summaryrefslogtreecommitdiff
path: root/FreeRTOS/Demo/T-HEAD_CB2201_CDK/csi/csi_driver/csky/common/rsa/ck_rsa.c
diff options
context:
space:
mode:
Diffstat (limited to 'FreeRTOS/Demo/T-HEAD_CB2201_CDK/csi/csi_driver/csky/common/rsa/ck_rsa.c')
-rw-r--r--FreeRTOS/Demo/T-HEAD_CB2201_CDK/csi/csi_driver/csky/common/rsa/ck_rsa.c1285
1 files changed, 1285 insertions, 0 deletions
diff --git a/FreeRTOS/Demo/T-HEAD_CB2201_CDK/csi/csi_driver/csky/common/rsa/ck_rsa.c b/FreeRTOS/Demo/T-HEAD_CB2201_CDK/csi/csi_driver/csky/common/rsa/ck_rsa.c
new file mode 100644
index 000000000..c7d999cdf
--- /dev/null
+++ b/FreeRTOS/Demo/T-HEAD_CB2201_CDK/csi/csi_driver/csky/common/rsa/ck_rsa.c
@@ -0,0 +1,1285 @@
+/*
+ * Copyright (C) 2017 C-SKY Microsystems Co., Ltd. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/******************************************************************************
+ * @file ck_rsa.c
+ * @brief CSI Source File for RSA Driver
+ * @version V1.0
+ * @date 02. June 2017
+ ******************************************************************************/
+#include <stdio.h>
+#include <string.h>
+#include "drv_rsa.h"
+#include "ck_rsa.h"
+#include "irq.h"
+
+#define ERR_RSA(errno) (CSI_DRV_ERRNO_RSA_BASE | errno)
+#define RSA_NULL_PARAM_CHK(para) \
+ do { \
+ if (para == NULL) { \
+ return ERR_RSA(EDRV_PARAMETER); \
+ } \
+ } while (0)
+
+
+typedef struct {
+ uint32_t base;
+ uint32_t irq;
+ rsa_event_cb_t cb;
+ rsa_data_bits_e data_bit;
+ rsa_endian_mode_e endian;
+ rsa_padding_t padding;
+ rsa_status_t status;
+} ck_rsa_priv_t;
+
+extern int32_t target_get_rsa_count(void);
+extern int32_t target_get_rsa(int32_t idx, uint32_t *base, uint32_t *irq);
+
+static ck_rsa_priv_t rsa_handle[CONFIG_RSA_NUM];
+
+extern uint8_t modulus[];
+static ck_rsa_reg_t *rsa_reg = NULL;
+/* Driver Capabilities */
+static const rsa_capabilities_t driver_capabilities = {
+ .bits_192 = 1, /* 192bits modular mode */
+ .bits_256 = 1, /* 256bits modular mode */
+ .bits_512 = 1, /* 512bits modular mode */
+ .bits_1024 = 1, /* 1024bits modular mode */
+ .bits_2048 = 1 /* 2048bits modular mode */
+};
+
+extern int32_t target_get_rsa(int32_t idx, uint32_t *base, uint32_t *irq);
+extern int32_t target_get_rsa_count(void);
+//
+// Functions
+//
+
+static uint32_t sw_exptmod_2_2m(const uint32_t *modulus, uint32_t words, uint32_t *tmp_c);
+static uint32_t get_valid_bits(const uint32_t *addr, uint32_t wordsize, uint32_t keywords);
+
+#ifdef RSA_USING_ID2KEY
+static uint32_t g_acc[RSA_KEY_WORD];
+#endif
+
+static inline void rsa_clear_int(void)
+{
+ rsa_reg->rsa_isr = 0xffff;
+ rsa_reg->rsa_imr = 0x0000;
+}
+
+static inline void rsa_setm_width(uint32_t width)
+{
+ rsa_reg->rsa_mwid = width;
+}
+
+static inline void rsa_setd_width(uint32_t width)
+{
+ rsa_reg->rsa_ckid = width;
+}
+
+static inline void rsa_setb_width(uint32_t width)
+{
+ rsa_reg->rsa_bwid = width;
+}
+
+static inline void rsa_cal_q(void)
+{
+ rsa_reg->rsa_ctrl = RAS_CALCULATE_Q;
+}
+
+static inline void rsa_opr_start(void)
+{
+ rsa_reg->rsa_ctrl = RSA_ENABLE_MODULE;
+}
+
+static inline void rsa_opr_reset(void)
+{
+ rsa_reg->rsa_ctrl = RSA_ENDIAN_MODE;
+ rsa_reg->rsa_rst |= RSA_RESET;
+
+ while (rsa_reg->rsa_rst);
+}
+
+static inline uint32_t rsa_loop_cnt(void)
+{
+ return rsa_reg->rsa_lp_cnt;
+}
+
+static inline uint32_t rsa_cal_q_done(void)
+{
+ return (rsa_reg->rsa_isr >> RSA_CAL_Q_DONE_OFFSET) & 0x1;
+}
+
+static inline uint32_t rsa_opr_done(void)
+{
+ return (rsa_reg->rsa_isr) & 0x1;
+}
+
+static inline uint32_t rsa_raise_exception(void)
+{
+ return (rsa_reg->rsa_isr) & 0x1E;
+}
+
+static inline uint32_t rsa_loadm(uint32_t *data, uint32_t length)
+{
+ uint32_t i;
+ uint32_t baseaddr = (uint32_t)&rsa_reg->rsa_rfm;
+
+ for (i = 0; i < length; i++) {
+ *(volatile uint32_t *)baseaddr = data[i];
+ baseaddr = baseaddr + 4;
+ }
+
+ return 0;
+}
+
+static void rsa_loadd(uint32_t *data, uint32_t length)
+{
+ uint32_t i;
+ uint32_t baseaddr = (uint32_t)&rsa_reg->rsa_rfd;
+
+ for (i = 0; i < length; i++) {
+ *(volatile uint32_t *)baseaddr = data[i];
+ baseaddr = baseaddr + 4;
+ }
+}
+
+static void rsa_loadc(uint32_t *data, uint32_t length)
+{
+ uint32_t i;
+ uint32_t baseaddr = (uint32_t)&rsa_reg->rsa_rfc;
+
+ for (i = 1; i < length + 1; i++) {
+ *(volatile uint32_t *)baseaddr = data[i - 1];
+ baseaddr = baseaddr + 4;
+ }
+}
+
+static void rsa_loadb(uint32_t *data, uint32_t length)
+{
+ uint32_t i;
+ uint32_t baseaddr = (uint32_t)&rsa_reg->rsa_rfb;
+
+ for (i = 0; i < length; i++) {
+ *(volatile uint32_t *)baseaddr = data[i];
+ baseaddr = baseaddr + 4;
+ }
+}
+
+static void rsa_read_r(uint32_t data[], uint32_t length)
+{
+ uint32_t i;
+ uint32_t baseaddr = (uint32_t)&rsa_reg->rsa_rfr;
+
+ for (i = 0; i < length; i++) {
+ data[i] = *(uint32_t *)baseaddr;
+ baseaddr = baseaddr + 4;
+ }
+}
+
+#if (CONFIG_PLATFORM_HOBBIT1_2 > 0)
+// FIXME
+// Since there is a piece of memory hole in RSA engine. we should
+// jump the hold to continue run without disable interrupt
+#define RSA_SP_HOLE_DOWN 0x60000900
+#define RSA_SP_HOLE_UP 0x600009FF
+#define TEE_CONEXT_SIZE 128
+static uint32_t rsa_run_adjust_sp_if_need(uint32_t sp)
+{
+ uint32_t sp_chg;
+
+ // if current sp is in hole, adjust new sp
+ if ((sp < (RSA_SP_HOLE_UP + TEE_CONEXT_SIZE)) && (sp > RSA_SP_HOLE_DOWN))
+ sp_chg = 1;
+ else
+ sp_chg = 0;
+
+ return sp_chg;
+}
+
+static void rsa_run_by_assemble(void)
+{
+ __asm__ __volatile__ (
+ "subi sp, 0x10 \n"
+ "stm r4-r7, (sp) \n"
+
+ // update sp
+ "mov r4, sp \n"
+ "subi r4, 0x180 \n"
+ "mov sp, r4 \n"
+
+ // enable rsa engine
+ "lrw r5, 0x4000a00c \n"
+ "movi r6, 3 \n"
+ "stw r6, (r5) \n"
+ // check rsa end
+ "__chk_loop: \n"
+ "lrw r5, 0x4000a020 \n"
+ "ldw r6, (r5) \n"
+ "btsti r6, 0 \n"
+ "bt __chk_end \n"
+
+ "lrw r5, 0x4000a020 \n"
+ "ldw r6, (r5) \n"
+ "movi r7, 0x1e \n"
+ "and r6, r7 \n"
+ "cmpnei r6, 0 \n"
+ "bf __chk_loop \n"
+
+ "lrw r5, 0x4000a014 \n"
+ "ldw r6, (r5) \n"
+ "cmplti r6, 0x40 \n"
+ "bt __chk_loop \n"
+
+ "__chk_end: \n"
+
+ // update sp
+ "mov r4, sp \n"
+ "addi r4, 0x180 \n"
+ "mov sp, r4 \n"
+
+ "ldm r4-r7, (sp) \n"
+ "addi sp, 0x10 \n"
+ );
+}
+#endif
+
+static uint32_t rsa_exptmod(const uint32_t *modulus, const uint32_t *exponent,
+ const uint32_t *base, uint32_t *out, uint32_t keywords,
+ uint32_t *tmp_c)
+{
+ uint32_t ret = 0;
+ if ((NULL == exponent) || (NULL == base) || (NULL == out)) {
+ return 1;
+ }
+
+#ifdef RSA_USING_ID2KEY
+ memcpy(tmp_c, g_acc, sizeof(g_acc));
+#endif
+
+ /* reset for safe */
+ rsa_opr_reset();
+ /* clear and disable int */
+ rsa_clear_int();
+ /* set m */
+ rsa_setm_width(keywords >> 1);
+ rsa_loadm((uint32_t *)modulus, keywords);
+ /* set d */
+ rsa_setd_width(get_valid_bits(exponent, keywords, keywords) - 1);
+ rsa_loadd((uint32_t *)exponent, keywords);
+ /* set b */
+ rsa_setb_width(keywords >> 1);
+ rsa_loadb((uint32_t *)base, keywords);
+ /* set c */
+#ifndef RSA_USING_ID2KEY
+ rsa_loadc(tmp_c, keywords);
+#else
+ rsa_loadc(g_acc, keywords);
+#endif
+
+ rsa_cal_q();
+
+ while (!rsa_cal_q_done() && (!rsa_raise_exception()));
+
+ if (!rsa_raise_exception()) {
+#if (CONFIG_PLATFORM_HOBBIT1_2 > 0)
+ ///////////////// FIXME ////////////////////////
+ if (rsa_run_adjust_sp_if_need(get_old_sp())) {
+ rsa_run_by_assemble();
+ } else {
+#endif
+ rsa_opr_start();
+ while ((!rsa_opr_done()) && (rsa_loop_cnt() < MAX_RSA_LP_CNT) && (!rsa_raise_exception()));
+#if (CONFIG_PLATFORM_HOBBIT1_2 > 0)
+ }
+#endif
+ if ((rsa_loop_cnt() >= MAX_RSA_LP_CNT)
+ || rsa_raise_exception()) {
+ ret = 1;
+ } else {
+ rsa_read_r(out, keywords);
+ }
+ } else {
+ ret = 1;
+ }
+
+ rsa_opr_reset();
+
+ return ret;
+
+}
+
+static uint32_t get_valid_bits(const uint32_t *addr, uint32_t wordsize, uint32_t keywords)
+{
+ uint32_t i = 0;
+ uint32_t j = 0;
+
+ for (i = wordsize; i > 0; i--) {
+ if (addr[i - 1]) {
+ break;
+ }
+ }
+
+ for (j = keywords; j > 0; j--) {
+ if (addr[i - 1] & (0x1 << (j - 1))) {
+ break;
+ }
+ }
+
+ return ((i - 1) << 5) + j;
+}
+
+static uint32_t get_first_nonzero_words(uint32_t *a, uint32_t max_words)
+{
+ uint32_t i = 0;
+
+ for (i = max_words; i > 0; i--) {
+ if (a[i - 1]) {
+ return i;
+ }
+ }
+
+ return 0;
+}
+
+static uint32_t word_array_left_shift(uint32_t *a, uint32_t words,
+ uint32_t shift_bits, uint32_t *r)
+{
+ uint32_t i = 0;
+ uint32_t w = shift_bits >> 5;
+ uint32_t b = shift_bits - (w << 5);
+
+ for (i = 0; i < w; i++) {
+ r[i] = 0;
+ }
+
+ uint32_t tmp = 0;
+
+ for (i = 0; i < words; i++) {
+ r[w + i] = (tmp | ((a[i] << b) & (~((0x1 << b) - 1))));
+ tmp = ((a[i] >> (32 - b)) & ((0x1 << b) - 1));
+ }
+
+ r[w + i] = tmp;
+
+ return 0;
+}
+
+/* r = a - b */
+static uint32_t _word_array_sub(uint32_t *a, uint32_t a_words,
+ uint32_t *b, uint32_t b_words,
+ uint32_t *r)
+{
+ uint32_t i;
+ uint64_t tmp = 0;
+ uint32_t borrow = 0;
+
+ for (i = 0; i < b_words; i++) {
+ tmp = UINT32_TO_UINT64(a[i]) - UINT32_TO_UINT64(b[i]) - UINT32_TO_UINT64(borrow);
+ r[i] = UINT64L_TO_UINT32(tmp);
+ borrow = ((UINT64H_TO_UINT32(tmp) == 0) ? (0) : (0xffffffff - UINT64H_TO_UINT32(tmp) + 1));
+ }
+
+ for (i = b_words; i < a_words; i++) {
+ tmp = UINT32_TO_UINT64(a[i]) - UINT32_TO_UINT64(borrow);
+ r[i] = UINT64L_TO_UINT32(tmp);
+ borrow = ((UINT64H_TO_UINT32(tmp) == 0) ? (0) : (0xffffffff - UINT64H_TO_UINT32(tmp) + 1));
+ }
+
+ if (borrow) {
+ return -1;
+ }
+
+ return 0;
+}
+
+static uint32_t word_array_mod(uint32_t *a, uint32_t a_words,
+ uint32_t *b, uint32_t b_words,
+ uint32_t *r, uint32_t keywords)
+{
+ uint32_t ret;
+ bignum_t tmpa;
+ bignum_t tmpb;
+
+ memset(&tmpa, 0, sizeof(tmpa));
+ memset(&tmpb, 0, sizeof(tmpa));
+
+ uint32_t b_valid_bits = get_valid_bits(b, b_words, keywords);
+
+ memcpy(tmpa.pdata, a, (a_words << 2));
+
+ do {
+ uint32_t tmpa_words = get_first_nonzero_words(tmpa.pdata, a_words);
+ uint32_t tmpa_valid_bits = get_valid_bits(tmpa.pdata, tmpa_words, keywords);
+
+ if (tmpa_valid_bits > b_valid_bits + 1) {
+ memset(tmpb.pdata, 0, (a_words << 2));
+ word_array_left_shift(b, b_words, tmpa_valid_bits - b_valid_bits - 1,
+ tmpb.pdata);
+ uint32_t tmpb_words = get_first_nonzero_words(tmpb.pdata, a_words);
+ ret = _word_array_sub(tmpa.pdata, tmpa_words, tmpb.pdata, tmpb_words, tmpa.pdata);
+ } else if (tmpa_words == b_words) {
+ memcpy(r, tmpa.pdata, (tmpa_words << 2));
+ ret = _word_array_sub(r, tmpa_words, b, b_words, tmpa.pdata);
+ } else {
+ ret = _word_array_sub(tmpa.pdata, tmpa_words, b, b_words, tmpa.pdata);
+ }
+ } while (ret == 0);
+
+ return 0;
+}
+
+static uint32_t sw_exptmod_2_2m(const uint32_t *modulus, uint32_t words, uint32_t *tmp_c)
+{
+ bignum_t tmp;
+
+ memset(&tmp, 0, sizeof(bignum_t));
+
+ uint32_t m_valid_bits = (words << 5);
+
+ uint32_t data1 = 0x1;
+ word_array_left_shift(&data1, 1, (m_valid_bits << 1), tmp.pdata);
+ tmp.words = get_first_nonzero_words(tmp.pdata, words * 2 + 1);
+
+ uint32_t ret = word_array_mod(tmp.pdata, tmp.words,
+ (uint32_t *)modulus, words, tmp_c, words);
+
+ if (ret != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+static void convert_byte_array(uint8_t *in, uint8_t *out, uint32_t len)
+{
+ uint32_t idx, round = len >> 1;
+
+ for (idx = 0; idx < round; idx++) {
+ uint8_t tmp = *(in + idx);
+ *(out + idx) = *(in + len - 1 - idx);
+ *(out + len - 1 - idx) = tmp;
+ }
+
+ if (len & 0x1) {
+ *(out + round) = *(in + round);
+ }
+}
+
+static void convert_buf_to_bndata(const uint8_t *src, uint32_t src_bytes,
+ uint32_t *dst, uint32_t dst_words)
+{
+ memset(dst, 0, dst_words << 2);
+ convert_byte_array((uint8_t *)src, (uint8_t *)dst, src_bytes);
+}
+
+static void convert_bndata_to_buf(const uint32_t *src, uint32_t src_words,
+ uint8_t *dst, uint32_t dst_bytes)
+{
+ memset(dst, 0, dst_bytes);
+ convert_byte_array((uint8_t *)src, (uint8_t *)dst, dst_bytes);
+}
+
+static const uint8_t der_sha256_t[] = {
+ 0x30, 0x31,
+ 0x30, 0x0d,
+ 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, /* id-sha256 */
+ 0x05, 0x00,
+ 0x04, 0x20
+};
+
+static const uint8_t der_sha1_t[] = {
+ 0x30, 0x21,
+ 0x30, 0x09,
+ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a,
+ 0x05, 0x00,
+ 0x04, 0x14
+};
+
+static const uint8_t der_md5_t[] = {
+ 0x30, 0x20, /* type Sequence, length 0x20 (32) */
+ 0x30, 0x0c, /* type Sequence, length 0x09 */
+ 0x06, 0x08, /* type OID, length 0x05 */
+ 0x2a, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* id-md5 */
+ 0x05, 0x00, /* NULL */
+ 0x04, 0x10 /* Octet string, length 0x10 (16), followed by md5 hash */
+};
+
+static uint32_t rsa_padding_pkcs(uint8_t *dgst,
+ uint8_t *out,
+ uint32_t type,
+ uint32_t keybytes)
+
+{
+ uint32_t i;
+ uint8_t *p;
+ uint8_t *der;
+ uint32_t der_len;
+ uint32_t hashlen;
+ uint32_t pslen;
+
+ if (type == MD5_PADDING) {
+ der = (uint8_t *)der_md5_t;
+ der_len = sizeof(der_md5_t);
+ hashlen = MD5_HASH_SZ;
+ } else if (type == SHA256_PADDING) {
+ der = (uint8_t *)der_sha256_t;
+ der_len = sizeof(der_sha256_t);
+ hashlen = SHA256_HASH_SZ;
+ } else {
+ der = (uint8_t *)der_sha1_t;
+ der_len = sizeof(der_sha1_t);
+ hashlen = SHA1_HASH_SZ;
+ }
+
+ p = (uint8_t *)out;
+
+ *(p++) = 0x00;
+ *(p++) = 0x01;
+
+ /* pad out with 0xff data */
+ pslen = keybytes - 3 - der_len - hashlen;
+
+ for (i = 0; i < pslen; i++) {
+ p[i] = 0xff; /* PS */
+ }
+
+ p += pslen;
+ *(p++) = 0x0;
+
+ for (i = 0; i < der_len; i++) {
+ p[i] = der[i];
+ }
+
+ p += der_len;
+
+ for (i = 0; i < hashlen; i++) {
+ p[i] = dgst[i];
+ }
+
+ return 0;
+}
+
+static uint32_t rsa_checking_pkcs(uint8_t *dgst,
+ uint8_t *in,
+ uint32_t inlen,
+ uint8_t *is_valid,
+ uint32_t type,
+ uint32_t keybytes)
+{
+ uint32_t i;
+ uint32_t ret;
+ const uint8_t *p;
+ uint8_t *der = NULL;
+ uint32_t der_len = 0;
+ uint32_t hashlen = 0;
+ uint32_t pslen;
+
+ if (type == MD5_PADDING) {
+ der = (uint8_t *)der_md5_t;
+ der_len = sizeof(der_md5_t);
+ hashlen = MD5_HASH_SZ;
+ } else if (type == SHA1_PADDING) {
+ der = (uint8_t *)der_sha1_t;
+ der_len = sizeof(der_sha1_t);
+ hashlen = SHA1_HASH_SZ;
+ } else if (type == SHA256_PADDING) {
+ der = (uint8_t *)der_sha256_t;
+ der_len = sizeof(der_sha256_t);
+ hashlen = SHA256_HASH_SZ;
+ }
+
+ *is_valid = 0;
+
+ pslen = keybytes - 3 - der_len - hashlen;
+ p = in;
+ p++;
+
+ if (*(p) != 0x01) {
+ ret = -1;
+ goto _verify_fail;
+ }
+
+ p++;
+
+ /* scan PS */
+ for (i = 0; i < pslen; i++) {
+ if (*(p + i) != 0xff) {
+ ret = -2;
+ goto _verify_fail;
+ }
+ }
+
+ p += pslen;
+
+ if ((*p) != 0x00) {
+ ret = -1;
+ goto _verify_fail;
+ }
+
+ p++;
+
+ /* scan t */
+ for (i = 0; i < der_len; i++) {
+ if (*(p + i) != der[i]) {
+ ret = -3;
+ goto _verify_fail;
+ }
+ }
+
+ p += der_len;
+
+ for (i = 0; i < hashlen; i++) {
+ if (*(p + i) != dgst[i]) {
+ ret = -4;
+ goto _verify_fail;
+ }
+ }
+
+ *is_valid = 1;
+ ret = 0;
+
+_verify_fail:
+
+ return ret;
+}
+
+static uint32_t rsa_padding_es_pkcs(uint8_t *dgst,
+ uint32_t dgstlen,
+ uint8_t *out,
+ uint32_t padding,
+ uint32_t keybytes)
+
+{
+ uint32_t i;
+ uint8_t *p;
+ uint32_t pslen;
+
+ p = (uint8_t *)out;
+
+ *(p++) = 0x00;
+ *(p++) = 0x02;
+
+ /* pad out with 0xff data */
+ pslen = keybytes - 3 - dgstlen;
+
+ for (i = 0; i < pslen; i++) {
+ p[i] = 0xff; /* PS */
+ }
+
+ p += pslen;
+ *(p++) = 0x0;
+
+ for (i = 0; i < dgstlen; i++) {
+ p[i] = dgst[i];
+ }
+
+ return 0;
+}
+
+static uint32_t rsa_checking_es_pkcs(uint8_t *out,
+ uint32_t *out_size,
+ uint8_t *src,
+ uint32_t src_size,
+ uint32_t padding,
+ uint32_t keybytes)
+{
+ uint32_t i;
+ uint8_t *p;
+ uint8_t *p_src;
+ uint32_t pslen;
+
+ p = (uint8_t *)src;
+ p_src = p;
+ *(p++) = 0x00;
+
+ if (padding == PKCS1_PADDING) {
+ if (*(p++) != 0x02) {
+ return -1;
+ }
+ } else {
+ if (*(p++) != 0x01) {
+ return -2;
+ }
+ }
+
+ pslen = src_size - 2;
+
+ while (pslen--) {
+ if (*(p++) == 0x0) {
+ break;
+ }
+ }
+
+ if (padding == PKCS1_PADDING) {
+ *out_size = pslen;
+ } else {
+ *out_size = keybytes;
+ }
+
+ for (i = 0; i < *out_size; i++) {
+ if (padding == PKCS1_PADDING) {
+ out[i] = p[i];
+ } else {
+ out[i] = p_src[i];
+ }
+ }
+
+ return 0;
+}
+
+int rsa_encrypt(uint8_t *n, uint8_t *e,
+ uint8_t *src, uint32_t src_size,
+ uint8_t *out, uint32_t *out_size,
+ uint32_t padding, uint32_t keybits_len,
+ uint32_t *tmp_c)
+{
+ uint32_t ret;
+ uint32_t tmp_n[RSA_KEY_WORD];
+ uint32_t tmp_e[RSA_KEY_WORD];
+ uint32_t tmp_in_out[RSA_KEY_WORD];
+ uint32_t keywords = 0, keybytes = 0;
+
+ keywords = GET_KEY_WORD(keybits_len);
+ keybytes = GET_KEY_BYTE(keybits_len);
+
+ convert_buf_to_bndata(n, keybytes, tmp_n, keywords);
+ convert_buf_to_bndata(e, keybytes, tmp_e, keywords);
+
+ if (padding == PKCS1_PADDING) {
+ ret = rsa_padding_es_pkcs(src,
+ src_size,
+ (uint8_t *)tmp_in_out,
+ padding,
+ keybytes);
+
+ if (ret != 0) {
+ return ret;
+ }
+
+ convert_byte_array((uint8_t *)tmp_in_out, (uint8_t *)tmp_in_out, keybytes);
+ } else {
+ convert_byte_array((uint8_t *)src, (uint8_t *)tmp_in_out, keybytes);
+ }
+
+ ret = rsa_exptmod(tmp_n, tmp_e, tmp_in_out, tmp_in_out, keywords, tmp_c);
+
+ if (ret != 0) {
+ return ret;
+ }
+
+ convert_bndata_to_buf(tmp_in_out, keywords, out, keybytes);
+ *out_size = keybytes;
+ return ret;
+}
+
+int rsa_decrypt(uint8_t *n, uint8_t *d,
+ uint8_t *src, uint32_t src_size,
+ uint8_t *out, uint32_t *out_size,
+ uint32_t padding, uint32_t keybits_len,
+ uint32_t *tmp_c)
+{
+ uint32_t ret;
+ uint32_t tmp_n[RSA_KEY_WORD];
+ uint32_t tmp_d[RSA_KEY_WORD];
+ uint32_t tmp_in_out[RSA_KEY_WORD];
+ uint32_t keywords = 0, keybytes = 0;
+
+ keywords = GET_KEY_WORD(keybits_len);
+ keybytes = GET_KEY_BYTE(keybits_len);
+
+ convert_buf_to_bndata(n, keybytes, tmp_n, keywords);
+ convert_buf_to_bndata(d, keybytes, tmp_d, keywords);
+ convert_buf_to_bndata(src, src_size, tmp_in_out, keywords);
+
+ ret = rsa_exptmod(tmp_n, tmp_d, tmp_in_out, tmp_in_out, keywords, tmp_c);
+
+ if (ret != 0) {
+ return ret;
+ }
+
+ convert_byte_array((uint8_t *)tmp_in_out, (uint8_t *)tmp_in_out, keybytes);
+
+ ret = rsa_checking_es_pkcs(out,
+ out_size,
+ (uint8_t *)tmp_in_out,
+ keybytes,
+ padding,
+ keybytes);
+
+ return ret;
+}
+
+int rsa_sign(uint8_t *n, uint8_t *d,
+ uint8_t *src, uint32_t src_size,
+ uint8_t *signature, uint32_t *sig_size,
+ uint32_t type, uint32_t keybits_len,
+ uint32_t *tmp_c)
+{
+ uint32_t ret;
+ uint32_t tmp_n[RSA_KEY_WORD];
+ uint32_t tmp_d[RSA_KEY_WORD];
+ uint32_t tmp_in_out[RSA_KEY_WORD];
+
+ uint32_t keywords = 0, keybytes = 0;
+
+ keywords = GET_KEY_WORD(keybits_len);
+ keybytes = GET_KEY_BYTE(keybits_len);
+
+ convert_buf_to_bndata(n, keybytes, tmp_n, keywords);
+ convert_buf_to_bndata(d, keybytes, tmp_d, keywords);
+
+ ret = rsa_padding_pkcs(src,
+ (uint8_t *)tmp_in_out,
+ type,
+ keybytes);
+
+ if (ret != 0) {
+ return ret;
+ }
+
+ convert_byte_array((uint8_t *)tmp_in_out, (uint8_t *)tmp_in_out, keybytes);
+
+ ret = rsa_exptmod(tmp_n, tmp_d, tmp_in_out, tmp_in_out, keywords, tmp_c);
+
+ if (ret != 0) {
+ return ret;
+ }
+
+ convert_bndata_to_buf(tmp_in_out, keywords, signature, keybytes);
+ *sig_size = keybytes;
+
+ return 0;
+}
+
+int rsa_verify(uint8_t *n, uint8_t *e,
+ uint8_t *src, uint32_t src_size,
+ uint8_t *signature, uint32_t sig_size,
+ uint32_t type, uint32_t keybits_len,
+ uint8_t *result, uint32_t *tmp_c)
+{
+ uint32_t ret;
+ uint32_t tmp_n[RSA_KEY_WORD];
+ uint32_t tmp_e[RSA_KEY_WORD];
+ uint32_t tmp_in_out[RSA_KEY_WORD];
+ uint32_t keywords = 0, keybytes = 0;
+
+ *result = 0;
+
+ keywords = GET_KEY_WORD(keybits_len);
+ keybytes = GET_KEY_BYTE(keybits_len);
+
+ convert_buf_to_bndata(n, keybytes, tmp_n, keywords);
+ convert_buf_to_bndata(e, keybytes, tmp_e, keywords);
+ convert_buf_to_bndata(signature, sig_size, tmp_in_out, keywords);
+
+ ret = rsa_exptmod(tmp_n, tmp_e, tmp_in_out, tmp_in_out, keywords, tmp_c);
+
+ if (ret != 0) {
+ return ret;
+ }
+
+ convert_byte_array((uint8_t *)tmp_in_out, (uint8_t *)tmp_in_out, keybytes);
+
+ ret = rsa_checking_pkcs(src,
+ (uint8_t *)tmp_in_out,
+ keybytes,
+ result,
+ type,
+ keybytes);
+
+ return ret;
+}
+
+static int rsa_sw_exptmod_2_2m(uint8_t *modulus, uint32_t keybits_len, uint32_t *tmp_c)
+{
+ uint32_t keywords = 0, keybytes = 0;
+ uint32_t tmp_n[RSA_KEY_WORD];
+
+ keywords = GET_KEY_WORD(keybits_len);
+ keybytes = GET_KEY_BYTE(keybits_len);
+
+ convert_buf_to_bndata(modulus, keybytes, tmp_n, keywords);
+
+ sw_exptmod_2_2m(tmp_n, keywords, tmp_c);
+ return 0;
+}
+
+int rsa_sw_calc_modulus(uint8_t *modulus, uint32_t keybits_len)
+{
+#ifdef RSA_USING_ID2KEY
+ static uint32_t current_keybits_len;
+
+ if (current_keybits_len != keybits_len) {
+ rsa_sw_exptmod_2_2m((uint8_t *)modulus, keybits_len, g_acc);
+ current_keybits_len = keybits_len;
+ }
+
+#endif
+ return 0;
+}
+
+/**
+ \brief get rsa handle count.
+ \return rsa handle count
+*/
+int32_t csi_rsa_get_instance_count(void)
+{
+ return target_get_rsa_count();
+}
+
+/**
+ \brief Initialize RSA Interface. 1. Initializes the resources needed for the RSA interface 2.registers event callback function
+ \param[in] idx must not exceed return value of csi_rsa_get_instance_count()
+ \param[in] cb_event Pointer to \ref rsa_event_cb_t
+ \return pointer to rsa handle
+*/
+rsa_handle_t csi_rsa_initialize(int32_t idx, rsa_event_cb_t cb_event)
+{
+ if (idx < 0 || idx >= CONFIG_RSA_NUM) {
+ return NULL;
+ }
+
+ /* obtain the rsa information */
+ uint32_t base = 0u;
+ uint32_t irq;
+ int32_t real_idx = target_get_rsa(idx, &base, &irq);
+
+ if (real_idx != idx) {
+ return NULL;
+ }
+
+ ck_rsa_priv_t *rsa_priv = &rsa_handle[idx];
+
+ rsa_priv->base = base;
+ rsa_priv->irq = irq;
+
+ /* initialize the rsa context */
+ rsa_priv->cb = cb_event;
+ rsa_priv->data_bit = RSA_DATA_BITS_1024;
+ rsa_priv->endian = RSA_ENDIAN_MODE_LITTLE;
+ rsa_priv->padding.padding_type = RSA_PADDING_MODE_PKCS1;
+ rsa_priv->padding.hash_type = RSA_HASH_TYPE_SHA1;
+ rsa_priv->status.busy = 0;
+
+#ifdef RSA_USING_ID2KEY
+ memset(g_acc, 0x0, sizeof(g_acc));
+#endif
+
+ return (rsa_handle_t)rsa_priv;
+}
+
+/**
+ \brief De-initialize RSA Interface. stops operation and releases the software resources used by the interface
+ \param[in] handle rsa handle to operate.
+ \return error code
+*/
+int32_t csi_rsa_uninitialize(rsa_handle_t handle)
+{
+ RSA_NULL_PARAM_CHK(handle);
+
+ ck_rsa_priv_t *rsa_priv = handle;
+ rsa_priv->cb = NULL;
+
+ return 0;
+}
+
+/**
+ \brief Get driver capabilities.
+ \param[in] handle rsa handle to operate.
+ \return \ref rsa_capabilities_t
+*/
+rsa_capabilities_t csi_rsa_get_capabilities(rsa_handle_t handle)
+{
+ return driver_capabilities;
+}
+
+/**
+ \brief config rsa mode.
+ \param[in] handle rsa handle to operate.
+ \param[in] data_bits \ref rsa_data_bits_e
+ \param[in] endian \ref rsa_endian_mode_e
+ \return error code
+*/
+int32_t csi_rsa_config(rsa_handle_t handle,
+ rsa_data_bits_e data_bits,
+ rsa_endian_mode_e endian,
+ void *arg
+ )
+{
+ RSA_NULL_PARAM_CHK(handle);
+
+ ck_rsa_priv_t *rsa_priv = handle;
+ rsa_reg = (ck_rsa_reg_t *)(rsa_priv->base);
+
+ /* config the data bits */
+ switch (data_bits) {
+ case RSA_DATA_BITS_192:
+ case RSA_DATA_BITS_256:
+ case RSA_DATA_BITS_512:
+ return ERR_RSA(EDRV_UNSUPPORTED);
+
+ case RSA_DATA_BITS_1024:
+ case RSA_DATA_BITS_2048:
+ rsa_priv->data_bit = data_bits;
+ break;
+
+ default:
+ return ERR_RSA(EDRV_PARAMETER);
+ }
+
+ /* config the endian mode */
+ if (endian == RSA_ENDIAN_MODE_LITTLE) {
+ rsa_priv->endian = endian;
+ } else if (endian == RSA_ENDIAN_MODE_BIG) {
+ return ERR_RSA(EDRV_UNSUPPORTED);
+ } else {
+ return ERR_RSA(EDRV_PARAMETER);
+ }
+
+ if (arg != NULL) {
+#ifdef RSA_USING_ID2KEY
+ uint32_t keybits_len = 1024;
+
+ if (data_bits == RSA_DATA_BITS_2048) {
+ keybits_len = 2048;
+ }
+
+ rsa_sw_calc_modulus(arg, keybits_len);
+#else
+ //memcpy(g_acc, arg, sizeof(g_acc));
+#endif
+ }
+
+ return 0;
+}
+
+/**
+ \brief encrypt
+ \param[in] handle rsa handle to operate.
+ \param[in] n Pointer to the public modulus
+ \param[in] e Pointer to the public exponent
+ \param[in] src Pointer to the source data.
+ \param[in] src_size the source data len
+ \param[out] out Pointer to the result buffer
+ \param[out] out_size the result size
+ \param[in] padding \ref rsa_padding_t
+ \return error code
+*/
+int32_t csi_rsa_encrypt(rsa_handle_t handle, void *n, void *e, void *src, int32_t src_size, void *out, uint32_t *out_size, rsa_padding_t padding)
+{
+#ifndef RSA_USING_ID2KEY
+ uint32_t tmp_c[RSA_KEY_WORD];
+#endif
+ RSA_NULL_PARAM_CHK(handle);
+ RSA_NULL_PARAM_CHK(n);
+ RSA_NULL_PARAM_CHK(e);
+ RSA_NULL_PARAM_CHK(src);
+ RSA_NULL_PARAM_CHK(out);
+ RSA_NULL_PARAM_CHK(out_size);
+
+ if (src_size <= 0 || (padding.padding_type != RSA_PADDING_MODE_PKCS1 && padding.padding_type != RSA_PADDING_MODE_NO)) {
+ return ERR_RSA(EDRV_PARAMETER);
+ }
+
+ ck_rsa_priv_t *rsa_priv = handle;
+ rsa_priv->status.busy = 1U;
+
+ uint32_t bit_length = 1024;
+
+ if (rsa_priv->data_bit == RSA_DATA_BITS_2048) {
+ bit_length = 2048;
+ }
+
+#ifndef RSA_USING_ID2KEY
+ rsa_sw_exptmod_2_2m(n, bit_length, tmp_c);
+#endif
+
+ rsa_encrypt((uint8_t *)n, (uint8_t *)e, (uint8_t *)src, (uint32_t)src_size, (uint8_t *)out, (uint32_t *)out_size, (uint32_t)(padding.padding_type), bit_length, tmp_c);
+ rsa_priv->status.busy = 0U;
+
+ if (rsa_priv->cb) {
+ rsa_priv->cb(RSA_EVENT_ENCRYPT_COMPLETE);
+ }
+
+ return 0;
+}
+
+/**
+ \brief decrypt
+ \param[in] handle rsa handle to operate.
+ \param[in] n Pointer to the public modulus
+ \param[in] d Pointer to the privte exponent
+ \param[in] src Pointer to the source data.
+ \param[in] src_size the source data len
+ \param[out] out Pointer to the result buffer
+ \param[out] out_size the result size
+ \param[in] padding \ref rsa_padding_t
+ \return error code
+*/
+int32_t csi_rsa_decrypt(rsa_handle_t handle, void *n, void *d, void *src, uint32_t src_size, void *out, uint32_t *out_size, rsa_padding_t padding)
+{
+#ifndef RSA_USING_ID2KEY
+ uint32_t tmp_c[RSA_KEY_WORD];
+#endif
+ RSA_NULL_PARAM_CHK(handle);
+ RSA_NULL_PARAM_CHK(n);
+ RSA_NULL_PARAM_CHK(d);
+ RSA_NULL_PARAM_CHK(src);
+ RSA_NULL_PARAM_CHK(out);
+ RSA_NULL_PARAM_CHK(out_size);
+
+ if (src_size <= 0 || (padding.padding_type != RSA_PADDING_MODE_PKCS1 && padding.padding_type != RSA_PADDING_MODE_NO)) {
+ return ERR_RSA(EDRV_PARAMETER);
+ }
+
+ ck_rsa_priv_t *rsa_priv = handle;
+ rsa_priv->status.busy = 1U;
+
+ uint32_t bit_length = 1024;
+
+ if (rsa_priv->data_bit == RSA_DATA_BITS_2048) {
+ bit_length = 2048;
+ }
+
+#ifndef RSA_USING_ID2KEY
+ rsa_sw_exptmod_2_2m(n, bit_length, tmp_c);
+#endif
+
+ rsa_decrypt((uint8_t *)n, (uint8_t *)d, (uint8_t *)src, (uint32_t)src_size, (uint8_t *)out, (uint32_t *)out_size, (uint32_t)(padding.padding_type), bit_length, tmp_c);
+ rsa_priv->status.busy = 0U;
+
+ if (rsa_priv->cb) {
+ rsa_priv->cb(RSA_EVENT_DECRYPT_COMPLETE);
+ }
+
+ return 0;
+}
+
+/**
+ \brief rsa sign
+ \param[in] handle rsa handle to operate.
+ \param[in] n Pointer to the public modulus
+ \param[in] d Pointer to the privte exponent
+ \param[in] src Pointer to the source data.
+ \param[in] src_size the source data len
+ \param[out] signature Pointer to the signature
+ \param[out] sig_size the signature size
+ \param[in] padding \ref rsa_padding_t
+ \return error code
+*/
+int32_t csi_rsa_sign(rsa_handle_t handle, void *n, void *d, void *src, uint32_t src_size, void *signature, void *sig_size, rsa_padding_t padding)
+{
+#ifndef RSA_USING_ID2KEY
+ uint32_t tmp_c[RSA_KEY_WORD];
+#endif
+ RSA_NULL_PARAM_CHK(handle);
+ RSA_NULL_PARAM_CHK(n);
+ RSA_NULL_PARAM_CHK(d);
+ RSA_NULL_PARAM_CHK(src);
+ RSA_NULL_PARAM_CHK(signature);
+ RSA_NULL_PARAM_CHK(sig_size);
+
+ if (src_size <= 0 || (padding.hash_type != RSA_HASH_TYPE_MD5
+ && padding.hash_type != RSA_HASH_TYPE_SHA1
+ && padding.hash_type != RSA_HASH_TYPE_SHA256)) {
+ return ERR_RSA(EDRV_PARAMETER);
+ }
+
+ ck_rsa_priv_t *rsa_priv = handle;
+ rsa_priv->status.busy = 1U;
+ uint32_t bit_length = 1024;
+
+ if (rsa_priv->data_bit == RSA_DATA_BITS_2048) {
+ bit_length = 2048;
+ }
+
+#ifndef RSA_USING_ID2KEY
+ rsa_sw_exptmod_2_2m(n, bit_length, tmp_c);
+#endif
+
+ rsa_sign((uint8_t *)n, (uint8_t *)d, (uint8_t *)src, (uint32_t)src_size, (uint8_t *)signature, (uint32_t *)sig_size, (uint32_t)(padding.hash_type), bit_length, tmp_c);
+ rsa_priv->status.busy = 0U;
+
+ if (rsa_priv->cb) {
+ rsa_priv->cb(RSA_EVENT_SIGN_COMPLETE);
+ }
+
+ return 0;
+}
+
+/**
+ \brief rsa verify
+ \param[in] handle rsa handle to operate.
+ \param[in] n Pointer to the public modulus
+ \param[in] e Pointer to the public exponent
+ \param[in] src Pointer to the source data.
+ \param[in] src_size the source data len
+ \param[in] signature Pointer to the signature
+ \param[in] sig_size the signature size
+ \param[out] result Pointer to the result
+ \param[in] padding \ref rsa_padding_t
+ \return error code
+*/
+int32_t csi_rsa_verify(rsa_handle_t handle, void *n, void *e, void *src, uint32_t src_size, void *signature, uint32_t sig_size, void *result, rsa_padding_t padding)
+{
+#ifndef RSA_USING_ID2KEY
+ uint32_t tmp_c[RSA_KEY_WORD];
+#endif
+ RSA_NULL_PARAM_CHK(handle);
+ RSA_NULL_PARAM_CHK(n);
+ RSA_NULL_PARAM_CHK(e);
+ RSA_NULL_PARAM_CHK(src);
+ RSA_NULL_PARAM_CHK(signature);
+ RSA_NULL_PARAM_CHK(result);
+
+ if (src_size <= 0 || sig_size <= 0 || (padding.hash_type != RSA_HASH_TYPE_MD5 && padding.hash_type != RSA_HASH_TYPE_SHA1 && padding.hash_type != RSA_HASH_TYPE_SHA256)) {
+ return ERR_RSA(EDRV_PARAMETER);
+ }
+
+ ck_rsa_priv_t *rsa_priv = handle;
+ rsa_priv->status.busy = 1U;
+
+ uint32_t bit_length = 1024;
+
+ if (rsa_priv->data_bit == RSA_DATA_BITS_2048) {
+ bit_length = 2048;
+ }
+
+#ifndef RSA_USING_ID2KEY
+ rsa_sw_exptmod_2_2m(n, bit_length, tmp_c);
+#endif
+
+ rsa_verify((uint8_t *)n, (uint8_t *)e, (uint8_t *)src, (uint32_t)src_size, (uint8_t *)signature, sig_size, (uint32_t)(padding.hash_type), bit_length, (uint8_t *)result, tmp_c);
+ rsa_priv->status.busy = 0U;
+
+ if (rsa_priv->cb) {
+ rsa_priv->cb(RSA_EVENT_VERIFY_COMPLETE);
+ }
+
+ return 0;
+}
+
+/**
+ \brief Get RSA status.
+ \param[in] handle rsa handle to operate.
+ \return RSA status \ref rsa_status_t
+*/
+rsa_status_t csi_rsa_get_status(rsa_handle_t handle)
+{
+ ck_rsa_priv_t *rsa_priv = handle;
+ return rsa_priv->status;
+}