diff options
Diffstat (limited to 'FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c')
-rw-r--r-- | FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c | 2203 |
1 files changed, 2203 insertions, 0 deletions
diff --git a/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c b/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c new file mode 100644 index 000000000..0db891b98 --- /dev/null +++ b/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sp_int.c @@ -0,0 +1,2203 @@ +/* sp_int.c + * + * Copyright (C) 2006-2020 wolfSSL Inc. + * + * This file is part of wolfSSL. + * + * wolfSSL is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * wolfSSL is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA + */ + +/* Implementation by Sean Parkinson. */ + +#ifdef HAVE_CONFIG_H + #include <config.h> +#endif + +#include <wolfssl/wolfcrypt/settings.h> +#include <wolfssl/wolfcrypt/error-crypt.h> +#ifdef NO_INLINE + #include <wolfssl/wolfcrypt/misc.h> +#else + #define WOLFSSL_MISC_INCLUDED + #include <wolfcrypt/src/misc.c> +#endif + +/* SP Build Options: + * WOLFSSL_HAVE_SP_RSA: Enable SP RSA support + * WOLFSSL_HAVE_SP_DH: Enable SP DH support + * WOLFSSL_HAVE_SP_ECC: Enable SP ECC support + * WOLFSSL_SP_MATH: Use only single precision math and algorithms it supports (no fastmath tfm.c or normal integer.c) + * WOLFSSL_SP_SMALL: Use smaller version of code and avoid large stack variables + * WOLFSSL_SP_NO_MALLOC: Always use stack, no heap XMALLOC/XFREE allowed + * WOLFSSL_SP_NO_3072: Disable RSA/DH 3072-bit support + * WOLFSSL_SP_NO_2048: Disable RSA/DH 2048-bit support + * WOLFSSL_SP_4096: Enable RSA/RH 4096-bit support + * WOLFSSL_SP_384 Enable ECC 384-bit SECP384R1 support + * WOLFSSL_SP_NO_256 Disable ECC 256-bit SECP256R1 support + * WOLFSSL_SP_CACHE_RESISTANT Enable cache resistantant code + * WOLFSSL_SP_ASM Enable assembly speedups (detect platform) + * WOLFSSL_SP_X86_64_ASM Enable Intel x86 assembly speedups like AVX/AVX2 + * WOLFSSL_SP_ARM32_ASM Enable Aarch32 assembly speedups + * WOLFSSL_SP_ARM64_ASM Enable Aarch64 assembly speedups + * WOLFSSL_SP_ARM_CORTEX_M_ASM Enable Cortex-M assembly speedups + * WOLFSSL_SP_ARM_THUMB_ASM Enable ARM Thumb assembly speedups (used with -mthumb) + */ + +#ifdef WOLFSSL_SP_MATH + +#include <wolfssl/wolfcrypt/sp_int.h> + +#if defined(WOLFSSL_HAVE_SP_DH) || defined(WOLFSSL_HAVE_SP_RSA) + +WOLFSSL_LOCAL int sp_ModExp_1024(sp_int* base, sp_int* exp, sp_int* mod, + sp_int* res); +WOLFSSL_LOCAL int sp_ModExp_1536(sp_int* base, sp_int* exp, sp_int* mod, + sp_int* res); +WOLFSSL_LOCAL int sp_ModExp_2048(sp_int* base, sp_int* exp, sp_int* mod, + sp_int* res); +WOLFSSL_LOCAL int sp_ModExp_3072(sp_int* base, sp_int* exp, sp_int* mod, + sp_int* res); +WOLFSSL_LOCAL int sp_ModExp_4096(sp_int* base, sp_int* exp, sp_int* mod, + sp_int* res); + +#endif + +int sp_get_digit_count(sp_int *a) +{ + int ret; + if (!a) + ret = 0; + else + ret = a->used; + return ret; +} + +/* Initialize the big number to be zero. + * + * a SP integer. + * returns MP_OKAY always. + */ +int sp_init(sp_int* a) +{ + a->used = 0; + a->size = SP_INT_DIGITS; + + return MP_OKAY; +} + +#if !defined(WOLFSSL_RSA_PUBLIC_ONLY) || (!defined(NO_DH) || defined(HAVE_ECC)) +/* Initialize up to six big numbers to be zero. + * + * a SP integer. + * b SP integer. + * c SP integer. + * d SP integer. + * e SP integer. + * f SP integer. + * returns MP_OKAY always. + */ +int sp_init_multi(sp_int* a, sp_int* b, sp_int* c, sp_int* d, sp_int* e, + sp_int* f) +{ + if (a != NULL) { + a->used = 0; + a->size = SP_INT_DIGITS; + } + if (b != NULL) { + b->used = 0; + b->size = SP_INT_DIGITS; + } + if (c != NULL) { + c->used = 0; + c->size = SP_INT_DIGITS; + } + if (d != NULL) { + d->used = 0; + d->size = SP_INT_DIGITS; + } + if (e != NULL) { + e->used = 0; + e->size = SP_INT_DIGITS; + } + if (f != NULL) { + f->used = 0; + f->size = SP_INT_DIGITS; + } + + return MP_OKAY; +} +#endif + +/* Clear the data from the big number and set to zero. + * + * a SP integer. + */ +void sp_clear(sp_int* a) +{ + if (a != NULL) { + int i; + + for (i=0; i<a->used; i++) + a->dp[i] = 0; + a->used = 0; + } +} + +/* Calculate the number of 8-bit values required to represent the big number. + * + * a SP integer. + * returns the count. + */ +int sp_unsigned_bin_size(sp_int* a) +{ + int size = sp_count_bits(a); + return (size + 7) / 8; +} + +/* Convert a number as an array of bytes in big-endian format to a big number. + * + * a SP integer. + * in Array of bytes. + * inSz Number of data bytes in array. + * returns BAD_FUNC_ARG when the number is too big to fit in an SP and + MP_OKAY otherwise. + */ +int sp_read_unsigned_bin(sp_int* a, const byte* in, int inSz) +{ + int err = MP_OKAY; + int i, j = 0, k; + + if (inSz > SP_INT_DIGITS * (int)sizeof(a->dp[0])) { + err = MP_VAL; + } + + if (err == MP_OKAY) { + for (i = inSz-1; i >= (SP_WORD_SIZE/8); i -= (SP_WORD_SIZE/8), j++) { + a->dp[j] = (((sp_int_digit)in[i-0]) << (0*8)) + | (((sp_int_digit)in[i-1]) << (1*8)) + | (((sp_int_digit)in[i-2]) << (2*8)) + | (((sp_int_digit)in[i-3]) << (3*8)); + #if SP_WORD_SIZE == 64 + a->dp[j] |= (((sp_int_digit)in[i-4]) << (4*8)) + | (((sp_int_digit)in[i-5]) << (5*8)) + | (((sp_int_digit)in[i-6]) << (6*8)) + | (((sp_int_digit)in[i-7]) << (7*8)); + #endif + } + if (i >= 0) { + a->dp[j] = 0; + for (k = 0; k <= i; k++) { + a->dp[j] <<= 8; + a->dp[j] |= in[k]; + } + } + a->used = j + 1; + } + + sp_clamp(a); + + return err; +} + +#ifdef HAVE_ECC +/* Convert a number as string in big-endian format to a big number. + * Only supports base-16 (hexadecimal). + * Negative values not supported. + * + * a SP integer. + * in NUL terminated string. + * radix Number of values in a digit. + * returns BAD_FUNC_ARG when radix not supported or value is negative, MP_VAL + * when a character is not valid and MP_OKAY otherwise. + */ +int sp_read_radix(sp_int* a, const char* in, int radix) +{ + int err = MP_OKAY; + int i, j = 0, k = 0; + char ch; + + if ((radix != 16) || (*in == '-')) { + err = BAD_FUNC_ARG; + } + + while (*in == '0') { + in++; + } + + if (err == MP_OKAY) { + a->dp[0] = 0; + for (i = (int)(XSTRLEN(in) - 1); i >= 0; i--) { + ch = in[i]; + if (ch >= '0' && ch <= '9') + ch -= '0'; + else if (ch >= 'A' && ch <= 'F') + ch -= 'A' - 10; + else if (ch >= 'a' && ch <= 'f') + ch -= 'a' - 10; + else { + err = MP_VAL; + break; + } + + a->dp[k] |= ((sp_int_digit)ch) << j; + j += 4; + if (k >= SP_INT_DIGITS - 1) { + err = MP_VAL; + break; + } + if (j == DIGIT_BIT) + a->dp[++k] = 0; + j &= SP_WORD_SIZE - 1; + } + } + + if (err == MP_OKAY) { + a->used = k + 1; + if (a->dp[k] == 0) + a->used--; + + for (k++; k < a->size; k++) + a->dp[k] = 0; + + sp_clamp(a); + } + + return err; +} +#endif + +/* Compare two big numbers. + * + * a SP integer. + * b SP integer. + * returns MP_GT if a is greater than b, MP_LT if a is less than b and MP_EQ + * when a equals b. + */ +int sp_cmp(sp_int* a, sp_int* b) +{ + int ret = MP_EQ; + int i; + + if (a->used > b->used) + ret = MP_GT; + else if (a->used < b->used) + ret = MP_LT; + else { + for (i = a->used - 1; i >= 0; i--) { + if (a->dp[i] > b->dp[i]) { + ret = MP_GT; + break; + } + else if (a->dp[i] < b->dp[i]) { + ret = MP_LT; + break; + } + } + } + return ret; +} + +/* Count the number of bits in the big number. + * + * a SP integer. + * returns the number of bits. + */ +int sp_count_bits(sp_int* a) +{ + int r = 0; + sp_int_digit d; + + r = a->used - 1; + while (r >= 0 && a->dp[r] == 0) + r--; + if (r < 0) + r = 0; + else { + d = a->dp[r]; + r *= SP_WORD_SIZE; + if (d >= (1L << (SP_WORD_SIZE / 2))) { + r += SP_WORD_SIZE; + while ((d & (1UL << (SP_WORD_SIZE - 1))) == 0) { + r--; + d <<= 1; + } + } + else { + while (d != 0) { + r++; + d >>= 1; + } + } + } + + return r; +} + +/* Determine if the most significant byte of the encoded big number as the top + * bit set. + * + * a SP integer. + * returns 1 when the top bit is set and 0 otherwise. + */ +int sp_leading_bit(sp_int* a) +{ + int bit = 0; + sp_int_digit d; + + if (a->used > 0) { + d = a->dp[a->used - 1]; + while (d > (sp_int_digit)0xff) + d >>= 8; + bit = (int)(d >> 7); + } + + return bit; +} + +#if !defined(NO_DH) || defined(HAVE_ECC) || defined(WC_RSA_BLINDING) || \ + !defined(WOLFSSL_RSA_VERIFY_ONLY) +/* Convert the big number to an array of bytes in big-endian format. + * The array must be large enough for encoded number - use mp_unsigned_bin_size + * to calculate the number of bytes required. + * + * a SP integer. + * out Array to put encoding into. + * returns MP_OKAY always. + */ +int sp_to_unsigned_bin(sp_int* a, byte* out) +{ + int i, j, b; + sp_int_digit d; + + j = sp_unsigned_bin_size(a) - 1; + for (i=0; j>=0; i++) { + d = a->dp[i]; + for (b = 0; b < SP_WORD_SIZE / 8; b++) { + out[j] = d; + if (--j < 0) { + break; + } + d >>= 8; + } + } + + return MP_OKAY; +} +#endif + +/* Convert the big number to an array of bytes in big-endian format. + * The array must be large enough for encoded number - use mp_unsigned_bin_size + * to calculate the number of bytes required. + * Front-pads the output array with zeros make number the size of the array. + * + * a SP integer. + * out Array to put encoding into. + * outSz Size of the array. + * returns MP_OKAY always. + */ +int sp_to_unsigned_bin_len(sp_int* a, byte* out, int outSz) +{ + int i, j, b; + + j = outSz - 1; + for (i=0; j>=0; i++) { + for (b = 0; b < SP_WORD_SIZE; b += 8) { + out[j--] = a->dp[i] >> b; + if (j < 0) + break; + } + } + + return MP_OKAY; +} + +#if !defined(WOLFSSL_RSA_PUBLIC_ONLY) || (!defined(NO_DH) || defined(HAVE_ECC)) +/* Ensure the data in the big number is zeroed. + * + * a SP integer. + */ +void sp_forcezero(sp_int* a) +{ + ForceZero(a->dp, a->used * sizeof(sp_int_digit)); + a->used = 0; +} +#endif + +#if !defined(WOLFSSL_RSA_VERIFY_ONLY) || (!defined(NO_DH) || defined(HAVE_ECC)) +/* Copy value of big number a into r. + * + * a SP integer. + * r SP integer. + * returns MP_OKAY always. + */ +int sp_copy(sp_int* a, sp_int* r) +{ + if (a != r) { + XMEMCPY(r->dp, a->dp, a->used * sizeof(sp_int_digit)); + r->used = a->used; + } + return MP_OKAY; +} + +/* creates "a" then copies b into it */ +int sp_init_copy (sp_int * a, sp_int * b) +{ + int err; + if ((err = sp_init(a)) == MP_OKAY) { + if((err = sp_copy (b, a)) != MP_OKAY) { + sp_clear(a); + } + } + return err; +} +#endif + +/* Set the big number to be the value of the digit. + * + * a SP integer. + * d Digit to be set. + * returns MP_OKAY always. + */ +int sp_set(sp_int* a, sp_int_digit d) +{ + if (d == 0) { + a->dp[0] = d; + a->used = 0; + } + else { + a->dp[0] = d; + a->used = 1; + } + return MP_OKAY; +} + +/* Recalculate the number of digits used. + * + * a SP integer. + */ +void sp_clamp(sp_int* a) +{ + int i; + + for (i = a->used - 1; i >= 0 && a->dp[i] == 0; i--) { + } + a->used = i + 1; +} + +#if !defined(WOLFSSL_RSA_VERIFY_ONLY) || (!defined(NO_DH) || defined(HAVE_ECC)) +/* Grow big number to be able to hold l digits. + * This function does nothing as the number of digits is fixed. + * + * a SP integer. + * l Number of digits. + * returns MP_MEM if the number of digits requested is more than available and + * MP_OKAY otherwise. + */ +int sp_grow(sp_int* a, int l) +{ + int err = MP_OKAY; + + if (l > a->size) + err = MP_MEM; + + return err; +} + +/* Sub a one digit number from the big number. + * + * a SP integer. + * d Digit to subtract. + * r SP integer - result. + * returns MP_OKAY always. + */ +int sp_sub_d(sp_int* a, sp_int_digit d, sp_int* r) +{ + int i = 0; + sp_int_digit t; + + r->used = a->used; + t = a->dp[0] - d; + if (t > a->dp[0]) { + for (++i; i < a->used; i++) { + r->dp[i] = a->dp[i] - 1; + if (r->dp[i] != (sp_int_digit)-1) + break; + } + } + r->dp[0] = t; + if (r != a) { + for (++i; i < a->used; i++) + r->dp[i] = a->dp[i]; + } + sp_clamp(r); + + return MP_OKAY; +} +#endif + +/* Compare a one digit number with a big number. + * + * a SP integer. + * d Digit to compare with. + * returns MP_GT if a is greater than d, MP_LT if a is less than d and MP_EQ + * when a equals d. + */ +int sp_cmp_d(sp_int *a, sp_int_digit d) +{ + int ret = MP_EQ; + + /* special case for zero*/ + if (a->used == 0) { + if (d == 0) + ret = MP_EQ; + else + ret = MP_LT; + } + else if (a->used > 1) + ret = MP_GT; + else { + /* compare the only digit of a to d */ + if (a->dp[0] > d) + ret = MP_GT; + else if (a->dp[0] < d) + ret = MP_LT; + } + + return ret; +} + +#if !defined(NO_DH) || defined(HAVE_ECC) || !defined(WOLFSSL_RSA_VERIFY_ONLY) +/* Left shift the number by number of bits. + * Bits may be larger than the word size. + * + * a SP integer. + * n Number of bits to shift. + * returns MP_OKAY always. + */ +static int sp_lshb(sp_int* a, int n) +{ + int i; + + if (n >= SP_WORD_SIZE) { + sp_lshd(a, n / SP_WORD_SIZE); + n %= SP_WORD_SIZE; + } + + if (n != 0) { + a->dp[a->used] = 0; + for (i = a->used - 1; i >= 0; i--) { + a->dp[i+1] |= a->dp[i] >> (SP_WORD_SIZE - n); + a->dp[i] = a->dp[i] << n; + } + if (a->dp[a->used] != 0) + a->used++; + } + + return MP_OKAY; +} + +/* Subtract two large numbers into result: r = a - b + * a must be greater than b. + * + * a SP integer. + * b SP integer. + * r SP integer. + * returns MP_OKAY always. + */ +int sp_sub(sp_int* a, sp_int* b, sp_int* r) +{ + int i; + sp_int_digit c = 0; + sp_int_digit t; + + for (i = 0; i < a->used && i < b->used; i++) { + t = a->dp[i] - b->dp[i] - c; + if (c == 0) + c = t > a->dp[i]; + else + c = t >= a->dp[i]; + r->dp[i] = t; + } + for (; i < a->used; i++) { + r->dp[i] = a->dp[i] - c; + c &= (r->dp[i] == (sp_int_digit)-1); + } + r->used = i; + sp_clamp(r); + + return MP_OKAY; +} + +/* Shift a right by n bits into r: r = a >> n + * + * a SP integer operand. + * n Number of bits to shift. + * r SP integer result. + */ +void sp_rshb(sp_int* a, int n, sp_int* r) +{ + int i; + int j; + + for (i = n / SP_WORD_SIZE, j = 0; i < a->used-1; i++, j++) + r->dp[i] = (a->dp[j] >> n) | (a->dp[j+1] << (SP_WORD_SIZE - n)); + r->dp[i] = a->dp[j] >> n; + r->used = j + 1; + sp_clamp(r); +} + +/* Multiply a by digit n and put result into r shifting up o digits. + * r = (a * n) << (o * SP_WORD_SIZE) + * + * a SP integer to be multiplied. + * n Number to multiply by. + * r SP integer result. + * o Number of digits to move result up by. + */ +static void _sp_mul_d(sp_int* a, sp_int_digit n, sp_int* r, int o) +{ + int i; + sp_int_word t = 0; + + for (i = 0; i < o; i++) + r->dp[i] = 0; + + for (i = 0; i < a->used; i++) { + t += (sp_int_word)n * a->dp[i]; + r->dp[i + o] = (sp_int_digit)t; + t >>= SP_WORD_SIZE; + } + + r->dp[i+o] = (sp_int_digit)t; + r->used = i+o+1; + sp_clamp(r); +} + +/* Divide a by d and return the quotient in r and the remainder in rem. + * r = a / d; rem = a % d + * + * a SP integer to be divided. + * d SP integer to divide by. + * r SP integer of quotient. + * rem SP integer of remainder. + * returns MP_VAL when d is 0, MP_MEM when dynamic memory allocation fails and + * MP_OKAY otherwise. + */ +static int sp_div(sp_int* a, sp_int* d, sp_int* r, sp_int* rem) +{ + int err = MP_OKAY; + int ret; + int done = 0; + int i; + int s; +#ifndef WOLFSSL_SP_DIV_32 + sp_int_word w = 0; +#endif + sp_int_digit dt; + sp_int_digit t; +#ifdef WOLFSSL_SMALL_STACK + sp_int* sa = NULL; + sp_int* sd; + sp_int* tr; + sp_int* trial; +#else + sp_int sa[1]; + sp_int sd[1]; + sp_int tr[1]; + sp_int trial[1]; +#endif + + if (sp_iszero(d)) + err = MP_VAL; + + ret = sp_cmp(a, d); + if (ret == MP_LT) { + if (rem != NULL) { + sp_copy(a, rem); + } + if (r != NULL) { + sp_set(r, 0); + } + done = 1; + } + else if (ret == MP_EQ) { + if (rem != NULL) { + sp_set(rem, 0); + } + if (r != NULL) { + sp_set(r, 1); + } + done = 1; + } + else if (sp_count_bits(a) == sp_count_bits(d)) { + /* a is greater than d but same bit length */ + if (rem != NULL) { + sp_sub(a, d, rem); + } + if (r != NULL) { + sp_set(r, 1); + } + done = 1; + } + +#ifdef WOLFSSL_SMALL_STACK + if (!done && err == MP_OKAY) { + sa = (sp_int*)XMALLOC(sizeof(sp_int) * 4, NULL, DYNAMIC_TYPE_BIGINT); + if (sa == NULL) { + err = MP_MEM; + } + } +#endif + + if (!done && err == MP_OKAY) { +#ifdef WOLFSSL_SMALL_STACK + sd = &sa[1]; + tr = &sa[2]; + trial = &sa[3]; +#endif + + sp_init(sa); + sp_init(sd); + sp_init(tr); + sp_init(trial); + + s = sp_count_bits(d); + s = SP_WORD_SIZE - (s % SP_WORD_SIZE); + sp_copy(a, sa); + if (s != SP_WORD_SIZE) { + sp_lshb(sa, s); + sp_copy(d, sd); + sp_lshb(sd, s); + d = sd; + } + + tr->used = sa->used - d->used + 1; + sp_clear(tr); + tr->used = sa->used - d->used + 1; + dt = d->dp[d->used-1]; +#ifndef WOLFSSL_SP_DIV_32 + for (i = sa->used - 1; i >= d->used; ) { + if (sa->dp[i] > dt) { + t = (sp_int_digit)-1; + } + else { + w = ((sp_int_word)sa->dp[i] << SP_WORD_SIZE) | sa->dp[i-1]; + w /= dt; + if (w > (sp_int_digit)-1) { + t = (sp_int_digit)-1; + } + else { + t = (sp_int_digit)w; + } + } + + if (t > 0) { + _sp_mul_d(d, t, trial, i - d->used); + while (sp_cmp(trial, sa) == MP_GT) { + t--; + _sp_mul_d(d, t, trial, i - d->used); + } + sp_sub(sa, trial, sa); + tr->dp[i - d->used] += t; + if (tr->dp[i - d->used] < t) + tr->dp[i + 1 - d->used]++; + } + i = sa->used - 1; + } +#else + { + sp_int_digit div = (dt >> (SP_WORD_SIZE / 2)) + 1; + for (i = sa->used - 1; i >= d->used; ) { + t = sa->dp[i] / div; + if ((t > 0) && (t << (SP_WORD_SIZE / 2) == 0)) + t = (sp_int_digit)-1; + t <<= SP_WORD_SIZE / 2; + if (t == 0) { + t = sa->dp[i] << (SP_WORD_SIZE / 2); + t += sa->dp[i-1] >> (SP_WORD_SIZE / 2); + t /= div; + } + + if (t > 0) { + _sp_mul_d(d, t, trial, i - d->used); + while (sp_cmp(trial, sa) == MP_GT) { + t--; + _sp_mul_d(d, t, trial, i - d->used); + } + sp_sub(sa, trial, sa); + tr->dp[i - d->used] += t; + if (tr->dp[i - d->used] < t) + tr->dp[i + 1 - d->used]++; + } + i = sa->used - 1; + } + + while (sp_cmp(sa, d) != MP_LT) { + sp_sub(sa, d, sa); + sp_add_d(tr, 1, tr); + } + } +#endif + + sp_clamp(tr); + + if (rem != NULL) { + if (s != SP_WORD_SIZE) + sp_rshb(sa, s, sa); + sp_copy(sa, rem); + } + if (r != NULL) + sp_copy(tr, r); + } + +#ifdef WOLFSSL_SMALL_STACK + if (sa != NULL) + XFREE(sa, NULL, DYNAMIC_TYPE_BIGINT); +#endif + + return err; +} + + +#ifndef FREESCALE_LTC_TFM +/* Calculate the remainder of dividing a by m: r = a mod m. + * + * a SP integer. + * m SP integer. + * r SP integer. + * returns MP_VAL when m is 0 and MP_OKAY otherwise. + */ +int sp_mod(sp_int* a, sp_int* m, sp_int* r) +{ + return sp_div(a, m, NULL, r); +} +#endif +#endif + +/* Clear all data in the big number and sets value to zero. + * + * a SP integer. + */ +void sp_zero(sp_int* a) +{ + XMEMSET(a->dp, 0, a->size * sizeof(*a->dp)); + a->used = 0; +} + +/* Add a one digit number to the big number. + * + * a SP integer. + * d Digit to add. + * r SP integer - result. + * returns MP_OKAY always. + */ +int sp_add_d(sp_int* a, sp_int_digit d, sp_int* r) +{ + int i = 0; + + r->used = a->used; + if (a->used == 0) { + r->used = 1; + } + r->dp[0] = a->dp[0] + d; + if (r->dp[i] < a->dp[i]) { + for (; i < a->used; i++) { + r->dp[i] = a->dp[i] + 1; + if (r->dp[i] != 0) + break; + } + + if (i == a->used) { + r->used++; + r->dp[i] = 1; + } + } + for (; i < a->used; i++) + r->dp[i] = a->dp[i]; + + return MP_OKAY; +} + +#if !defined(NO_DH) || defined(HAVE_ECC) || defined(WC_RSA_BLINDING) || \ + !defined(WOLFSSL_RSA_VERIFY_ONLY) +/* Left shift the big number by a number of digits. + * WIll chop off digits overflowing maximum size. + * + * a SP integer. + * s Number of digits to shift. + * returns MP_OKAY always. + */ +int sp_lshd(sp_int* a, int s) +{ + if (a->used + s > a->size) + a->used = a->size - s; + + XMEMMOVE(a->dp + s, a->dp, a->used * sizeof(sp_int_digit)); + a->used += s; + XMEMSET(a->dp, 0, s * sizeof(sp_int_digit)); + sp_clamp(a); + + return MP_OKAY; +} +#endif + +#if !defined(NO_PWDBASED) || defined(WOLFSSL_KEY_GEN) || !defined(NO_DH) +/* Add two large numbers into result: r = a + b + * + * a SP integer. + * b SP integer. + * r SP integer. + * returns MP_OKAY always. + */ +int sp_add(sp_int* a, sp_int* b, sp_int* r) +{ + int i; + sp_int_digit c = 0; + sp_int_digit t; + + for (i = 0; i < a->used && i < b->used; i++) { + t = a->dp[i] + b->dp[i] + c; + if (c == 0) + c = t < a->dp[i]; + else + c = t <= a->dp[i]; + r->dp[i] = t; + } + for (; i < a->used; i++) { + r->dp[i] = a->dp[i] + c; + c = (a->dp[i] != 0) && (r->dp[i] == 0); + } + for (; i < b->used; i++) { + r->dp[i] = b->dp[i] + c; + c = (b->dp[i] != 0) && (r->dp[i] == 0); + } + r->dp[i] = c; + r->used = (int)(i + c); + + return MP_OKAY; +} +#endif /* !NO_PWDBASED || WOLFSSL_KEY_GEN || !NO_DH */ + +#ifndef NO_RSA +/* Set a number into the big number. + * + * a SP integer. + * b Value to set. + * returns MP_OKAY always. + */ +int sp_set_int(sp_int* a, unsigned long b) +{ + if (b == 0) { + a->used = 0; + a->dp[0] = 0; + } + else { + a->used = 1; + a->dp[0] = (sp_int_digit)b; + } + + return MP_OKAY; +} +#endif /* !NO_RSA */ + +#ifdef WC_MP_TO_RADIX +/* Hex string characters. */ +static const char sp_hex_char[16] = { + '0', '1', '2', '3', '4', '5', '6', '7', + '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' +}; + +/* Put the hex string version, big-endian, of a in str. + * + * a SP integer. + * str Hex string is stored here. + * returns MP_OKAY always. + */ +int sp_tohex(sp_int* a, char* str) +{ + int i, j; + + /* quick out if its zero */ + if (sp_iszero(a) == MP_YES) { + *str++ = '0'; + *str = '\0'; + } + else { + i = a->used - 1; + for (j = SP_WORD_SIZE - 4; j >= 0; j -= 4) { + if (((a->dp[i] >> j) & 0xf) != 0) + break; + } + for (; j >= 0; j -= 4) + *(str++) = sp_hex_char[(a->dp[i] >> j) & 0xf]; + for (--i; i >= 0; i--) { + for (j = SP_WORD_SIZE - 4; j >= 0; j -= 4) + *(str++) = sp_hex_char[(a->dp[i] >> j) & 0xf]; + } + *str = '\0'; + } + + return MP_OKAY; +} +#endif /* WC_MP_TO_RADIX */ + +#if defined(WOLFSSL_KEY_GEN) || !defined(NO_DH) && !defined(WC_NO_RNG) +/* Set a bit of a: a |= 1 << i + * The field 'used' is updated in a. + * + * a SP integer to modify. + * i Index of bit to set. + * returns MP_OKAY always. + */ +int sp_set_bit(sp_int* a, int i) +{ + int ret = MP_OKAY; + + if ((a == NULL) || (i / SP_WORD_SIZE >= SP_INT_DIGITS)) { + ret = BAD_FUNC_ARG; + } + else { + a->dp[i/SP_WORD_SIZE] |= (sp_int_digit)1 << (i % SP_WORD_SIZE); + if (a->used <= i / SP_WORD_SIZE) + a->used = (i / SP_WORD_SIZE) + 1; + } + return ret; +} + +/* Exponentiate 2 to the power of e: a = 2^e + * This is done by setting the 'e'th bit. + * + * a SP integer. + * e Exponent. + * returns MP_OKAY always. + */ +int sp_2expt(sp_int* a, int e) +{ + sp_zero(a); + return sp_set_bit(a, e); +} + +/* Generate a random prime for RSA only. + * + * r SP integer + * len Number of bytes to prime. + * rng Random number generator. + * heap Unused + * returns MP_OKAY on success and MP_VAL when length is not supported or random + * number genrator fails. + */ +int sp_rand_prime(sp_int* r, int len, WC_RNG* rng, void* heap) +{ + static const int USE_BBS = 1; + int err = 0, type; + int isPrime = MP_NO; + + (void)heap; + + /* get type */ + if (len < 0) { + type = USE_BBS; + len = -len; + } + else { + type = 0; + } + +#if defined(WOLFSSL_HAVE_SP_DH) && defined(WOLFSSL_KEY_GEN) + if (len == 32) { + } + else +#endif + /* Generate RSA primes that are half the modulus length. */ +#ifndef WOLFSSL_SP_NO_3072 + if (len != 128 && len != 192) +#else + if (len != 128) +#endif + { + err = MP_VAL; + } + + r->used = len / (SP_WORD_SIZE / 8); + + /* Assume the candidate is probably prime and then test until + * it is proven composite. */ + while (err == 0 && isPrime == MP_NO) { +#ifdef SHOW_GEN + printf("."); + fflush(stdout); +#endif + /* generate value */ + err = wc_RNG_GenerateBlock(rng, (byte*)r->dp, len); + if (err != 0) { + err = MP_VAL; + break; + } + + /* munge bits */ + ((byte*)r->dp)[len-1] |= 0x80 | 0x40; + r->dp[0] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00); + + /* test */ + /* Running Miller-Rabin up to 3 times gives us a 2^{-80} chance + * of a 1024-bit candidate being a false positive, when it is our + * prime candidate. (Note 4.49 of Handbook of Applied Cryptography.) + * Using 8 because we've always used 8 */ + sp_prime_is_prime_ex(r, 8, &isPrime, rng); + } + + return err; +} + +/* Multiply a by b and store in r: r = a * b + * + * a SP integer to multiply. + * b SP integer to multiply. + * r SP integer result. + * returns MP_OKAY always. + */ +int sp_mul(sp_int* a, sp_int* b, sp_int* r) +{ + int err = MP_OKAY; + int i; +#ifdef WOLFSSL_SMALL_STACK + sp_int* t = NULL; + sp_int* tr; +#else + sp_int t[1]; + sp_int tr[1]; +#endif + + if (a->used + b->used > SP_INT_DIGITS) + err = MP_VAL; + +#ifdef WOLFSSL_SMALL_STACK + if (err == MP_OKAY) { + t = (sp_int*)XMALLOC(sizeof(sp_int) * 2, NULL, DYNAMIC_TYPE_BIGINT); + if (t == NULL) + err = MP_MEM; + else + tr = &t[1]; + } +#endif + + if (err == MP_OKAY) { + sp_init(t); + sp_init(tr); + + for (i = 0; i < b->used; i++) { + _sp_mul_d(a, b->dp[i], t, i); + sp_add(tr, t, tr); + } + sp_copy(tr, r); + } + +#ifdef WOLFSSL_SMALL_STACK + if (t != NULL) + XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); +#endif + + return err; +} + +/* Square a mod m and store in r: r = (a * a) mod m + * + * a SP integer to square. + * m SP integer modulus. + * r SP integer result. + * returns MP_VAL when m is 0, MP_MEM when dynamic memory allocation fails, + * BAD_FUNC_ARG when a is to big and MP_OKAY otherwise. + */ +static int sp_sqrmod(sp_int* a, sp_int* m, sp_int* r) +{ + int err = MP_OKAY; + + if (a->used * 2 > SP_INT_DIGITS) + err = MP_VAL; + + if (err == MP_OKAY) + err = sp_mul(a, a, r); + if (err == MP_OKAY) + err = sp_mod(r, m, r); + + return err; +} + +#if defined(WOLFSSL_HAVE_SP_DH) || defined(WOLFSSL_KEY_GEN) +/* Multiply a by b mod m and store in r: r = (a * b) mod m + * + * a SP integer to multiply. + * b SP integer to multiply. + * m SP integer modulus. + * r SP integer result. + * returns MP_VAL when m is 0, MP_MEM when dynamic memory allocation fails and + * MP_OKAY otherwise. + */ +int sp_mulmod(sp_int* a, sp_int* b, sp_int* m, sp_int* r) +{ + int err = MP_OKAY; +#ifdef WOLFSSL_SMALL_STACK + sp_int* t = NULL; +#else + sp_int t[1]; +#endif + + if (a->used + b->used > SP_INT_DIGITS) + err = MP_VAL; + +#ifdef WOLFSSL_SMALL_STACK + if (err == MP_OKAY) { + t = (sp_int*)XMALLOC(sizeof(sp_int), NULL, DYNAMIC_TYPE_BIGINT); + if (t == NULL) { + err = MP_MEM; + } + } +#endif + if (err == MP_OKAY) { + err = sp_mul(a, b, t); + } + if (err == MP_OKAY) { + err = sp_mod(t, m, r); + } + +#ifdef WOLFSSL_SMALL_STACK + if (t != NULL) + XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); +#endif + return err; +} +#endif + +/* Calculate a modulo the digit d into r: r = a mod d + * + * a SP integer to square. + * d SP integer digit, modulus. + * r SP integer digit, result. + * returns MP_VAL when d is 0 and MP_OKAY otherwise. + */ +static int sp_mod_d(sp_int* a, const sp_int_digit d, sp_int_digit* r) +{ + int err = MP_OKAY; + int i; + sp_int_word w = 0; + sp_int_digit t; + + if (d == 0) + err = MP_VAL; + + if (err == MP_OKAY) { + for (i = a->used - 1; i >= 0; i--) { + w = (w << SP_WORD_SIZE) | a->dp[i]; + t = (sp_int_digit)(w / d); + w -= (sp_int_word)t * d; + } + + *r = (sp_int_digit)w; + } + + return err; +} + +/* Calculates the Greatest Common Denominator (GCD) of a and b into r. + * + * a SP integer operand. + * b SP integer operand. + * r SP integer result. + * returns MP_MEM when dynamic memory allocation fails and MP_OKAY otherwise. + */ +int sp_gcd(sp_int* a, sp_int* b, sp_int* r) +{ + int err = MP_OKAY; +#ifdef WOLFSSL_SMALL_STACK + sp_int* u = NULL; + sp_int* v; + sp_int* t; +#else + sp_int u[1], v[1], t[1]; +#endif + + if (sp_iszero(a)) + sp_copy(b, r); + else if (sp_iszero(b)) + sp_copy(a, r); + else { +#ifdef WOLFSSL_SMALL_STACK + u = (sp_int*)XMALLOC(sizeof(sp_int) * 3, NULL, DYNAMIC_TYPE_BIGINT); + if (u == NULL) + err = MP_MEM; + else { + v = &u[1]; + t = &u[2]; + } +#endif + + if (err == MP_OKAY) { + sp_init(u); + sp_init(v); + sp_init(t); + + if (sp_cmp(a, b) != MP_LT) { + sp_copy(b, u); + /* First iteration - u = a, v = b */ + if (b->used == 1) { + err = sp_mod_d(a, b->dp[0], &v->dp[0]); + if (err == MP_OKAY) + v->used = (v->dp[0] != 0); + } + else + err = sp_mod(a, b, v); + } + else { + sp_copy(a, u); + /* First iteration - u = b, v = a */ + if (a->used == 1) { + err = sp_mod_d(b, a->dp[0], &v->dp[0]); + if (err == MP_OKAY) + v->used = (v->dp[0] != 0); + } + else + err = sp_mod(b, a, v); + } + } + + if (err == MP_OKAY) { + while (!sp_iszero(v)) { + if (v->used == 1) { + sp_mod_d(u, v->dp[0], &t->dp[0]); + t->used = (t->dp[0] != 0); + } + else + sp_mod(u, v, t); + sp_copy(v, u); + sp_copy(t, v); + } + sp_copy(u, r); + } + } + +#ifdef WOLFSSL_SMALL_STACK + if (u != NULL) + XFREE(u, NULL, DYNAMIC_TYPE_BIGINT); +#endif + + return err; +} + +/* Divides a by 2 and stores in r: r = a >> 1 + * + * a SP integer to divide. + * r SP integer result. + * returns MP_OKAY always. + */ +static int sp_div_2(sp_int* a, sp_int* r) +{ + int i; + + for (i = 0; i < a->used-1; i++) + r->dp[i] = (a->dp[i] >> 1) | (a->dp[i+1] << (SP_WORD_SIZE - 1)); + r->dp[i] = a->dp[i] >> 1; + r->used = i + 1; + sp_clamp(r); + + return MP_OKAY; +} + + +/* Calculates the multiplicative inverse in the field. + * + * a SP integer to invert. + * m SP integer that is the modulus of the field. + * r SP integer result. + * returns MP_VAL when a or m is 0, MP_MEM when dynamic memory allocation fails + * and MP_OKAY otherwise. + */ +int sp_invmod(sp_int* a, sp_int* m, sp_int* r) +{ + int err = MP_OKAY; +#ifdef WOLFSSL_SMALL_STACK + sp_int* u = NULL; + sp_int* v; + sp_int* b; + sp_int* c; +#else + sp_int u[1], v[1], b[1], c[1]; +#endif + +#ifdef WOLFSSL_SMALL_STACK + u = (sp_int*)XMALLOC(sizeof(sp_int) * 4, NULL, DYNAMIC_TYPE_BIGINT); + if (u == NULL) { + err = MP_MEM; + } +#endif + + if (err == MP_OKAY) { +#ifdef WOLFSSL_SMALL_STACK + v = &u[1]; + b = &u[2]; + c = &u[3]; +#endif + sp_init(v); + + if (sp_cmp(a, m) != MP_LT) { + err = sp_mod(a, m, v); + a = v; + } + } + + /* 0 != n*m + 1 (+ve m), r*a mod 0 is always 0 (never 1) */ + if ((err == MP_OKAY) && (sp_iszero(a) || sp_iszero(m))) { + err = MP_VAL; + } + /* r*2*x != n*2*y + 1 */ + if ((err == MP_OKAY) && sp_iseven(a) && sp_iseven(m)) { + err = MP_VAL; + } + + /* 1*1 = 0*m + 1 */ + if ((err == MP_OKAY) && sp_isone(a)) { + sp_set(r, 1); + } + else if (err != MP_OKAY) { + } + else if (sp_iseven(m)) { + /* a^-1 mod m = m + (1 - m*(m^-1 % a)) / a + * = m - (m*(m^-1 % a) - 1) / a + */ + err = sp_invmod(m, a, r); + if (err == MP_OKAY) { + err = sp_mul(r, m, r); + } + if (err == MP_OKAY) { + sp_sub_d(r, 1, r); + sp_div(r, a, r, NULL); + sp_sub(m, r, r); + } + } + else { + if (err == MP_OKAY) { + sp_init(u); + sp_init(b); + sp_init(c); + + sp_copy(m, u); + sp_copy(a, v); + sp_zero(b); + sp_set(c, 1); + + while (!sp_isone(v) && !sp_iszero(u)) { + if (sp_iseven(u)) { + sp_div_2(u, u); + if (sp_isodd(b)) { + sp_add(b, m, b); + } + sp_div_2(b, b); + } + else if (sp_iseven(v)) { + sp_div_2(v, v); + if (sp_isodd(c)) { + sp_add(c, m, c); + } + sp_div_2(c, c); + } + else if (sp_cmp(u, v) != MP_LT) { + sp_sub(u, v, u); + if (sp_cmp(b, c) == MP_LT) { + sp_add(b, m, b); + } + sp_sub(b, c, b); + } + else { + sp_sub(v, u, v); + if (sp_cmp(c, b) == MP_LT) { + sp_add(c, m, c); + } + sp_sub(c, b, c); + } + } + if (sp_iszero(u)) { + err = MP_VAL; + } + else { + sp_copy(c, r); + } + } + } + +#ifdef WOLFSSL_SMALL_STACK + if (u != NULL) { + XFREE(u, NULL, DYNAMIC_TYPE_BIGINT); + } +#endif + + return err; +} + +/* Calculates the Lowest Common Multiple (LCM) of a and b and stores in r. + * + * a SP integer operand. + * b SP integer operand. + * r SP integer result. + * returns MP_MEM when dynamic memory allocation fails and MP_OKAY otherwise. + */ +int sp_lcm(sp_int* a, sp_int* b, sp_int* r) +{ + int err = MP_OKAY; +#ifndef WOLFSSL_SMALL_STACK + sp_int t[2]; +#else + sp_int *t = NULL; +#endif + +#ifdef WOLFSSL_SMALL_STACK + t = (sp_int*)XMALLOC(sizeof(sp_int) * 2, NULL, DYNAMIC_TYPE_BIGINT); + if (t == NULL) { + err = MP_MEM; + } +#endif + + if (err == MP_OKAY) { + sp_init(&t[0]); + sp_init(&t[1]); + err = sp_gcd(a, b, &t[0]); + if (err == MP_OKAY) { + if (sp_cmp(a, b) == MP_GT) { + err = sp_div(a, &t[0], &t[1], NULL); + if (err == MP_OKAY) + err = sp_mul(b, &t[1], r); + } + else { + err = sp_div(b, &t[0], &t[1], NULL); + if (err == MP_OKAY) + err = sp_mul(a, &t[1], r); + } + } + } + +#ifdef WOLFSSL_SMALL_STACK + if (t != NULL) + XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); +#endif + return err; +} + +/* Exponentiates b to the power of e modulo m into r: r = b ^ e mod m + * + * b SP integer base. + * e SP integer exponent. + * m SP integer modulus. + * r SP integer result. + * returns MP_VAL when m is not 1024, 2048, 1536 or 3072 bits and otherwise + * MP_OKAY. + */ +int sp_exptmod(sp_int* b, sp_int* e, sp_int* m, sp_int* r) +{ + int err = MP_OKAY; + int done = 0; + int mBits = sp_count_bits(m); + int bBits = sp_count_bits(b); + int eBits = sp_count_bits(e); + + if (sp_iszero(m)) { + err = MP_VAL; + } + else if (sp_isone(m)) { + sp_set(r, 0); + done = 1; + } + else if (sp_iszero(e)) { + sp_set(r, 1); + done = 1; + } + else if (sp_iszero(b)) { + sp_set(r, 0); + done = 1; + } + else if (m->used * 2 > SP_INT_DIGITS) { + err = BAD_FUNC_ARG; + } + + if (!done && (err == MP_OKAY)) { +#ifndef WOLFSSL_SP_NO_2048 + if ((mBits == 1024) && sp_isodd(m) && (bBits <= 1024) && + (eBits <= 1024)) { + err = sp_ModExp_1024(b, e, m, r); + done = 1; + } + else if ((mBits == 2048) && sp_isodd(m) && (bBits <= 2048) && + (eBits <= 2048)) { + err = sp_ModExp_2048(b, e, m, r); + done = 1; + } + else +#endif +#ifndef WOLFSSL_SP_NO_3072 + if ((mBits == 1536) && sp_isodd(m) && (bBits <= 1536) && + (eBits <= 1536)) { + err = sp_ModExp_1536(b, e, m, r); + done = 1; + } + else if ((mBits == 3072) && sp_isodd(m) && (bBits <= 3072) && + (eBits <= 3072)) { + err = sp_ModExp_3072(b, e, m, r); + done = 1; + } + else +#endif +#ifdef WOLFSSL_SP_NO_4096 + if ((mBits == 4096) && sp_isodd(m) && (bBits <= 4096) && + (eBits <= 4096)) { + err = sp_ModExp_4096(b, e, m, r); + done = 1; + } + else +#endif + { + } + } +#if defined(WOLFSSL_HAVE_SP_DH) && defined(WOLFSSL_KEY_GEN) + if (!done && (err == MP_OKAY)) { + int i; + + #ifdef WOLFSSL_SMALL_STACK + sp_int* t = NULL; + #else + sp_int t[1]; + #endif + + #ifdef WOLFSSL_SMALL_STACK + if (!done && (err == MP_OKAY)) { + t = (sp_int*)XMALLOC(sizeof(sp_int), NULL, DYNAMIC_TYPE_BIGINT); + if (t == NULL) { + err = MP_MEM; + } + } + #endif + if (!done && (err == MP_OKAY)) { + sp_init(t); + + if (sp_cmp(b, m) != MP_LT) { + err = sp_mod(b, m, t); + if (err == MP_OKAY && sp_iszero(t)) { + sp_set(r, 0); + done = 1; + } + } + else { + sp_copy(b, t); + } + + if (!done && (err == MP_OKAY)) { + for (i = eBits-2; err == MP_OKAY && i >= 0; i--) { + err = sp_sqrmod(t, m, t); + if (err == MP_OKAY && (e->dp[i / SP_WORD_SIZE] >> + (i % SP_WORD_SIZE)) & 1) { + err = sp_mulmod(t, b, m, t); + } + } + } + } + if (!done && (err == MP_OKAY)) { + sp_copy(t, r); + } + + #ifdef WOLFSSL_SMALL_STACK + if (t != NULL) { + XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); + } + #endif + } +#else + if (!done && (err == MP_OKAY)) { + err = MP_VAL; + } +#endif + + (void)mBits; + (void)bBits; + (void)eBits; + + return err; +} + + +/* Number of entries in array of number of least significant zero bits. */ +#define SP_LNZ_CNT 16 +/* Number of bits the array checks. */ +#define SP_LNZ_BITS 4 +/* Mask to apply to check with array. */ +#define SP_LNZ_MASK 0xf +/* Number of least significant zero bits in first SP_LNZ_CNT numbers. */ +static const int lnz[SP_LNZ_CNT] = { + 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 +}; + +/* Count the number of least significant zero bits. + * + * a Number to check + * returns the count of least significant zero bits. + */ +static int sp_cnt_lsb(sp_int* a) +{ + int i, j; + int cnt = 0; + int bc = 0; + + if (!sp_iszero(a)) { + for (i = 0; i < a->used && a->dp[i] == 0; i++, cnt += SP_WORD_SIZE) { + } + + for (j = 0; j < SP_WORD_SIZE; j += SP_LNZ_BITS) { + bc = lnz[(a->dp[i] >> j) & SP_LNZ_MASK]; + if (bc != 4) { + bc += cnt + j; + break; + } + } + } + + return bc; +} + +/* Miller-Rabin test of "a" to the base of "b" as described in + * HAC pp. 139 Algorithm 4.24 + * + * Sets result to 0 if definitely composite or 1 if probably prime. + * Randomly the chance of error is no more than 1/4 and often + * very much lower. + * + * a SP integer to check. + * b SP integer small prime. + * result Whether a is likely prime: MP_YES or MP_NO. + * n1 SP integer operand. + * y SP integer operand. + * r SP integer operand. + * returns MP_VAL when a is not 1024, 2048, 1536 or 3072 and MP_OKAY otherwise. + */ +static int sp_prime_miller_rabin_ex(sp_int * a, sp_int * b, int *result, + sp_int *n1, sp_int *y, sp_int *r) +{ + int s, j; + int err = MP_OKAY; + + /* default */ + *result = MP_NO; + + /* ensure b > 1 */ + if (sp_cmp_d(b, 1) == MP_GT) { + /* get n1 = a - 1 */ + sp_copy(a, n1); + sp_sub_d(n1, 1, n1); + /* set 2**s * r = n1 */ + sp_copy(n1, r); + + /* count the number of least significant bits + * which are zero + */ + s = sp_cnt_lsb(r); + + /* now divide n - 1 by 2**s */ + sp_rshb(r, s, r); + + /* compute y = b**r mod a */ + sp_zero(y); + + err = sp_exptmod(b, r, a, y); + + if (err == MP_OKAY) { + /* probably prime until shown otherwise */ + *result = MP_YES; + + /* if y != 1 and y != n1 do */ + if (sp_cmp_d(y, 1) != MP_EQ && sp_cmp(y, n1) != MP_EQ) { + j = 1; + /* while j <= s-1 and y != n1 */ + while ((j <= (s - 1)) && sp_cmp(y, n1) != MP_EQ) { + sp_sqrmod(y, a, y); + + /* if y == 1 then composite */ + if (sp_cmp_d(y, 1) == MP_EQ) { + *result = MP_NO; + break; + } + ++j; + } + + /* if y != n1 then composite */ + if (*result == MP_YES && sp_cmp(y, n1) != MP_EQ) + *result = MP_NO; + } + } + } + + return err; +} + +/* Miller-Rabin test of "a" to the base of "b" as described in + * HAC pp. 139 Algorithm 4.24 + * + * Sets result to 0 if definitely composite or 1 if probably prime. + * Randomly the chance of error is no more than 1/4 and often + * very much lower. + * + * a SP integer to check. + * b SP integer small prime. + * result Whether a is likely prime: MP_YES or MP_NO. + * returns MP_MEM when dynamic memory allocation fails, MP_VAL when a is not + * 1024, 2048, 1536 or 3072 and MP_OKAY otherwise. + */ +static int sp_prime_miller_rabin(sp_int * a, sp_int * b, int *result) +{ + int err = MP_OKAY; +#ifndef WOLFSSL_SMALL_STACK + sp_int n1[1], y[1], r[1]; +#else + sp_int *n1 = NULL, *y, *r; +#endif + +#ifdef WOLFSSL_SMALL_STACK + n1 = (sp_int*)XMALLOC(sizeof(sp_int) * 3, NULL, DYNAMIC_TYPE_BIGINT); + if (n1 == NULL) + err = MP_MEM; + else { + y = &n1[1]; + r = &n1[2]; + } +#endif + + if (err == MP_OKAY) { + sp_init(n1); + sp_init(y); + sp_init(r); + + err = sp_prime_miller_rabin_ex(a, b, result, n1, y, r); + + sp_clear(n1); + sp_clear(y); + sp_clear(r); + } + +#ifdef WOLFSSL_SMALL_STACK + if (n1 != NULL) + XFREE(n1, NULL, DYNAMIC_TYPE_BIGINT); +#endif + + return err; +} + +/* Number of pre-computed primes. First n primes. */ +#define SP_PRIME_SIZE 256 + +/* a few primes */ +static const sp_int_digit primes[SP_PRIME_SIZE] = { + 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, + 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, + 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, + 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083, + 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD, + 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF, + 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107, + 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137, + + 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167, + 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199, + 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9, + 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7, + 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239, + 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265, + 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293, + 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF, + + 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301, + 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B, + 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371, + 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD, + 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5, + 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, + 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449, + 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B, + + 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7, + 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503, + 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529, + 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, + 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, + 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, + 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, + 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 +}; + + +/* Check whether a is prime. + * Checks against a number of small primes and does t iterations of + * Miller-Rabin. + * + * a SP integer to check. + * t Number of iterations of Muller-Rabin to perform. + * result MP_YES when prime. + * MP_NO when not prime. + * returns MP_VAL when t is out of range, MP_MEM when dynamic memory allocation + * fails and otherwise MP_OKAY. + */ +int sp_prime_is_prime(sp_int *a, int t, int* result) +{ + int err = MP_OKAY; + int i; + int haveRes = 0; +#ifndef WOLFSSL_SMALL_STACK + sp_int b[1]; +#else + sp_int *b = NULL; +#endif + sp_int_digit d; + + if (t <= 0 || t > SP_PRIME_SIZE) { + *result = MP_NO; + err = MP_VAL; + } + + if (sp_isone(a)) { + *result = MP_NO; + return MP_OKAY; + } + + if (err == MP_OKAY && a->used == 1) { + /* check against primes table */ + for (i = 0; i < SP_PRIME_SIZE; i++) { + if (sp_cmp_d(a, primes[i]) == MP_EQ) { + *result = MP_YES; + haveRes = 1; + break; + } + } + } + + if (err == MP_OKAY && !haveRes) { + /* do trial division */ + for (i = 0; i < SP_PRIME_SIZE; i++) { + err = sp_mod_d(a, primes[i], &d); + if (err != MP_OKAY || d == 0) { + *result = MP_NO; + haveRes = 1; + break; + } + } + } + +#ifdef WOLFSSL_SMALL_STACK + if (err == MP_OKAY && !haveRes) { + b = (sp_int*)XMALLOC(sizeof(sp_int), NULL, DYNAMIC_TYPE_BIGINT); + if (b == NULL) + err = MP_MEM; + } +#endif + + if (err == MP_OKAY && !haveRes) { + /* now do 't' miller rabins */ + sp_init(b); + for (i = 0; i < t; i++) { + sp_set(b, primes[i]); + err = sp_prime_miller_rabin(a, b, result); + if (err != MP_OKAY || *result == MP_NO) + break; + } + } + +#ifdef WOLFSSL_SMALL_STACK + if (b != NULL) + XFREE(b, NULL, DYNAMIC_TYPE_BIGINT); +#endif + + return err; +} + +/* Check whether a is prime. + * Checks against a number of small primes and does t iterations of + * Miller-Rabin. + * + * a SP integer to check. + * t Number of iterations of Muller-Rabin to perform. + * result MP_YES when prime. + * MP_NO when not prime. + * rng Random number generator. + * returns MP_VAL when t is out of range, MP_MEM when dynamic memory allocation + * fails and otherwise MP_OKAY. + */ +int sp_prime_is_prime_ex(sp_int* a, int t, int* result, WC_RNG* rng) +{ + int err = MP_OKAY; + int ret = MP_YES; + int haveRes = 0; + int i; +#ifndef WC_NO_RNG + #ifndef WOLFSSL_SMALL_STACK + sp_int b[1], c[1], n1[1], y[1], r[1]; + #else + sp_int *b = NULL, *c = NULL, *n1 = NULL, *y = NULL, *r = NULL; + #endif + word32 baseSz; +#endif + + if (a == NULL || result == NULL || rng == NULL) + err = MP_VAL; + + if (sp_isone(a)) { + *result = MP_NO; + return MP_OKAY; + } + + if (err == MP_OKAY && a->used == 1) { + /* check against primes table */ + for (i = 0; i < SP_PRIME_SIZE; i++) { + if (sp_cmp_d(a, primes[i]) == MP_EQ) { + ret = MP_YES; + haveRes = 1; + break; + } + } + } + + if (err == MP_OKAY && !haveRes) { + sp_int_digit d; + + /* do trial division */ + for (i = 0; i < SP_PRIME_SIZE; i++) { + err = sp_mod_d(a, primes[i], &d); + if (err != MP_OKAY || d == 0) { + ret = MP_NO; + haveRes = 1; + break; + } + } + } + +#ifndef WC_NO_RNG + /* now do a miller rabin with up to t random numbers, this should + * give a (1/4)^t chance of a false prime. */ + #ifdef WOLFSSL_SMALL_STACK + if (err == MP_OKAY && !haveRes) { + b = (sp_int*)XMALLOC(sizeof(sp_int) * 5, NULL, DYNAMIC_TYPE_BIGINT); + if (b == NULL) { + err = MP_MEM; + } + else { + c = &b[1]; n1 = &b[2]; y= &b[3]; r = &b[4]; + } + } + #endif + + if (err == MP_OKAY && !haveRes) { + sp_init(b); + sp_init(c); + sp_init(n1); + sp_init(y); + sp_init(r); + + err = sp_sub_d(a, 2, c); + } + + if (err == MP_OKAY && !haveRes) { + baseSz = (sp_count_bits(a) + 7) / 8; + + while (t > 0) { + err = wc_RNG_GenerateBlock(rng, (byte*)b->dp, baseSz); + if (err != MP_OKAY) + break; + b->used = a->used; + + if (sp_cmp_d(b, 2) != MP_GT || sp_cmp(b, c) != MP_LT) + continue; + + err = sp_prime_miller_rabin_ex(a, b, &ret, n1, y, r); + if (err != MP_OKAY || ret == MP_NO) + break; + + t--; + } + + sp_clear(n1); + sp_clear(y); + sp_clear(r); + sp_clear(b); + sp_clear(c); + } + + #ifdef WOLFSSL_SMALL_STACK + if (b != NULL) + XFREE(b, NULL, DYNAMIC_TYPE_BIGINT); + #endif +#else + (void)t; +#endif /* !WC_NO_RNG */ + + *result = ret; + return err; +} + +#ifndef NO_DH +int sp_exch(sp_int* a, sp_int* b) +{ + int err = MP_OKAY; +#ifndef WOLFSSL_SMALL_STACK + sp_int t[1]; +#else + sp_int *t = NULL; +#endif + +#ifdef WOLFSSL_SMALL_STACK + t = (sp_int*)XMALLOC(sizeof(sp_int), NULL, DYNAMIC_TYPE_BIGINT); + if (t == NULL) + err = MP_MEM; +#endif + + if (err == MP_OKAY) { + *t = *a; + *a = *b; + *b = *t; + } + +#ifdef WOLFSSL_SMALL_STACK + if (t != NULL) + XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); +#endif + return MP_OKAY; +} +#endif +#endif + +#if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) +/* Multiply a by digit n and put result into r. r = a * n + * + * a SP integer to be multiplied. + * n Number to multiply by. + * r SP integer result. + * returns MP_OKAY always. + */ +int sp_mul_d(sp_int* a, sp_int_digit n, sp_int* r) +{ + _sp_mul_d(a, n, r, 0); + return MP_OKAY; +} +#endif + +/* Returns the run time settings. + * + * returns the settings value. + */ +word32 CheckRunTimeSettings(void) +{ + return CTC_SETTINGS; +} + +#endif /* WOLFSSL_SP_MATH */ |