summaryrefslogtreecommitdiff
path: root/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/pwdbased.c
blob: c672c2285a767f17c34a70aadaae59d65c994d14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
/* pwdbased.c
 *
 * Copyright (C) 2006-2020 wolfSSL Inc.
 *
 * This file is part of wolfSSL.
 *
 * wolfSSL is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * wolfSSL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
 */


#ifdef HAVE_CONFIG_H
    #include <config.h>
#endif

#include <wolfssl/wolfcrypt/settings.h>

#ifndef NO_PWDBASED

#include <wolfssl/wolfcrypt/pwdbased.h>
#include <wolfssl/wolfcrypt/hmac.h>
#include <wolfssl/wolfcrypt/hash.h>
#include <wolfssl/wolfcrypt/integer.h>
#include <wolfssl/wolfcrypt/error-crypt.h>

#ifdef NO_INLINE
    #include <wolfssl/wolfcrypt/misc.h>
#else
    #define WOLFSSL_MISC_INCLUDED
    #include <wolfcrypt/src/misc.c>
#endif


#ifdef HAVE_PBKDF1

/* PKCS#5 v1.5 with non standard extension to optionally derive the extra data (IV) */
int wc_PBKDF1_ex(byte* key, int keyLen, byte* iv, int ivLen,
    const byte* passwd, int passwdLen, const byte* salt, int saltLen,
    int iterations, int hashType, void* heap)
{
    int  err;
    int  keyLeft, ivLeft, i;
    int  digestLeft, store;
    int  keyOutput = 0;
    int  diestLen;
    byte digest[WC_MAX_DIGEST_SIZE];
#ifdef WOLFSSL_SMALL_STACK
    wc_HashAlg* hash = NULL;
#else
    wc_HashAlg  hash[1];
#endif
    enum wc_HashType hashT;

    (void)heap;

    if (key == NULL || keyLen < 0 || passwdLen < 0 || saltLen < 0 || ivLen < 0){
        return BAD_FUNC_ARG;
    }

    if (iterations <= 0)
        iterations = 1;

    hashT = wc_HashTypeConvert(hashType);
    err = wc_HashGetDigestSize(hashT);
    if (err < 0)
        return err;
    diestLen = err;

    /* initialize hash */
#ifdef WOLFSSL_SMALL_STACK
    hash = (wc_HashAlg*)XMALLOC(sizeof(wc_HashAlg), heap,
                                DYNAMIC_TYPE_HASHCTX);
    if (hash == NULL)
        return MEMORY_E;
#endif

    err = wc_HashInit_ex(hash, hashT, heap, INVALID_DEVID);
    if (err != 0) {
    #ifdef WOLFSSL_SMALL_STACK
        XFREE(hash, heap, DYNAMIC_TYPE_HASHCTX);
    #endif
        return err;
    }

    keyLeft = keyLen;
    ivLeft  = ivLen;
    while (keyOutput < (keyLen + ivLen)) {
        digestLeft = diestLen;
        /* D_(i - 1) */
        if (keyOutput) { /* first time D_0 is empty */
            err = wc_HashUpdate(hash, hashT, digest, diestLen);
            if (err != 0) break;
        }

        /* data */
        err = wc_HashUpdate(hash, hashT, passwd, passwdLen);
        if (err != 0) break;

        /* salt */
        if (salt) {
            err = wc_HashUpdate(hash, hashT, salt, saltLen);
            if (err != 0) break;
        }

        err = wc_HashFinal(hash, hashT, digest);
        if (err != 0) break;

        /* count */
        for (i = 1; i < iterations; i++) {
            err = wc_HashUpdate(hash, hashT, digest, diestLen);
            if (err != 0) break;

            err = wc_HashFinal(hash, hashT, digest);
            if (err != 0) break;
        }

        if (keyLeft) {
            store = min(keyLeft, diestLen);
            XMEMCPY(&key[keyLen - keyLeft], digest, store);

            keyOutput  += store;
            keyLeft    -= store;
            digestLeft -= store;
        }

        if (ivLeft && digestLeft) {
            store = min(ivLeft, digestLeft);
            if (iv != NULL)
                XMEMCPY(&iv[ivLen - ivLeft],
                        &digest[diestLen - digestLeft], store);
            keyOutput += store;
            ivLeft    -= store;
        }
    }

    wc_HashFree(hash, hashT);

#ifdef WOLFSSL_SMALL_STACK
    XFREE(hash, heap, DYNAMIC_TYPE_HASHCTX);
#endif

    if (err != 0)
        return err;

    if (keyOutput != (keyLen + ivLen))
        return BUFFER_E;

    return err;
}

/* PKCS#5 v1.5 */
int wc_PBKDF1(byte* output, const byte* passwd, int pLen, const byte* salt,
           int sLen, int iterations, int kLen, int hashType)
{
    return wc_PBKDF1_ex(output, kLen, NULL, 0,
        passwd, pLen, salt, sLen, iterations, hashType, NULL);
}

#endif /* HAVE_PKCS5 */

#ifdef HAVE_PBKDF2

int wc_PBKDF2_ex(byte* output, const byte* passwd, int pLen, const byte* salt,
           int sLen, int iterations, int kLen, int hashType, void* heap, int devId)
{
    word32 i = 1;
    int    hLen;
    int    j, ret;
#ifdef WOLFSSL_SMALL_STACK
    byte*  buffer;
    Hmac*  hmac;
#else
    byte   buffer[WC_MAX_DIGEST_SIZE];
    Hmac   hmac[1];
#endif
    enum wc_HashType hashT;

    if (output == NULL || pLen < 0 || sLen < 0 || kLen < 0) {
        return BAD_FUNC_ARG;
    }

    if (iterations <= 0)
        iterations = 1;

    hashT = wc_HashTypeConvert(hashType);
    hLen = wc_HashGetDigestSize(hashT);
    if (hLen < 0)
        return BAD_FUNC_ARG;

#ifdef WOLFSSL_SMALL_STACK
    buffer = (byte*)XMALLOC(WC_MAX_DIGEST_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER);
    if (buffer == NULL)
        return MEMORY_E;
    hmac = (Hmac*)XMALLOC(sizeof(Hmac), heap, DYNAMIC_TYPE_HMAC);
    if (hmac == NULL) {
        XFREE(buffer, heap, DYNAMIC_TYPE_TMP_BUFFER);
        return MEMORY_E;
    }
#endif

    ret = wc_HmacInit(hmac, heap, devId);
    if (ret == 0) {
        /* use int hashType here, since HMAC FIPS uses the old unique value */
        ret = wc_HmacSetKey(hmac, hashType, passwd, pLen);

        while (ret == 0 && kLen) {
            int currentLen;

            ret = wc_HmacUpdate(hmac, salt, sLen);
            if (ret != 0)
                break;

            /* encode i */
            for (j = 0; j < 4; j++) {
                byte b = (byte)(i >> ((3-j) * 8));

                ret = wc_HmacUpdate(hmac, &b, 1);
                if (ret != 0)
                    break;
            }

            /* check ret from inside for loop */
            if (ret != 0)
                break;

            ret = wc_HmacFinal(hmac, buffer);
            if (ret != 0)
                break;

            currentLen = min(kLen, hLen);
            XMEMCPY(output, buffer, currentLen);

            for (j = 1; j < iterations; j++) {
                ret = wc_HmacUpdate(hmac, buffer, hLen);
                if (ret != 0)
                    break;
                ret = wc_HmacFinal(hmac, buffer);
                if (ret != 0)
                    break;
                xorbuf(output, buffer, currentLen);
            }

            /* check ret from inside for loop */
            if (ret != 0)
                break;

            output += currentLen;
            kLen   -= currentLen;
            i++;
        }
        wc_HmacFree(hmac);
    }

#ifdef WOLFSSL_SMALL_STACK
    XFREE(buffer, heap, DYNAMIC_TYPE_TMP_BUFFER);
    XFREE(hmac, heap, DYNAMIC_TYPE_HMAC);
#endif

    return ret;
}

int wc_PBKDF2(byte* output, const byte* passwd, int pLen, const byte* salt,
           int sLen, int iterations, int kLen, int hashType)
{
    return wc_PBKDF2_ex(output, passwd, pLen, salt, sLen, iterations, kLen,
        hashType, NULL, INVALID_DEVID);
}

#endif /* HAVE_PBKDF2 */

#ifdef HAVE_PKCS12

/* helper for PKCS12_PBKDF(), does hash operation */
static int DoPKCS12Hash(int hashType, byte* buffer, word32 totalLen,
                 byte* Ai, word32 u, int iterations)
{
    int i;
    int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
    wc_HashAlg* hash = NULL;
#else
    wc_HashAlg  hash[1];
#endif
    enum wc_HashType hashT;

    if (buffer == NULL || Ai == NULL) {
        return BAD_FUNC_ARG;
    }

    hashT = wc_HashTypeConvert(hashType);

    /* initialize hash */
#ifdef WOLFSSL_SMALL_STACK
    hash = (wc_HashAlg*)XMALLOC(sizeof(wc_HashAlg), NULL,
                                DYNAMIC_TYPE_HASHCTX);
    if (hash == NULL)
        return MEMORY_E;
#endif

    ret = wc_HashInit(hash, hashT);
    if (ret != 0) {
    #ifdef WOLFSSL_SMALL_STACK
        XFREE(hash, NULL, DYNAMIC_TYPE_HASHCTX);
    #endif
        return ret;
    }

    ret = wc_HashUpdate(hash, hashT, buffer, totalLen);

    if (ret == 0)
        ret = wc_HashFinal(hash, hashT, Ai);

    for (i = 1; i < iterations; i++) {
        if (ret == 0)
            ret = wc_HashUpdate(hash, hashT, Ai, u);
        if (ret == 0)
            ret = wc_HashFinal(hash, hashT, Ai);
    }

    wc_HashFree(hash, hashT);

#ifdef WOLFSSL_SMALL_STACK
    XFREE(hash, NULL, DYNAMIC_TYPE_HASHCTX);
#endif

    return ret;
}


int wc_PKCS12_PBKDF(byte* output, const byte* passwd, int passLen,
    const byte* salt, int saltLen, int iterations, int kLen, int hashType,
    int id)
{
    return wc_PKCS12_PBKDF_ex(output, passwd, passLen, salt, saltLen,
                              iterations, kLen, hashType, id, NULL);
}


/* extended API that allows a heap hint to be used */
int wc_PKCS12_PBKDF_ex(byte* output, const byte* passwd, int passLen,
                       const byte* salt, int saltLen, int iterations, int kLen,
                       int hashType, int id, void* heap)
{
    /* all in bytes instead of bits */
    word32 u, v, dLen, pLen, iLen, sLen, totalLen;
    int    dynamic = 0;
    int    ret = 0;
    int    i;
    byte   *D, *S, *P, *I;
#ifdef WOLFSSL_SMALL_STACK
    byte   staticBuffer[1]; /* force dynamic usage */
#else
    byte   staticBuffer[1024];
#endif
    byte*  buffer = staticBuffer;

#ifdef WOLFSSL_SMALL_STACK
    byte*  Ai;
    byte*  B;
#else
    byte   Ai[WC_MAX_DIGEST_SIZE];
    byte   B[WC_MAX_BLOCK_SIZE];
#endif
    enum wc_HashType hashT;

    (void)heap;

    if (output == NULL || passLen < 0 || saltLen < 0 || kLen < 0) {
        return BAD_FUNC_ARG;
    }

    if (iterations <= 0)
        iterations = 1;

    hashT = wc_HashTypeConvert(hashType);
    ret = wc_HashGetDigestSize(hashT);
    if (ret < 0)
        return ret;
    u = ret;

    ret = wc_HashGetBlockSize(hashT);
    if (ret < 0)
        return ret;
    v = ret;

#ifdef WOLFSSL_SMALL_STACK
    Ai = (byte*)XMALLOC(WC_MAX_DIGEST_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER);
    if (Ai == NULL)
        return MEMORY_E;

    B = (byte*)XMALLOC(WC_MAX_BLOCK_SIZE, heap, DYNAMIC_TYPE_TMP_BUFFER);
    if (B == NULL) {
        XFREE(Ai, heap, DYNAMIC_TYPE_TMP_BUFFER);
        return MEMORY_E;
    }
#endif

    XMEMSET(Ai, 0, WC_MAX_DIGEST_SIZE);
    XMEMSET(B,  0, WC_MAX_BLOCK_SIZE);

    dLen = v;
    sLen = v * ((saltLen + v - 1) / v);
    if (passLen)
        pLen = v * ((passLen + v - 1) / v);
    else
        pLen = 0;
    iLen = sLen + pLen;

    totalLen = dLen + sLen + pLen;

    if (totalLen > sizeof(staticBuffer)) {
        buffer = (byte*)XMALLOC(totalLen, heap, DYNAMIC_TYPE_KEY);
        if (buffer == NULL) {
#ifdef WOLFSSL_SMALL_STACK
            XFREE(Ai, heap, DYNAMIC_TYPE_TMP_BUFFER);
            XFREE(B,  heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
            return MEMORY_E;
        }
        dynamic = 1;
    }

    D = buffer;
    S = D + dLen;
    P = S + sLen;
    I = S;

    XMEMSET(D, id, dLen);

    for (i = 0; i < (int)sLen; i++)
        S[i] = salt[i % saltLen];
    for (i = 0; i < (int)pLen; i++)
        P[i] = passwd[i % passLen];

    while (kLen > 0) {
        word32 currentLen;
        mp_int B1;

        ret = DoPKCS12Hash(hashType, buffer, totalLen, Ai, u, iterations);
        if (ret < 0)
            break;

        for (i = 0; i < (int)v; i++)
            B[i] = Ai[i % u];

        if (mp_init(&B1) != MP_OKAY)
            ret = MP_INIT_E;
        else if (mp_read_unsigned_bin(&B1, B, v) != MP_OKAY)
            ret = MP_READ_E;
        else if (mp_add_d(&B1, (mp_digit)1, &B1) != MP_OKAY)
            ret = MP_ADD_E;

        if (ret != 0) {
            mp_clear(&B1);
            break;
        }

        for (i = 0; i < (int)iLen; i += v) {
            int    outSz;
            mp_int i1;
            mp_int res;

            if (mp_init_multi(&i1, &res, NULL, NULL, NULL, NULL) != MP_OKAY) {
                ret = MP_INIT_E;
                break;
            }
            if (mp_read_unsigned_bin(&i1, I + i, v) != MP_OKAY)
                ret = MP_READ_E;
            else if (mp_add(&i1, &B1, &res) != MP_OKAY)
                ret = MP_ADD_E;
            else if ( (outSz = mp_unsigned_bin_size(&res)) < 0)
                ret = MP_TO_E;
            else {
                if (outSz > (int)v) {
                    /* take off MSB */
                    byte  tmp[WC_MAX_BLOCK_SIZE + 1];
                    ret = mp_to_unsigned_bin(&res, tmp);
                    XMEMCPY(I + i, tmp + 1, v);
                }
                else if (outSz < (int)v) {
                    XMEMSET(I + i, 0, v - outSz);
                    ret = mp_to_unsigned_bin(&res, I + i + v - outSz);
                }
                else
                    ret = mp_to_unsigned_bin(&res, I + i);
            }

            mp_clear(&i1);
            mp_clear(&res);
            if (ret < 0) break;
        }

        currentLen = min(kLen, (int)u);
        XMEMCPY(output, Ai, currentLen);
        output += currentLen;
        kLen   -= currentLen;
        mp_clear(&B1);
    }

    if (dynamic) XFREE(buffer, heap, DYNAMIC_TYPE_KEY);

#ifdef WOLFSSL_SMALL_STACK
    XFREE(Ai, heap, DYNAMIC_TYPE_TMP_BUFFER);
    XFREE(B,  heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif

    return ret;
}

#endif /* HAVE_PKCS12 */

#ifdef HAVE_SCRYPT
/* Rotate the 32-bit value a by b bits to the left.
 *
 * a  32-bit value.
 * b  Number of bits to rotate.
 * returns rotated value.
 */
#define R(a, b) rotlFixed(a, b)

/* One round of Salsa20/8.
 * Code taken from RFC 7914: scrypt PBKDF.
 *
 * out  Output buffer.
 * in   Input data to hash.
 */
static void scryptSalsa(word32* out, word32* in)
{
    int    i;
    word32 x[16];

#ifdef LITTLE_ENDIAN_ORDER
    for (i = 0; i < 16; ++i)
        x[i] = in[i];
#else
    for (i = 0; i < 16; i++)
        x[i] = ByteReverseWord32(in[i]);
#endif
    for (i = 8; i > 0; i -= 2) {
        x[ 4] ^= R(x[ 0] + x[12],  7);  x[ 8] ^= R(x[ 4] + x[ 0],  9);
        x[12] ^= R(x[ 8] + x[ 4], 13);  x[ 0] ^= R(x[12] + x[ 8], 18);
        x[ 9] ^= R(x[ 5] + x[ 1],  7);  x[13] ^= R(x[ 9] + x[ 5],  9);
        x[ 1] ^= R(x[13] + x[ 9], 13);  x[ 5] ^= R(x[ 1] + x[13], 18);
        x[14] ^= R(x[10] + x[ 6],  7);  x[ 2] ^= R(x[14] + x[10],  9);
        x[ 6] ^= R(x[ 2] + x[14], 13);  x[10] ^= R(x[ 6] + x[ 2], 18);
        x[ 3] ^= R(x[15] + x[11],  7);  x[ 7] ^= R(x[ 3] + x[15],  9);
        x[11] ^= R(x[ 7] + x[ 3], 13);  x[15] ^= R(x[11] + x[ 7], 18);
        x[ 1] ^= R(x[ 0] + x[ 3],  7);  x[ 2] ^= R(x[ 1] + x[ 0],  9);
        x[ 3] ^= R(x[ 2] + x[ 1], 13);  x[ 0] ^= R(x[ 3] + x[ 2], 18);
        x[ 6] ^= R(x[ 5] + x[ 4],  7);  x[ 7] ^= R(x[ 6] + x[ 5],  9);
        x[ 4] ^= R(x[ 7] + x[ 6], 13);  x[ 5] ^= R(x[ 4] + x[ 7], 18);
        x[11] ^= R(x[10] + x[ 9],  7);  x[ 8] ^= R(x[11] + x[10],  9);
        x[ 9] ^= R(x[ 8] + x[11], 13);  x[10] ^= R(x[ 9] + x[ 8], 18);
        x[12] ^= R(x[15] + x[14],  7);  x[13] ^= R(x[12] + x[15],  9);
        x[14] ^= R(x[13] + x[12], 13);  x[15] ^= R(x[14] + x[13], 18);
    }
#ifdef LITTLE_ENDIAN_ORDER
    for (i = 0; i < 16; ++i)
        out[i] = in[i] + x[i];
#else
    for (i = 0; i < 16; i++)
        out[i] = ByteReverseWord32(ByteReverseWord32(in[i]) + x[i]);
#endif
}

/* Mix a block using Salsa20/8.
 * Based on RFC 7914: scrypt PBKDF.
 *
 * b  Blocks to mix.
 * y  Temporary storage.
 * r  Size of the block.
 */
static void scryptBlockMix(byte* b, byte* y, int r)
{
    byte x[64];
#ifdef WORD64_AVAILABLE
    word64* b64 = (word64*)b;
    word64* y64 = (word64*)y;
    word64* x64 = (word64*)x;
#else
    word32* b32 = (word32*)b;
    word32* y32 = (word32*)y;
    word32* x32 = (word32*)x;
#endif
    int  i;
    int  j;

    /* Step 1. */
    XMEMCPY(x, b + (2 * r - 1) * 64, sizeof(x));
    /* Step 2. */
    for (i = 0; i < 2 * r; i++)
    {
#ifdef WORD64_AVAILABLE
        for (j = 0; j < 8; j++)
            x64[j] ^= b64[i * 8 + j];
#else
        for (j = 0; j < 16; j++)
            x32[j] ^= b32[i * 16 + j];
#endif
        scryptSalsa((word32*)x, (word32*)x);
        XMEMCPY(y + i * 64, x, sizeof(x));
    }
    /* Step 3. */
    for (i = 0; i < r; i++) {
#ifdef WORD64_AVAILABLE
        for (j = 0; j < 8; j++) {
            b64[i * 8 + j] = y64[2 * i * 8 + j];
            b64[(r + i) * 8 + j] = y64[(2 * i + 1) * 8 + j];
        }
#else
        for (j = 0; j < 16; j++) {
            b32[i * 16 + j] = y32[2 * i * 16 + j];
            b32[(r + i) * 16 + j] = y32[(2 * i + 1) * 16 + j];
        }
#endif
    }
}

/* Random oracles mix.
 * Based on RFC 7914: scrypt PBKDF.
 *
 * x  Data to mix.
 * v  Temporary buffer.
 * y  Temporary buffer for the block mix.
 * r  Block size parameter.
 * n  CPU/Memory cost parameter.
 */
static void scryptROMix(byte* x, byte* v, byte* y, int r, word32 n)
{
    word32 i;
    word32 j;
    word32 k;
    word32 bSz = 128 * r;
#ifdef WORD64_AVAILABLE
    word64* x64 = (word64*)x;
    word64* v64 = (word64*)v;
#else
    word32* x32 = (word32*)x;
    word32* v32 = (word32*)v;
#endif

    /* Step 1. X = B (B not needed therefore not implemented) */
    /* Step 2. */
    for (i = 0; i < n; i++)
    {
        XMEMCPY(v + i * bSz, x, bSz);
        scryptBlockMix(x, y, r);
    }

    /* Step 3. */
    for (i = 0; i < n; i++)
    {
#ifdef LITTLE_ENDIAN_ORDER
#ifdef WORD64_AVAILABLE
        j = *(word64*)(x + (2*r - 1) * 64) & (n-1);
#else
        j = *(word32*)(x + (2*r - 1) * 64) & (n-1);
#endif
#else
        byte* t = x + (2*r - 1) * 64;
        j = (t[0] | (t[1] << 8) | (t[2] << 16) | ((word32)t[3] << 24)) & (n-1);
#endif
#ifdef WORD64_AVAILABLE
        for (k = 0; k < bSz / 8; k++)
            x64[k] ^= v64[j * bSz / 8 + k];
#else
        for (k = 0; k < bSz / 4; k++)
            x32[k] ^= v32[j * bSz / 4 + k];
#endif
        scryptBlockMix(x, y, r);
    }
    /* Step 4. B' = X (B = X = B' so not needed, therefore not implemented) */
}

/* Generates an key derived from a password and salt using a memory hard
 * algorithm.
 * Implements RFC 7914: scrypt PBKDF.
 *
 * output     The derived key.
 * passwd     The password to derive key from.
 * passLen    The length of the password.
 * salt       The key specific data.
 * saltLen    The length of the salt data.
 * cost       The CPU/memory cost parameter. Range: 1..(128*r/8-1)
 *            (Iterations = 2^cost)
 * blockSize  The number of 128 byte octets in a working block.
 * parallel   The number of parallel mix operations to perform.
 *            (Note: this implementation does not use threads.)
 * dkLen      The length of the derived key in bytes.
 * returns BAD_FUNC_ARG when: blockSize is too large for cost.
 */
int wc_scrypt(byte* output, const byte* passwd, int passLen,
              const byte* salt, int saltLen, int cost, int blockSize,
              int parallel, int dkLen)
{
    int    ret = 0;
    int    i;
    byte*  v = NULL;
    byte*  y = NULL;
    byte*  blocks = NULL;
    word32 blocksSz;
    word32 bSz;

    if (blockSize > 8)
        return BAD_FUNC_ARG;

    if (cost < 1 || cost >= 128 * blockSize / 8 || parallel < 1 || dkLen < 1)
        return BAD_FUNC_ARG;

    bSz = 128 * blockSize;
    blocksSz = bSz * parallel;
    blocks = (byte*)XMALLOC(blocksSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
    if (blocks == NULL)
        goto end;
    /* Temporary for scryptROMix. */
    v = (byte*)XMALLOC((1 << cost) * bSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
    if (v == NULL)
        goto end;
    /* Temporary for scryptBlockMix. */
    y = (byte*)XMALLOC(blockSize * 128, NULL, DYNAMIC_TYPE_TMP_BUFFER);
    if (y == NULL)
        goto end;

    /* Step 1. */
    ret = wc_PBKDF2(blocks, passwd, passLen, salt, saltLen, 1, blocksSz,
                    WC_SHA256);
    if (ret != 0)
        goto end;

    /* Step 2. */
    for (i = 0; i < parallel; i++)
        scryptROMix(blocks + i * bSz, v, y, blockSize, 1 << cost);

    /* Step 3. */
    ret = wc_PBKDF2(output, passwd, passLen, blocks, blocksSz, 1, dkLen,
                    WC_SHA256);
end:
    if (blocks != NULL)
        XFREE(blocks, NULL, DYNAMIC_TYPE_TMP_BUFFER);
    if (v != NULL)
        XFREE(v, NULL, DYNAMIC_TYPE_TMP_BUFFER);
    if (y != NULL)
        XFREE(y, NULL, DYNAMIC_TYPE_TMP_BUFFER);

    return ret;
}

/* Generates an key derived from a password and salt using a memory hard
 * algorithm.
 * Implements RFC 7914: scrypt PBKDF.
 *
 * output      Derived key.
 * passwd      Password to derive key from.
 * passLen     Length of the password.
 * salt        Key specific data.
 * saltLen     Length of the salt data.
 * iterations  Number of iterations to perform. Range: 1 << (1..(128*r/8-1))
 * blockSize   Number of 128 byte octets in a working block.
 * parallel    Number of parallel mix operations to perform.
 *             (Note: this implementation does not use threads.)
 * dkLen       Length of the derived key in bytes.
 * returns BAD_FUNC_ARG when: iterations is not a power of 2 or blockSize is too
 *                            large for iterations.
 */
int wc_scrypt_ex(byte* output, const byte* passwd, int passLen,
                 const byte* salt, int saltLen, word32 iterations,
                 int blockSize, int parallel, int dkLen)
{
    int cost;

    /* Iterations must be a power of 2. */
    if ((iterations & (iterations - 1)) != 0)
        return BAD_FUNC_ARG;

    for (cost = -1; iterations != 0; cost++) {
        iterations >>= 1;
    }

    return wc_scrypt(output, passwd, passLen, salt, saltLen, cost, blockSize,
                     parallel, dkLen);
}
#endif /* HAVE_SCRYPT */

#endif /* NO_PWDBASED */