '4', '5', '6', '7',
+ '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
+};
+
+/* Put the hex string version, big-endian, of a in str.
+ *
+ * a SP integer.
+ * str Hex string is stored here.
+ * returns MP_OKAY always.
+ */
+int sp_tohex(sp_int* a, char* str)
+{
+ int i, j;
+
+ /* quick out if its zero */
+ if (sp_iszero(a) == MP_YES) {
+ *str++ = '0';
+ *str = '\0';
+ }
+ else {
+ i = a->used - 1;
+ for (j = SP_WORD_SIZE - 4; j >= 0; j -= 4) {
+ if (((a->dp[i] >> j) & 0xf) != 0)
+ break;
+ }
+ for (; j >= 0; j -= 4)
+ *(str++) = sp_hex_char[(a->dp[i] >> j) & 0xf];
+ for (--i; i >= 0; i--) {
+ for (j = SP_WORD_SIZE - 4; j >= 0; j -= 4)
+ *(str++) = sp_hex_char[(a->dp[i] >> j) & 0xf];
+ }
+ *str = '\0';
+ }
+
+ return MP_OKAY;
+}
+#endif /* WC_MP_TO_RADIX */
+
+#if defined(WOLFSSL_KEY_GEN) || !defined(NO_DH) && !defined(WC_NO_RNG)
+/* Set a bit of a: a |= 1 << i
+ * The field 'used' is updated in a.
+ *
+ * a SP integer to modify.
+ * i Index of bit to set.
+ * returns MP_OKAY always.
+ */
+int sp_set_bit(sp_int* a, int i)
+{
+ int ret = MP_OKAY;
+
+ if ((a == NULL) || (i / SP_WORD_SIZE >= SP_INT_DIGITS)) {
+ ret = BAD_FUNC_ARG;
+ }
+ else {
+ a->dp[i/SP_WORD_SIZE] |= (sp_int_digit)1 << (i % SP_WORD_SIZE);
+ if (a->used <= i / SP_WORD_SIZE)
+ a->used = (i / SP_WORD_SIZE) + 1;
+ }
+ return ret;
+}
+
+/* Exponentiate 2 to the power of e: a = 2^e
+ * This is done by setting the 'e'th bit.
+ *
+ * a SP integer.
+ * e Exponent.
+ * returns MP_OKAY always.
+ */
+int sp_2expt(sp_int* a, int e)
+{
+ sp_zero(a);
+ return sp_set_bit(a, e);
+}
+
+/* Generate a random prime for RSA only.
+ *
+ * r SP integer
+ * len Number of bytes to prime.
+ * rng Random number generator.
+ * heap Unused
+ * returns MP_OKAY on success and MP_VAL when length is not supported or random
+ * number genrator fails.
+ */
+int sp_rand_prime(sp_int* r, int len, WC_RNG* rng, void* heap)
+{
+ static const int USE_BBS = 1;
+ int err = 0, type;
+ int isPrime = MP_NO;
+
+ (void)heap;
+
+ /* get type */
+ if (len < 0) {
+ type = USE_BBS;
+ len = -len;
+ }
+ else {
+ type = 0;
+ }
+
+#if defined(WOLFSSL_HAVE_SP_DH) && defined(WOLFSSL_KEY_GEN)
+ if (len == 32) {
+ }
+ else
+#endif
+ /* Generate RSA primes that are half the modulus length. */
+#ifndef WOLFSSL_SP_NO_3072
+ if (len != 128 && len != 192)
+#else
+ if (len != 128)
+#endif
+ {
+ err = MP_VAL;
+ }
+
+ r->used = len / (SP_WORD_SIZE / 8);
+
+ /* Assume the candidate is probably prime and then test until
+ * it is proven composite. */
+ while (err == 0 && isPrime == MP_NO) {
+#ifdef SHOW_GEN
+ printf(".");
+ fflush(stdout);
+#endif
+ /* generate value */
+ err = wc_RNG_GenerateBlock(rng, (byte*)r->dp, len);
+ if (err != 0) {
+ err = MP_VAL;
+ break;
+ }
+
+ /* munge bits */
+ ((byte*)r->dp)[len-1] |= 0x80 | 0x40;
+ r->dp[0] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00);
+
+ /* test */
+ /* Running Miller-Rabin up to 3 times gives us a 2^{-80} chance
+ * of a 1024-bit candidate being a false positive, when it is our
+ * prime candidate. (Note 4.49 of Handbook of Applied Cryptography.)
+ * Using 8 because we've always used 8 */
+ sp_prime_is_prime_ex(r, 8, &isPrime, rng);
+ }
+
+ return err;
+}
+
+/* Multiply a by b and store in r: r = a * b
+ *
+ * a SP integer to multiply.
+ * b SP integer to multiply.
+ * r SP integer result.
+ * returns MP_OKAY always.
+ */
+int sp_mul(sp_int* a, sp_int* b, sp_int* r)
+{
+ int err = MP_OKAY;
+ int i;
+#ifdef WOLFSSL_SMALL_STACK
+ sp_int* t = NULL;
+ sp_int* tr;
+#else
+ sp_int t[1];
+ sp_int tr[1];
+#endif
+
+ if (a->used + b->used > SP_INT_DIGITS)
+ err = MP_VAL;
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (err == MP_OKAY) {
+ t = (sp_int*)XMALLOC(sizeof(sp_int) * 2, NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ err = MP_MEM;
+ else
+ tr = &t[1];
+ }
+#endif
+
+ if (err == MP_OKAY) {
+ sp_init(t);
+ sp_init(tr);
+
+ for (i = 0; i < b->used; i++) {
+ _sp_mul_d(a, b->dp[i], t, i);
+ sp_add(tr, t, tr);
+ }
+ sp_copy(tr, r);
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (t != NULL)
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+
+ return err;
+}
+
+/* Square a mod m and store in r: r = (a * a) mod m
+ *
+ * a SP integer to square.
+ * m SP integer modulus.
+ * r SP integer result.
+ * returns MP_VAL when m is 0, MP_MEM when dynamic memory allocation fails,
+ * BAD_FUNC_ARG when a is to big and MP_OKAY otherwise.
+ */
+static int sp_sqrmod(sp_int* a, sp_int* m, sp_int* r)
+{
+ int err = MP_OKAY;
+
+ if (a->used * 2 > SP_INT_DIGITS)
+ err = MP_VAL;
+
+ if (err == MP_OKAY)
+ err = sp_mul(a, a, r);
+ if (err == MP_OKAY)
+ err = sp_mod(r, m, r);
+
+ return err;
+}
+
+#if defined(WOLFSSL_HAVE_SP_DH) || defined(WOLFSSL_KEY_GEN)
+/* Multiply a by b mod m and store in r: r = (a * b) mod m
+ *
+ * a SP integer to multiply.
+ * b SP integer to multiply.
+ * m SP integer modulus.
+ * r SP integer result.
+ * returns MP_VAL when m is 0, MP_MEM when dynamic memory allocation fails and
+ * MP_OKAY otherwise.
+ */
+int sp_mulmod(sp_int* a, sp_int* b, sp_int* m, sp_int* r)
+{
+ int err = MP_OKAY;
+#ifdef WOLFSSL_SMALL_STACK
+ sp_int* t = NULL;
+#else
+ sp_int t[1];
+#endif
+
+ if (a->used + b->used > SP_INT_DIGITS)
+ err = MP_VAL;
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (err == MP_OKAY) {
+ t = (sp_int*)XMALLOC(sizeof(sp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL) {
+ err = MP_MEM;
+ }
+ }
+#endif
+ if (err == MP_OKAY) {
+ err = sp_mul(a, b, t);
+ }
+ if (err == MP_OKAY) {
+ err = sp_mod(t, m, r);
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (t != NULL)
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return err;
+}
+#endif
+
+/* Calculate a modulo the digit d into r: r = a mod d
+ *
+ * a SP integer to square.
+ * d SP integer digit, modulus.
+ * r SP integer digit, result.
+ * returns MP_VAL when d is 0 and MP_OKAY otherwise.
+ */
+static int sp_mod_d(sp_int* a, const sp_int_digit d, sp_int_digit* r)
+{
+ int err = MP_OKAY;
+ int i;
+ sp_int_word w = 0;
+ sp_int_digit t;
+
+ if (d == 0)
+ err = MP_VAL;
+
+ if (err == MP_OKAY) {
+ for (i = a->used - 1; i >= 0; i--) {
+ w = (w << SP_WORD_SIZE) | a->dp[i];
+ t = (sp_int_digit)(w / d);
+ w -= (sp_int_word)t * d;
+ }
+
+ *r = (sp_int_digit)w;
+ }
+
+ return err;
+}
+
+/* Calculates the Greatest Common Denominator (GCD) of a and b into r.
+ *
+ * a SP integer operand.
+ * b SP integer operand.
+ * r SP integer result.
+ * returns MP_MEM when dynamic memory allocation fails and MP_OKAY otherwise.
+ */
+int sp_gcd(sp_int* a, sp_int* b, sp_int* r)
+{
+ int err = MP_OKAY;
+#ifdef WOLFSSL_SMALL_STACK
+ sp_int* u = NULL;
+ sp_int* v;
+ sp_int* t;
+#else
+ sp_int u[1], v[1], t[1];
+#endif
+
+ if (sp_iszero(a))
+ sp_copy(b, r);
+ else if (sp_iszero(b))
+ sp_copy(a, r);
+ else {
+#ifdef WOLFSSL_SMALL_STACK
+ u = (sp_int*)XMALLOC(sizeof(sp_int) * 3, NULL, DYNAMIC_TYPE_BIGINT);
+ if (u == NULL)
+ err = MP_MEM;
+ else {
+ v = &u[1];
+ t = &u[2];
+ }
+#endif
+
+ if (err == MP_OKAY) {
+ sp_init(u);
+ sp_init(v);
+ sp_init(t);
+
+ if (sp_cmp(a, b) != MP_LT) {
+ sp_copy(b, u);
+ /* First iteration - u = a, v = b */
+ if (b->used == 1) {
+ err = sp_mod_d(a, b->dp[0], &v->dp[0]);
+ if (err == MP_OKAY)
+ v->used = (v->dp[0] != 0);
+ }
+ else
+ err = sp_mod(a, b, v);
+ }
+ else {
+ sp_copy(a, u);
+ /* First iteration - u = b, v = a */
+ if (a->used == 1) {
+ err = sp_mod_d(b, a->dp[0], &v->dp[0]);
+ if (err == MP_OKAY)
+ v->used = (v->dp[0] != 0);
+ }
+ else
+ err = sp_mod(b, a, v);
+ }
+ }
+
+ if (err == MP_OKAY) {
+ while (!sp_iszero(v)) {
+ if (v->used == 1) {
+ sp_mod_d(u, v->dp[0], &t->dp[0]);
+ t->used = (t->dp[0] != 0);
+ }
+ else
+ sp_mod(u, v, t);
+ sp_copy(v, u);
+ sp_copy(t, v);
+ }
+ sp_copy(u, r);
+ }
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (u != NULL)
+ XFREE(u, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+
+ return err;
+}
+
+/* Divides a by 2 and stores in r: r = a >> 1
+ *
+ * a SP integer to divide.
+ * r SP integer result.
+ * returns MP_OKAY always.
+ */
+static int sp_div_2(sp_int* a, sp_int* r)
+{
+ int i;
+
+ for (i = 0; i < a->used-1; i++)
+ r->dp[i] = (a->dp[i] >> 1) | (a->dp[i+1] << (SP_WORD_SIZE - 1));
+ r->dp[i] = a->dp[i] >> 1;
+ r->used = i + 1;
+ sp_clamp(r);
+
+ return MP_OKAY;
+}
+
+
+/* Calculates the multiplicative inverse in the field.
+ *
+ * a SP integer to invert.
+ * m SP integer that is the modulus of the field.
+ * r SP integer result.
+ * returns MP_VAL when a or m is 0, MP_MEM when dynamic memory allocation fails
+ * and MP_OKAY otherwise.
+ */
+int sp_invmod(sp_int* a, sp_int* m, sp_int* r)
+{
+ int err = MP_OKAY;
+#ifdef WOLFSSL_SMALL_STACK
+ sp_int* u = NULL;
+ sp_int* v;
+ sp_int* b;
+ sp_int* c;
+#else
+ sp_int u[1], v[1], b[1], c[1];
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ u = (sp_int*)XMALLOC(sizeof(sp_int) * 4, NULL, DYNAMIC_TYPE_BIGINT);
+ if (u == NULL) {
+ err = MP_MEM;
+ }
+#endif
+
+ if (err == MP_OKAY) {
+#ifdef WOLFSSL_SMALL_STACK
+ v = &u[1];
+ b = &u[2];
+ c = &u[3];
+#endif
+ sp_init(v);
+
+ if (sp_cmp(a, m) != MP_LT) {
+ err = sp_mod(a, m, v);
+ a = v;
+ }
+ }
+
+ /* 0 != n*m + 1 (+ve m), r*a mod 0 is always 0 (never 1) */
+ if ((err == MP_OKAY) && (sp_iszero(a) || sp_iszero(m))) {
+ err = MP_VAL;
+ }
+ /* r*2*x != n*2*y + 1 */
+ if ((err == MP_OKAY) && sp_iseven(a) && sp_iseven(m)) {
+ err = MP_VAL;
+ }
+
+ /* 1*1 = 0*m + 1 */
+ if ((err == MP_OKAY) && sp_isone(a)) {
+ sp_set(r, 1);
+ }
+ else if (err != MP_OKAY) {
+ }
+ else if (sp_iseven(m)) {
+ /* a^-1 mod m = m + (1 - m*(m^-1 % a)) / a
+ * = m - (m*(m^-1 % a) - 1) / a
+ */
+ err = sp_invmod(m, a, r);
+ if (err == MP_OKAY) {
+ err = sp_mul(r, m, r);
+ }
+ if (err == MP_OKAY) {
+ sp_sub_d(r, 1, r);
+ sp_div(r, a, r, NULL);
+ sp_sub(m, r, r);
+ }
+ }
+ else {
+ if (err == MP_OKAY) {
+ sp_init(u);
+ sp_init(b);
+ sp_init(c);
+
+ sp_copy(m, u);
+ sp_copy(a, v);
+ sp_zero(b);
+ sp_set(c, 1);
+
+ while (!sp_isone(v) && !sp_iszero(u)) {
+ if (sp_iseven(u)) {
+ sp_div_2(u, u);
+ if (sp_isodd(b)) {
+ sp_add(b, m, b);
+ }
+ sp_div_2(b, b);
+ }
+ else if (sp_iseven(v)) {
+ sp_div_2(v, v);
+ if (sp_isodd(c)) {
+ sp_add(c, m, c);
+ }
+ sp_div_2(c, c);
+ }
+ else if (sp_cmp(u, v) != MP_LT) {
+ sp_sub(u, v, u);
+ if (sp_cmp(b, c) == MP_LT) {
+ sp_add(b, m, b);
+ }
+ sp_sub(b, c, b);
+ }
+ else {
+ sp_sub(v, u, v);
+ if (sp_cmp(c, b) == MP_LT) {
+ sp_add(c, m, c);
+ }
+ sp_sub(c, b, c);
+ }
+ }
+ if (sp_iszero(u)) {
+ err = MP_VAL;
+ }
+ else {
+ sp_copy(c, r);
+ }
+ }
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (u != NULL) {
+ XFREE(u, NULL, DYNAMIC_TYPE_BIGINT);
+ }
+#endif
+
+ return err;
+}
+
+/* Calculates the Lowest Common Multiple (LCM) of a and b and stores in r.
+ *
+ * a SP integer operand.
+ * b SP integer operand.
+ * r SP integer result.
+ * returns MP_MEM when dynamic memory allocation fails and MP_OKAY otherwise.
+ */
+int sp_lcm(sp_int* a, sp_int* b, sp_int* r)
+{
+ int err = MP_OKAY;
+#ifndef WOLFSSL_SMALL_STACK
+ sp_int t[2];
+#else
+ sp_int *t = NULL;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (sp_int*)XMALLOC(sizeof(sp_int) * 2, NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL) {
+ err = MP_MEM;
+ }
+#endif
+
+ if (err == MP_OKAY) {
+ sp_init(&t[0]);
+ sp_init(&t[1]);
+ err = sp_gcd(a, b, &t[0]);
+ if (err == MP_OKAY) {
+ if (sp_cmp(a, b) == MP_GT) {
+ err = sp_div(a, &t[0], &t[1], NULL);
+ if (err == MP_OKAY)
+ err = sp_mul(b, &t[1], r);
+ }
+ else {
+ err = sp_div(b, &t[0], &t[1], NULL);
+ if (err == MP_OKAY)
+ err = sp_mul(a, &t[1], r);
+ }
+ }
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (t != NULL)
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return err;
+}
+
+/* Exponentiates b to the power of e modulo m into r: r = b ^ e mod m
+ *
+ * b SP integer base.
+ * e SP integer exponent.
+ * m SP integer modulus.
+ * r SP integer result.
+ * returns MP_VAL when m is not 1024, 2048, 1536 or 3072 bits and otherwise
+ * MP_OKAY.
+ */
+int sp_exptmod(sp_int* b, sp_int* e, sp_int* m, sp_int* r)
+{
+ int err = MP_OKAY;
+ int done = 0;
+ int mBits = sp_count_bits(m);
+ int bBits = sp_count_bits(b);
+ int eBits = sp_count_bits(e);
+
+ if (sp_iszero(m)) {
+ err = MP_VAL;
+ }
+ else if (sp_isone(m)) {
+ sp_set(r, 0);
+ done = 1;
+ }
+ else if (sp_iszero(e)) {
+ sp_set(r, 1);
+ done = 1;
+ }
+ else if (sp_iszero(b)) {
+ sp_set(r, 0);
+ done = 1;
+ }
+ else if (m->used * 2 > SP_INT_DIGITS) {
+ err = BAD_FUNC_ARG;
+ }
+
+ if (!done && (err == MP_OKAY)) {
+#ifndef WOLFSSL_SP_NO_2048
+ if ((mBits == 1024) && sp_isodd(m) && (bBits <= 1024) &&
+ (eBits <= 1024)) {
+ err = sp_ModExp_1024(b, e, m, r);
+ done = 1;
+ }
+ else if ((mBits == 2048) && sp_isodd(m) && (bBits <= 2048) &&
+ (eBits <= 2048)) {
+ err = sp_ModExp_2048(b, e, m, r);
+ done = 1;
+ }
+ else
+#endif
+#ifndef WOLFSSL_SP_NO_3072
+ if ((mBits == 1536) && sp_isodd(m) && (bBits <= 1536) &&
+ (eBits <= 1536)) {
+ err = sp_ModExp_1536(b, e, m, r);
+ done = 1;
+ }
+ else if ((mBits == 3072) && sp_isodd(m) && (bBits <= 3072) &&
+ (eBits <= 3072)) {
+ err = sp_ModExp_3072(b, e, m, r);
+ done = 1;
+ }
+ else
+#endif
+#ifdef WOLFSSL_SP_NO_4096
+ if ((mBits == 4096) && sp_isodd(m) && (bBits <= 4096) &&
+ (eBits <= 4096)) {
+ err = sp_ModExp_4096(b, e, m, r);
+ done = 1;
+ }
+ else
+#endif
+ {
+ }
+ }
+#if defined(WOLFSSL_HAVE_SP_DH) && defined(WOLFSSL_KEY_GEN)
+ if (!done && (err == MP_OKAY)) {
+ int i;
+
+ #ifdef WOLFSSL_SMALL_STACK
+ sp_int* t = NULL;
+ #else
+ sp_int t[1];
+ #endif
+
+ #ifdef WOLFSSL_SMALL_STACK
+ if (!done && (err == MP_OKAY)) {
+ t = (sp_int*)XMALLOC(sizeof(sp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL) {
+ err = MP_MEM;
+ }
+ }
+ #endif
+ if (!done && (err == MP_OKAY)) {
+ sp_init(t);
+
+ if (sp_cmp(b, m) != MP_LT) {
+ err = sp_mod(b, m, t);
+ if (err == MP_OKAY && sp_iszero(t)) {
+ sp_set(r, 0);
+ done = 1;
+ }
+ }
+ else {
+ sp_copy(b, t);
+ }
+
+ if (!done && (err == MP_OKAY)) {
+ for (i = eBits-2; err == MP_OKAY && i >= 0; i--) {
+ err = sp_sqrmod(t, m, t);
+ if (err == MP_OKAY && (e->dp[i / SP_WORD_SIZE] >>
+ (i % SP_WORD_SIZE)) & 1) {
+ err = sp_mulmod(t, b, m, t);
+ }
+ }
+ }
+ }
+ if (!done && (err == MP_OKAY)) {
+ sp_copy(t, r);
+ }
+
+ #ifdef WOLFSSL_SMALL_STACK
+ if (t != NULL) {
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+ }
+ #endif
+ }
+#else
+ if (!done && (err == MP_OKAY)) {
+ err = MP_VAL;
+ }
+#endif
+
+ (void)mBits;
+ (void)bBits;
+ (void)eBits;
+
+ return err;
+}
+
+
+/* Number of entries in array of number of least significant zero bits. */
+#define SP_LNZ_CNT 16
+/* Number of bits the array checks. */
+#define SP_LNZ_BITS 4
+/* Mask to apply to check with array. */
+#define SP_LNZ_MASK 0xf
+/* Number of least significant zero bits in first SP_LNZ_CNT numbers. */
+static const int lnz[SP_LNZ_CNT] = {
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
+};
+
+/* Count the number of least significant zero bits.
+ *
+ * a Number to check
+ * returns the count of least significant zero bits.
+ */
+static int sp_cnt_lsb(sp_int* a)
+{
+ int i, j;
+ int cnt = 0;
+ int bc = 0;
+
+ if (!sp_iszero(a)) {
+ for (i = 0; i < a->used && a->dp[i] == 0; i++, cnt += SP_WORD_SIZE) {
+ }
+
+ for (j = 0; j < SP_WORD_SIZE; j += SP_LNZ_BITS) {
+ bc = lnz[(a->dp[i] >> j) & SP_LNZ_MASK];
+ if (bc != 4) {
+ bc += cnt + j;
+ break;
+ }
+ }
+ }
+
+ return bc;
+}
+
+/* Miller-Rabin test of "a" to the base of "b" as described in
+ * HAC pp. 139 Algorithm 4.24
+ *
+ * Sets result to 0 if definitely composite or 1 if probably prime.
+ * Randomly the chance of error is no more than 1/4 and often
+ * very much lower.
+ *
+ * a SP integer to check.
+ * b SP integer small prime.
+ * result Whether a is likely prime: MP_YES or MP_NO.
+ * n1 SP integer operand.
+ * y SP integer operand.
+ * r SP integer operand.
+ * returns MP_VAL when a is not 1024, 2048, 1536 or 3072 and MP_OKAY otherwise.
+ */
+static int sp_prime_miller_rabin_ex(sp_int * a, sp_int * b, int *result,
+ sp_int *n1, sp_int *y, sp_int *r)
+{
+ int s, j;
+ int err = MP_OKAY;
+
+ /* default */
+ *result = MP_NO;
+
+ /* ensure b > 1 */
+ if (sp_cmp_d(b, 1) == MP_GT) {
+ /* get n1 = a - 1 */
+ sp_copy(a, n1);
+ sp_sub_d(n1, 1, n1);
+ /* set 2**s * r = n1 */
+ sp_copy(n1, r);
+
+ /* count the number of least significant bits
+ * which are zero
+ */
+ s = sp_cnt_lsb(r);
+
+ /* now divide n - 1 by 2**s */
+ sp_rshb(r, s, r);
+
+ /* compute y = b**r mod a */
+ sp_zero(y);
+
+ err = sp_exptmod(b, r, a, y);
+
+ if (err == MP_OKAY) {
+ /* probably prime until shown otherwise */
+ *result = MP_YES;
+
+ /* if y != 1 and y != n1 do */
+ if (sp_cmp_d(y, 1) != MP_EQ && sp_cmp(y, n1) != MP_EQ) {
+ j = 1;
+ /* while j <= s-1 and y != n1 */
+ while ((j <= (s - 1)) && sp_cmp(y, n1) != MP_EQ) {
+ sp_sqrmod(y, a, y);
+
+ /* if y == 1 then composite */
+ if (sp_cmp_d(y, 1) == MP_EQ) {
+ *result = MP_NO;
+ break;
+ }
+ ++j;
+ }
+
+ /* if y != n1 then composite */
+ if (*result == MP_YES && sp_cmp(y, n1) != MP_EQ)
+ *result = MP_NO;
+ }
+ }
+ }
+
+ return err;
+}
+
+/* Miller-Rabin test of "a" to the base of "b" as described in
+ * HAC pp. 139 Algorithm 4.24
+ *
+ * Sets result to 0 if definitely composite or 1 if probably prime.
+ * Randomly the chance of error is no more than 1/4 and often
+ * very much lower.
+ *
+ * a SP integer to check.
+ * b SP integer small prime.
+ * result Whether a is likely prime: MP_YES or MP_NO.
+ * returns MP_MEM when dynamic memory allocation fails, MP_VAL when a is not
+ * 1024, 2048, 1536 or 3072 and MP_OKAY otherwise.
+ */
+static int sp_prime_miller_rabin(sp_int * a, sp_int * b, int *result)
+{
+ int err = MP_OKAY;
+#ifndef WOLFSSL_SMALL_STACK
+ sp_int n1[1], y[1], r[1];
+#else
+ sp_int *n1 = NULL, *y, *r;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ n1 = (sp_int*)XMALLOC(sizeof(sp_int) * 3, NULL, DYNAMIC_TYPE_BIGINT);
+ if (n1 == NULL)
+ err = MP_MEM;
+ else {
+ y = &n1[1];
+ r = &n1[2];
+ }
+#endif
+
+ if (err == MP_OKAY) {
+ sp_init(n1);
+ sp_init(y);
+ sp_init(r);
+
+ err = sp_prime_miller_rabin_ex(a, b, result, n1, y, r);
+
+ sp_clear(n1);
+ sp_clear(y);
+ sp_clear(r);
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (n1 != NULL)
+ XFREE(n1, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+
+ return err;
+}
+
+/* Number of pre-computed primes. First n primes. */
+#define SP_PRIME_SIZE 256
+
+/* a few primes */
+static const sp_int_digit primes[SP_PRIME_SIZE] = {
+ 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+ 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+ 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+ 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
+ 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+ 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+ 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+ 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+
+ 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+ 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+ 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+ 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+ 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+ 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+ 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+ 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+
+ 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+ 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+ 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+ 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+ 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+ 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+ 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+ 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+
+ 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+ 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+ 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+ 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+ 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+ 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+ 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+ 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+};
+
+
+/* Check whether a is prime.
+ * Checks against a number of small primes and does t iterations of
+ * Miller-Rabin.
+ *
+ * a SP integer to check.
+ * t Number of iterations of Muller-Rabin to perform.
+ * result MP_YES when prime.
+ * MP_NO when not prime.
+ * returns MP_VAL when t is out of range, MP_MEM when dynamic memory allocation
+ * fails and otherwise MP_OKAY.
+ */
+int sp_prime_is_prime(sp_int *a, int t, int* result)
+{
+ int err = MP_OKAY;
+ int i;
+ int haveRes = 0;
+#ifndef WOLFSSL_SMALL_STACK
+ sp_int b[1];
+#else
+ sp_int *b = NULL;
+#endif
+ sp_int_digit d;
+
+ if (t <= 0 || t > SP_PRIME_SIZE) {
+ *result = MP_NO;
+ err = MP_VAL;
+ }
+
+ if (sp_isone(a)) {
+ *result = MP_NO;
+ return MP_OKAY;
+ }
+
+ if (err == MP_OKAY && a->used == 1) {
+ /* check against primes table */
+ for (i = 0; i < SP_PRIME_SIZE; i++) {
+ if (sp_cmp_d(a, primes[i]) == MP_EQ) {
+ *result = MP_YES;
+ haveRes = 1;
+ break;
+ }
+ }
+ }
+
+ if (err == MP_OKAY && !haveRes) {
+ /* do trial division */
+ for (i = 0; i < SP_PRIME_SIZE; i++) {
+ err = sp_mod_d(a, primes[i], &d);
+ if (err != MP_OKAY || d == 0) {
+ *result = MP_NO;
+ haveRes = 1;
+ break;
+ }
+ }
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (err == MP_OKAY && !haveRes) {
+ b = (sp_int*)XMALLOC(sizeof(sp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (b == NULL)
+ err = MP_MEM;
+ }
+#endif
+
+ if (err == MP_OKAY && !haveRes) {
+ /* now do 't' miller rabins */
+ sp_init(b);
+ for (i = 0; i < t; i++) {
+ sp_set(b, primes[i]);
+ err = sp_prime_miller_rabin(a, b, result);
+ if (err != MP_OKAY || *result == MP_NO)
+ break;
+ }
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (b != NULL)
+ XFREE(b, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+
+ return err;
+}
+
+/* Check whether a is prime.
+ * Checks against a number of small primes and does t iterations of
+ * Miller-Rabin.
+ *
+ * a SP integer to check.
+ * t Number of iterations of Muller-Rabin to perform.
+ * result MP_YES when prime.
+ * MP_NO when not prime.
+ * rng Random number generator.
+ * returns MP_VAL when t is out of range, MP_MEM when dynamic memory allocation
+ * fails and otherwise MP_OKAY.
+ */
+int sp_prime_is_prime_ex(sp_int* a, int t, int* result, WC_RNG* rng)
+{
+ int err = MP_OKAY;
+ int ret = MP_YES;
+ int haveRes = 0;
+ int i;
+#ifndef WC_NO_RNG
+ #ifndef WOLFSSL_SMALL_STACK
+ sp_int b[1], c[1], n1[1], y[1], r[1];
+ #else
+ sp_int *b = NULL, *c = NULL, *n1 = NULL, *y = NULL, *r = NULL;
+ #endif
+ word32 baseSz;
+#endif
+
+ if (a == NULL || result == NULL || rng == NULL)
+ err = MP_VAL;
+
+ if (sp_isone(a)) {
+ *result = MP_NO;
+ return MP_OKAY;
+ }
+
+ if (err == MP_OKAY && a->used == 1) {
+ /* check against primes table */
+ for (i = 0; i < SP_PRIME_SIZE; i++) {
+ if (sp_cmp_d(a, primes[i]) == MP_EQ) {
+ ret = MP_YES;
+ haveRes = 1;
+ break;
+ }
+ }
+ }
+
+ if (err == MP_OKAY && !haveRes) {
+ sp_int_digit d;
+
+ /* do trial division */
+ for (i = 0; i < SP_PRIME_SIZE; i++) {
+ err = sp_mod_d(a, primes[i], &d);
+ if (err != MP_OKAY || d == 0) {
+ ret = MP_NO;
+ haveRes = 1;
+ break;
+ }
+ }
+ }
+
+#ifndef WC_NO_RNG
+ /* now do a miller rabin with up to t random numbers, this should
+ * give a (1/4)^t chance of a false prime. */
+ #ifdef WOLFSSL_SMALL_STACK
+ if (err == MP_OKAY && !haveRes) {
+ b = (sp_int*)XMALLOC(sizeof(sp_int) * 5, NULL, DYNAMIC_TYPE_BIGINT);
+ if (b == NULL) {
+ err = MP_MEM;
+ }
+ else {
+ c = &b[1]; n1 = &b[2]; y= &b[3]; r = &b[4];
+ }
+ }
+ #endif
+
+ if (err == MP_OKAY && !haveRes) {
+ sp_init(b);
+ sp_init(c);
+ sp_init(n1);
+ sp_init(y);
+ sp_init(r);
+
+ err = sp_sub_d(a, 2, c);
+ }
+
+ if (err == MP_OKAY && !haveRes) {
+ baseSz = (sp_count_bits(a) + 7) / 8;
+
+ while (t > 0) {
+ err = wc_RNG_GenerateBlock(rng, (byte*)b->dp, baseSz);
+ if (err != MP_OKAY)
+ break;
+ b->used = a->used;
+
+ if (sp_cmp_d(b, 2) != MP_GT || sp_cmp(b, c) != MP_LT)
+ continue;
+
+ err = sp_prime_miller_rabin_ex(a, b, &ret, n1, y, r);
+ if (err != MP_OKAY || ret == MP_NO)
+ break;
+
+ t--;
+ }
+
+ sp_clear(n1);
+ sp_clear(y);
+ sp_clear(r);
+ sp_clear(b);
+ sp_clear(c);
+ }
+
+ #ifdef WOLFSSL_SMALL_STACK
+ if (b != NULL)
+ XFREE(b, NULL, DYNAMIC_TYPE_BIGINT);
+ #endif
+#else
+ (void)t;
+#endif /* !WC_NO_RNG */
+
+ *result = ret;
+ return err;
+}
+
+#ifndef NO_DH
+int sp_exch(sp_int* a, sp_int* b)
+{
+ int err = MP_OKAY;
+#ifndef WOLFSSL_SMALL_STACK
+ sp_int t[1];
+#else
+ sp_int *t = NULL;
+#endif
+
+#ifdef WOLFSSL_SMALL_STACK
+ t = (sp_int*)XMALLOC(sizeof(sp_int), NULL, DYNAMIC_TYPE_BIGINT);
+ if (t == NULL)
+ err = MP_MEM;
+#endif
+
+ if (err == MP_OKAY) {
+ *t = *a;
+ *a = *b;
+ *b = *t;
+ }
+
+#ifdef WOLFSSL_SMALL_STACK
+ if (t != NULL)
+ XFREE(t, NULL, DYNAMIC_TYPE_BIGINT);
+#endif
+ return MP_OKAY;
+}
+#endif
+#endif
+
+#if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA)
+/* Multiply a by digit n and put result into r. r = a * n
+ *
+ * a SP integer to be multiplied.
+ * n Number to multiply by.
+ * r SP integer result.
+ * returns MP_OKAY always.
+ */
+int sp_mul_d(sp_int* a, sp_int_digit n, sp_int* r)
+{
+ _sp_mul_d(a, n, r, 0);
+ return MP_OKAY;
+}
+#endif
+
+/* Returns the run time settings.
+ *
+ * returns the settings value.
+ */
+word32 CheckRunTimeSettings(void)
+{
+ return CTC_SETTINGS;
+}
+
+#endif /* WOLFSSL_SP_MATH */