summaryrefslogtreecommitdiff
path: root/FreeRTOS-Plus/Source/WolfSSL/wolfcrypt/src/sha3.c
blob: 3a0c8ddbbc2295785f17cc2dbb86d2e73a19f810 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
/* sha3.c
 *
 * Copyright (C) 2006-2020 wolfSSL Inc.
 *
 * This file is part of wolfSSL.
 *
 * wolfSSL is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * wolfSSL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
 */


#ifdef HAVE_CONFIG_H
    #include <config.h>
#endif

#include <wolfssl/wolfcrypt/settings.h>

#if defined(WOLFSSL_SHA3) && !defined(WOLFSSL_XILINX_CRYPT) && \
   !defined(WOLFSSL_AFALG_XILINX_SHA3)

#if defined(HAVE_FIPS) && \
	defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)

    /* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
    #define FIPS_NO_WRAPPERS

    #ifdef USE_WINDOWS_API
        #pragma code_seg(".fipsA$l")
        #pragma const_seg(".fipsB$l")
    #endif
#endif

#include <wolfssl/wolfcrypt/sha3.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/hash.h>

#ifdef NO_INLINE
    #include <wolfssl/wolfcrypt/misc.h>
#else
    #define WOLFSSL_MISC_INCLUDED
    #include <wolfcrypt/src/misc.c>
#endif


#ifdef WOLFSSL_SHA3_SMALL
/* Rotate a 64-bit value left.
 *
 * a  Number to rotate left.
 * r  Number od bits to rotate left.
 * returns the rotated number.
 */
#define ROTL64(a, n)    (((a)<<(n))|((a)>>(64-(n))))

/* An array of values to XOR for block operation. */
static const word64 hash_keccak_r[24] =
{
    0x0000000000000001UL, 0x0000000000008082UL,
    0x800000000000808aUL, 0x8000000080008000UL,
    0x000000000000808bUL, 0x0000000080000001UL,
    0x8000000080008081UL, 0x8000000000008009UL,
    0x000000000000008aUL, 0x0000000000000088UL,
    0x0000000080008009UL, 0x000000008000000aUL,
    0x000000008000808bUL, 0x800000000000008bUL,
    0x8000000000008089UL, 0x8000000000008003UL,
    0x8000000000008002UL, 0x8000000000000080UL,
    0x000000000000800aUL, 0x800000008000000aUL,
    0x8000000080008081UL, 0x8000000000008080UL,
    0x0000000080000001UL, 0x8000000080008008UL
};

/* Indices used in swap and rotate operation. */
#define K_I_0   10
#define K_I_1    7
#define K_I_2   11
#define K_I_3   17
#define K_I_4   18
#define K_I_5    3
#define K_I_6    5
#define K_I_7   16
#define K_I_8    8
#define K_I_9   21
#define K_I_10  24
#define K_I_11   4
#define K_I_12  15
#define K_I_13  23
#define K_I_14  19
#define K_I_15  13
#define K_I_16  12
#define K_I_17   2
#define K_I_18  20
#define K_I_19  14
#define K_I_20  22
#define K_I_21   9
#define K_I_22   6
#define K_I_23   1

/* Number of bits to rotate in swap and rotate operation. */
#define K_R_0    1
#define K_R_1    3
#define K_R_2    6
#define K_R_3   10
#define K_R_4   15
#define K_R_5   21
#define K_R_6   28
#define K_R_7   36
#define K_R_8   45
#define K_R_9   55
#define K_R_10   2
#define K_R_11  14
#define K_R_12  27
#define K_R_13  41
#define K_R_14  56
#define K_R_15   8
#define K_R_16  25
#define K_R_17  43
#define K_R_18  62
#define K_R_19  18
#define K_R_20  39
#define K_R_21  61
#define K_R_22  20
#define K_R_23  44

/* Swap and rotate left operation.
 *
 * s   The state.
 * t1  Temporary value.
 * t2  Second temporary value.
 * i   The index of the loop.
 */
#define SWAP_ROTL(s, t1, t2, i)                                         \
do                                                                      \
{                                                                       \
    t2 = s[K_I_##i]; s[K_I_##i] = ROTL64(t1, K_R_##i);                  \
}                                                                       \
while (0)

/* Mix the XOR of the column's values into each number by column.
 *
 * s  The state.
 * b  Temporary array of XORed column values.
 * x  The index of the column.
 * t  Temporary variable.
 */
#define COL_MIX(s, b, x, t)                                             \
do                                                                      \
{                                                                       \
    for (x = 0; x < 5; x++)                                             \
        b[x] = s[x + 0] ^ s[x + 5] ^ s[x + 10] ^ s[x + 15] ^ s[x + 20]; \
    for (x = 0; x < 5; x++)                                             \
    {                                                                   \
        t = b[(x + 4) % 5] ^ ROTL64(b[(x + 1) % 5], 1);                 \
        s[x +  0] ^= t;                                                 \
        s[x +  5] ^= t;                                                 \
        s[x + 10] ^= t;                                                 \
        s[x + 15] ^= t;                                                 \
        s[x + 20] ^= t;                                                 \
    }                                                                   \
}                                                                       \
while (0)

#ifdef SHA3_BY_SPEC
/* Mix the row values.
 * BMI1 has ANDN instruction ((~a) & b) - Haswell and above.
 *
 * s   The state.
 * b   Temporary array of XORed row values.
 * y   The index of the row to work on.
 * x   The index of the column.
 * t0  Temporary variable.
 * t1  Temporary variable.
 */
#define ROW_MIX(s, b, y, x, t0, t1)                                     \
do                                                                      \
{                                                                       \
    for (y = 0; y < 5; y++)                                             \
    {                                                                   \
        for (x = 0; x < 5; x++)                                         \
            b[x] = s[y * 5 + x];                                        \
        for (x = 0; x < 5; x++)                                         \
           s[y * 5 + x] = b[x] ^ (~b[(x + 1) % 5] & b[(x + 2) % 5]);    \
    }                                                                   \
}                                                                       \
while (0)
#else
/* Mix the row values.
 * a ^ (~b & c) == a ^ (c & (b ^ c)) == (a ^ b) ^ (b | c)
 *
 * s   The state.
 * b   Temporary array of XORed row values.
 * y   The index of the row to work on.
 * x   The index of the column.
 * t0  Temporary variable.
 * t1  Temporary variable.
 */
#define ROW_MIX(s, b, y, x, t12, t34)                                   \
do                                                                      \
{                                                                       \
    for (y = 0; y < 5; y++)                                             \
    {                                                                   \
        for (x = 0; x < 5; x++)                                         \
            b[x] = s[y * 5 + x];                                        \
        t12 = (b[1] ^ b[2]); t34 = (b[3] ^ b[4]);                       \
        s[y * 5 + 0] = b[0] ^ (b[2] &  t12);                            \
        s[y * 5 + 1] =  t12 ^ (b[2] | b[3]);                            \
        s[y * 5 + 2] = b[2] ^ (b[4] &  t34);                            \
        s[y * 5 + 3] =  t34 ^ (b[4] | b[0]);                            \
        s[y * 5 + 4] = b[4] ^ (b[1] & (b[0] ^ b[1]));                   \
    }                                                                   \
}                                                                       \
while (0)
#endif /* SHA3_BY_SPEC */

/* The block operation performed on the state.
 *
 * s  The state.
 */
static void BlockSha3(word64 *s)
{
    byte i, x, y;
    word64 t0, t1;
    word64 b[5];

    for (i = 0; i < 24; i++)
    {
        COL_MIX(s, b, x, t0);

        t0 = s[1];
        SWAP_ROTL(s, t0, t1,  0);
        SWAP_ROTL(s, t1, t0,  1);
        SWAP_ROTL(s, t0, t1,  2);
        SWAP_ROTL(s, t1, t0,  3);
        SWAP_ROTL(s, t0, t1,  4);
        SWAP_ROTL(s, t1, t0,  5);
        SWAP_ROTL(s, t0, t1,  6);
        SWAP_ROTL(s, t1, t0,  7);
        SWAP_ROTL(s, t0, t1,  8);
        SWAP_ROTL(s, t1, t0,  9);
        SWAP_ROTL(s, t0, t1, 10);
        SWAP_ROTL(s, t1, t0, 11);
        SWAP_ROTL(s, t0, t1, 12);
        SWAP_ROTL(s, t1, t0, 13);
        SWAP_ROTL(s, t0, t1, 14);
        SWAP_ROTL(s, t1, t0, 15);
        SWAP_ROTL(s, t0, t1, 16);
        SWAP_ROTL(s, t1, t0, 17);
        SWAP_ROTL(s, t0, t1, 18);
        SWAP_ROTL(s, t1, t0, 19);
        SWAP_ROTL(s, t0, t1, 20);
        SWAP_ROTL(s, t1, t0, 21);
        SWAP_ROTL(s, t0, t1, 22);
        SWAP_ROTL(s, t1, t0, 23);

        ROW_MIX(s, b, y, x, t0, t1);

        s[0] ^= hash_keccak_r[i];
    }
}
#else
/* Rotate a 64-bit value left.
 *
 * a  Number to rotate left.
 * r  Number od bits to rotate left.
 * returns the rotated number.
 */
#define ROTL64(a, n)    (((a)<<(n))|((a)>>(64-(n))))

/* An array of values to XOR for block operation. */
static const word64 hash_keccak_r[24] =
{
    0x0000000000000001UL, 0x0000000000008082UL,
    0x800000000000808aUL, 0x8000000080008000UL,
    0x000000000000808bUL, 0x0000000080000001UL,
    0x8000000080008081UL, 0x8000000000008009UL,
    0x000000000000008aUL, 0x0000000000000088UL,
    0x0000000080008009UL, 0x000000008000000aUL,
    0x000000008000808bUL, 0x800000000000008bUL,
    0x8000000000008089UL, 0x8000000000008003UL,
    0x8000000000008002UL, 0x8000000000000080UL,
    0x000000000000800aUL, 0x800000008000000aUL,
    0x8000000080008081UL, 0x8000000000008080UL,
    0x0000000080000001UL, 0x8000000080008008UL
};

/* Indices used in swap and rotate operation. */
#define KI_0     6
#define KI_1    12
#define KI_2    18
#define KI_3    24
#define KI_4     3
#define KI_5     9
#define KI_6    10
#define KI_7    16
#define KI_8    22
#define KI_9     1
#define KI_10    7
#define KI_11   13
#define KI_12   19
#define KI_13   20
#define KI_14    4
#define KI_15    5
#define KI_16   11
#define KI_17   17
#define KI_18   23
#define KI_19    2
#define KI_20    8
#define KI_21   14
#define KI_22   15
#define KI_23   21

/* Number of bits to rotate in swap and rotate operation. */
#define KR_0    44
#define KR_1    43
#define KR_2    21
#define KR_3    14
#define KR_4    28
#define KR_5    20
#define KR_6     3
#define KR_7    45
#define KR_8    61
#define KR_9     1
#define KR_10    6
#define KR_11   25
#define KR_12    8
#define KR_13   18
#define KR_14   27
#define KR_15   36
#define KR_16   10
#define KR_17   15
#define KR_18   56
#define KR_19   62
#define KR_20   55
#define KR_21   39
#define KR_22   41
#define KR_23    2

/* Mix the XOR of the column's values into each number by column.
 *
 * s  The state.
 * b  Temporary array of XORed column values.
 * x  The index of the column.
 * t  Temporary variable.
 */
#define COL_MIX(s, b, x, t)                                     \
do                                                              \
{                                                               \
    b[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];                 \
    b[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];                 \
    b[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];                 \
    b[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];                 \
    b[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];                 \
    t = b[(0 + 4) % 5] ^ ROTL64(b[(0 + 1) % 5], 1);             \
    s[ 0] ^= t; s[ 5] ^= t; s[10] ^= t; s[15] ^= t; s[20] ^= t; \
    t = b[(1 + 4) % 5] ^ ROTL64(b[(1 + 1) % 5], 1);             \
    s[ 1] ^= t; s[ 6] ^= t; s[11] ^= t; s[16] ^= t; s[21] ^= t; \
    t = b[(2 + 4) % 5] ^ ROTL64(b[(2 + 1) % 5], 1);             \
    s[ 2] ^= t; s[ 7] ^= t; s[12] ^= t; s[17] ^= t; s[22] ^= t; \
    t = b[(3 + 4) % 5] ^ ROTL64(b[(3 + 1) % 5], 1);             \
    s[ 3] ^= t; s[ 8] ^= t; s[13] ^= t; s[18] ^= t; s[23] ^= t; \
    t = b[(4 + 4) % 5] ^ ROTL64(b[(4 + 1) % 5], 1);             \
    s[ 4] ^= t; s[ 9] ^= t; s[14] ^= t; s[19] ^= t; s[24] ^= t; \
}                                                               \
while (0)

#define S(s1, i) ROTL64(s1[KI_##i], KR_##i)

#ifdef SHA3_BY_SPEC
/* Mix the row values.
 * BMI1 has ANDN instruction ((~a) & b) - Haswell and above.
 *
 * s2  The new state.
 * s1  The current state.
 * b   Temporary array of XORed row values.
 * t0  Temporary variable. (Unused)
 * t1  Temporary variable. (Unused)
 */
#define ROW_MIX(s2, s1, b, t0, t1)            \
do                                            \
{                                             \
    b[0] = s1[0];                             \
    b[1] = S(s1, 0);                          \
    b[2] = S(s1, 1);                          \
    b[3] = S(s1, 2);                          \
    b[4] = S(s1, 3);                          \
    s2[0] = b[0] ^ (~b[1] & b[2]);            \
    s2[1] = b[1] ^ (~b[2] & b[3]);            \
    s2[2] = b[2] ^ (~b[3] & b[4]);            \
    s2[3] = b[3] ^ (~b[4] & b[0]);            \
    s2[4] = b[4] ^ (~b[0] & b[1]);            \
    b[0] = S(s1, 4);                          \
    b[1] = S(s1, 5);                          \
    b[2] = S(s1, 6);                          \
    b[3] = S(s1, 7);                          \
    b[4] = S(s1, 8);                          \
    s2[5] = b[0] ^ (~b[1] & b[2]);            \
    s2[6] = b[1] ^ (~b[2] & b[3]);            \
    s2[7] = b[2] ^ (~b[3] & b[4]);            \
    s2[8] = b[3] ^ (~b[4] & b[0]);            \
    s2[9] = b[4] ^ (~b[0] & b[1]);            \
    b[0] = S(s1, 9);                          \
    b[1] = S(s1, 10);                         \
    b[2] = S(s1, 11);                         \
    b[3] = S(s1, 12);                         \
    b[4] = S(s1, 13);                         \
    s2[10] = b[0] ^ (~b[1] & b[2]);           \
    s2[11] = b[1] ^ (~b[2] & b[3]);           \
    s2[12] = b[2] ^ (~b[3] & b[4]);           \
    s2[13] = b[3] ^ (~b[4] & b[0]);           \
    s2[14] = b[4] ^ (~b[0] & b[1]);           \
    b[0] = S(s1, 14);                         \
    b[1] = S(s1, 15);                         \
    b[2] = S(s1, 16);                         \
    b[3] = S(s1, 17);                         \
    b[4] = S(s1, 18);                         \
    s2[15] = b[0] ^ (~b[1] & b[2]);           \
    s2[16] = b[1] ^ (~b[2] & b[3]);           \
    s2[17] = b[2] ^ (~b[3] & b[4]);           \
    s2[18] = b[3] ^ (~b[4] & b[0]);           \
    s2[19] = b[4] ^ (~b[0] & b[1]);           \
    b[0] = S(s1, 19);                         \
    b[1] = S(s1, 20);                         \
    b[2] = S(s1, 21);                         \
    b[3] = S(s1, 22);                         \
    b[4] = S(s1, 23);                         \
    s2[20] = b[0] ^ (~b[1] & b[2]);           \
    s2[21] = b[1] ^ (~b[2] & b[3]);           \
    s2[22] = b[2] ^ (~b[3] & b[4]);           \
    s2[23] = b[3] ^ (~b[4] & b[0]);           \
    s2[24] = b[4] ^ (~b[0] & b[1]);           \
}                                             \
while (0)
#else
/* Mix the row values.
 * a ^ (~b & c) == a ^ (c & (b ^ c)) == (a ^ b) ^ (b | c)
 *
 * s2  The new state.
 * s1  The current state.
 * b   Temporary array of XORed row values.
 * t12 Temporary variable.
 * t34 Temporary variable.
 */
#define ROW_MIX(s2, s1, b, t12, t34)          \
do                                            \
{                                             \
    b[0] = s1[0];                             \
    b[1] = S(s1, 0);                          \
    b[2] = S(s1, 1);                          \
    b[3] = S(s1, 2);                          \
    b[4] = S(s1, 3);                          \
    t12 = (b[1] ^ b[2]); t34 = (b[3] ^ b[4]); \
    s2[0] = b[0] ^ (b[2] &  t12);             \
    s2[1] =  t12 ^ (b[2] | b[3]);             \
    s2[2] = b[2] ^ (b[4] &  t34);             \
    s2[3] =  t34 ^ (b[4] | b[0]);             \
    s2[4] = b[4] ^ (b[1] & (b[0] ^ b[1]));    \
    b[0] = S(s1, 4);                          \
    b[1] = S(s1, 5);                          \
    b[2] = S(s1, 6);                          \
    b[3] = S(s1, 7);                          \
    b[4] = S(s1, 8);                          \
    t12 = (b[1] ^ b[2]); t34 = (b[3] ^ b[4]); \
    s2[5] = b[0] ^ (b[2] &  t12);             \
    s2[6] =  t12 ^ (b[2] | b[3]);             \
    s2[7] = b[2] ^ (b[4] &  t34);             \
    s2[8] =  t34 ^ (b[4] | b[0]);             \
    s2[9] = b[4] ^ (b[1] & (b[0] ^ b[1]));    \
    b[0] = S(s1, 9);                          \
    b[1] = S(s1, 10);                         \
    b[2] = S(s1, 11);                         \
    b[3] = S(s1, 12);                         \
    b[4] = S(s1, 13);                         \
    t12 = (b[1] ^ b[2]); t34 = (b[3] ^ b[4]); \
    s2[10] = b[0] ^ (b[2] &  t12);            \
    s2[11] =  t12 ^ (b[2] | b[3]);            \
    s2[12] = b[2] ^ (b[4] &  t34);            \
    s2[13] =  t34 ^ (b[4] | b[0]);            \
    s2[14] = b[4] ^ (b[1] & (b[0] ^ b[1]));   \
    b[0] = S(s1, 14);                         \
    b[1] = S(s1, 15);                         \
    b[2] = S(s1, 16);                         \
    b[3] = S(s1, 17);                         \
    b[4] = S(s1, 18);                         \
    t12 = (b[1] ^ b[2]); t34 = (b[3] ^ b[4]); \
    s2[15] = b[0] ^ (b[2] &  t12);            \
    s2[16] =  t12 ^ (b[2] | b[3]);            \
    s2[17] = b[2] ^ (b[4] &  t34);            \
    s2[18] =  t34 ^ (b[4] | b[0]);            \
    s2[19] = b[4] ^ (b[1] & (b[0] ^ b[1]));   \
    b[0] = S(s1, 19);                         \
    b[1] = S(s1, 20);                         \
    b[2] = S(s1, 21);                         \
    b[3] = S(s1, 22);                         \
    b[4] = S(s1, 23);                         \
    t12 = (b[1] ^ b[2]); t34 = (b[3] ^ b[4]); \
    s2[20] = b[0] ^ (b[2] &  t12);            \
    s2[21] =  t12 ^ (b[2] | b[3]);            \
    s2[22] = b[2] ^ (b[4] &  t34);            \
    s2[23] =  t34 ^ (b[4] | b[0]);            \
    s2[24] = b[4] ^ (b[1] & (b[0] ^ b[1]));   \
}                                             \
while (0)
#endif /* SHA3_BY_SPEC */

/* The block operation performed on the state.
 *
 * s  The state.
 */
static void BlockSha3(word64 *s)
{
    word64 n[25];
    word64 b[5];
    word64 t0;
#ifndef SHA3_BY_SPEC
    word64 t1;
#endif
    byte i;

    for (i = 0; i < 24; i += 2)
    {
        COL_MIX(s, b, x, t0);
        ROW_MIX(n, s, b, t0, t1);
        n[0] ^= hash_keccak_r[i];

        COL_MIX(n, b, x, t0);
        ROW_MIX(s, n, b, t0, t1);
        s[0] ^= hash_keccak_r[i+1];
    }
}
#endif /* WOLFSSL_SHA3_SMALL */

/* Convert the array of bytes, in little-endian order, to a 64-bit integer.
 *
 * a  Array of bytes.
 * returns a 64-bit integer.
 */
static word64 Load64BitBigEndian(const byte* a)
{
#ifdef BIG_ENDIAN_ORDER
    word64 n = 0;
    int i;

    for (i = 0; i < 8; i++)
        n |= (word64)a[i] << (8 * i);

    return n;
#else
    return *(word64*)a;
#endif
}

/* Initialize the state for a SHA3-224 hash operation.
 *
 * sha3   wc_Sha3 object holding state.
 * returns 0 on success.
 */
static int InitSha3(wc_Sha3* sha3)
{
    int i;

    for (i = 0; i < 25; i++)
        sha3->s[i] = 0;
    sha3->i = 0;
#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
    sha3->flags = 0;
#endif

    return 0;
}

/* Update the SHA-3 hash state with message data.
 *
 * sha3  wc_Sha3 object holding state.
 * data  Message data to be hashed.
 * len   Length of the message data.
 * p     Number of 64-bit numbers in a block of data to process.
 * returns 0 on success.
 */
static int Sha3Update(wc_Sha3* sha3, const byte* data, word32 len, byte p)
{
    byte i;
    byte l;
    byte *t;

    if (sha3->i > 0)
    {
        l = p * 8 - sha3->i;
        if (l > len) {
            l = (byte)len;
        }

        t = &sha3->t[sha3->i];
        for (i = 0; i < l; i++)
            t[i] = data[i];
        data += i;
        len -= i;
        sha3->i += i;

        if (sha3->i == p * 8)
        {
            for (i = 0; i < p; i++)
                sha3->s[i] ^= Load64BitBigEndian(sha3->t + 8 * i);
            BlockSha3(sha3->s);
            sha3->i = 0;
        }
    }
    while (len >= ((word32)(p * 8)))
    {
        for (i = 0; i < p; i++)
            sha3->s[i] ^= Load64BitBigEndian(data + 8 * i);
        BlockSha3(sha3->s);
        len -= p * 8;
        data += p * 8;
    }
    for (i = 0; i < len; i++)
        sha3->t[i] = data[i];
    sha3->i += i;

    return 0;
}

/* Calculate the SHA-3 hash based on all the message data seen.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result.
 * p     Number of 64-bit numbers in a block of data to process.
 * len   Number of bytes in output.
 * returns 0 on success.
 */
static int Sha3Final(wc_Sha3* sha3, byte padChar, byte* hash, byte p, byte l)
{
    byte i;
    byte *s8 = (byte *)sha3->s;

    sha3->t[p * 8 - 1]  = 0x00;
#ifdef WOLFSSL_HASH_FLAGS
    if (p == WC_SHA3_256_COUNT && sha3->flags & WC_HASH_SHA3_KECCAK256) {
        padChar = 0x01;
    }
#endif
    sha3->t[  sha3->i]  = padChar;
    sha3->t[p * 8 - 1] |= 0x80;
    for (i=sha3->i + 1; i < p * 8 - 1; i++)
        sha3->t[i] = 0;
    for (i = 0; i < p; i++)
        sha3->s[i] ^= Load64BitBigEndian(sha3->t + 8 * i);
    BlockSha3(sha3->s);
#if defined(BIG_ENDIAN_ORDER)
    ByteReverseWords64(sha3->s, sha3->s, ((l+7)/8)*8);
#endif
    for (i = 0; i < l; i++)
        hash[i] = s8[i];

    return 0;
}

/* Initialize the state for a SHA-3 hash operation.
 *
 * sha3   wc_Sha3 object holding state.
 * heap   Heap reference for dynamic memory allocation. (Used in async ops.)
 * devId  Device identifier for asynchronous operation.
 * returns 0 on success.
 */
static int wc_InitSha3(wc_Sha3* sha3, void* heap, int devId)
{
    int ret = 0;

    if (sha3 == NULL)
        return BAD_FUNC_ARG;

    sha3->heap = heap;
    ret = InitSha3(sha3);
    if (ret != 0)
        return ret;

#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA3)
    ret = wolfAsync_DevCtxInit(&sha3->asyncDev,
                        WOLFSSL_ASYNC_MARKER_SHA3, sha3->heap, devId);
#else
    (void)devId;
#endif /* WOLFSSL_ASYNC_CRYPT */

    return ret;
}

/* Update the SHA-3 hash state with message data.
 *
 * sha3  wc_Sha3 object holding state.
 * data  Message data to be hashed.
 * len   Length of the message data.
 * p     Number of 64-bit numbers in a block of data to process.
 * returns 0 on success.
 */
static int wc_Sha3Update(wc_Sha3* sha3, const byte* data, word32 len, byte p)
{
    int ret;

    if (sha3 == NULL || (data == NULL && len > 0)) {
        return BAD_FUNC_ARG;
    }

#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA3)
    if (sha3->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA3) {
    #if defined(HAVE_INTEL_QA) && defined(QAT_V2)
        /* QAT only supports SHA3_256 */
        if (p == WC_SHA3_256_COUNT) {
            ret = IntelQaSymSha3(&sha3->asyncDev, NULL, data, len);
            if (ret != NOT_COMPILED_IN)
                return ret;
            /* fall-through when unavailable */
        }
    #endif
    }
#endif /* WOLFSSL_ASYNC_CRYPT */

    ret = Sha3Update(sha3, data, len, p);

    return ret;
}

/* Calculate the SHA-3 hash based on all the message data seen.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result.
 * p     Number of 64-bit numbers in a block of data to process.
 * len   Number of bytes in output.
 * returns 0 on success.
 */
static int wc_Sha3Final(wc_Sha3* sha3, byte* hash, byte p, byte len)
{
    int ret;

    if (sha3 == NULL || hash == NULL) {
        return BAD_FUNC_ARG;
    }

#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA3)
    if (sha3->asyncDev.marker == WOLFSSL_ASYNC_MARKER_SHA3) {
    #if defined(HAVE_INTEL_QA) && defined(QAT_V2)
        /* QAT only supports SHA3_256 */
        /* QAT SHA-3 only supported on v2 (8970 or later cards) */
        if (len == WC_SHA3_256_DIGEST_SIZE) {
            ret = IntelQaSymSha3(&sha3->asyncDev, hash, NULL, len);
            if (ret != NOT_COMPILED_IN)
                return ret;
            /* fall-through when unavailable */
        }
    #endif
    }
#endif /* WOLFSSL_ASYNC_CRYPT */

    ret = Sha3Final(sha3, 0x06, hash, p, len);
    if (ret != 0)
        return ret;

    return InitSha3(sha3);  /* reset state */
}

/* Dispose of any dynamically allocated data from the SHA3-384 operation.
 * (Required for async ops.)
 *
 * sha3  wc_Sha3 object holding state.
 * returns 0 on success.
 */
static void wc_Sha3Free(wc_Sha3* sha3)
{
    (void)sha3;

#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA3)
    if (sha3 == NULL)
        return;

    wolfAsync_DevCtxFree(&sha3->asyncDev, WOLFSSL_ASYNC_MARKER_SHA3);
#endif /* WOLFSSL_ASYNC_CRYPT */
}


/* Copy the state of the SHA3 operation.
 *
 * src  wc_Sha3 object holding state top copy.
 * dst  wc_Sha3 object to copy into.
 * returns 0 on success.
 */
static int wc_Sha3Copy(wc_Sha3* src, wc_Sha3* dst)
{
    int ret = 0;

    if (src == NULL || dst == NULL)
        return BAD_FUNC_ARG;

    XMEMCPY(dst, src, sizeof(wc_Sha3));

#ifdef WOLFSSL_ASYNC_CRYPT
    ret = wolfAsync_DevCopy(&src->asyncDev, &dst->asyncDev);
#endif
#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
     dst->flags |= WC_HASH_FLAG_ISCOPY;
#endif

    return ret;
}

/* Calculate the SHA3-224 hash based on all the message data so far.
 * More message data can be added, after this operation, using the current
 * state.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result. Must be at least 28 bytes.
 * p     Number of 64-bit numbers in a block of data to process.
 * len   Number of bytes in output.
 * returns 0 on success.
 */
static int wc_Sha3GetHash(wc_Sha3* sha3, byte* hash, byte p, byte len)
{
    int ret;
    wc_Sha3 tmpSha3;

    if (sha3 == NULL || hash == NULL)
        return BAD_FUNC_ARG;

    ret = wc_Sha3Copy(sha3, &tmpSha3);
    if (ret == 0) {
        ret = wc_Sha3Final(&tmpSha3, hash, p, len);
    }
    return ret;
}


/* Initialize the state for a SHA3-224 hash operation.
 *
 * sha3   wc_Sha3 object holding state.
 * heap   Heap reference for dynamic memory allocation. (Used in async ops.)
 * devId  Device identifier for asynchronous operation.
 * returns 0 on success.
 */
int wc_InitSha3_224(wc_Sha3* sha3, void* heap, int devId)
{
    return wc_InitSha3(sha3, heap, devId);
}

/* Update the SHA3-224 hash state with message data.
 *
 * sha3  wc_Sha3 object holding state.
 * data  Message data to be hashed.
 * len   Length of the message data.
 * returns 0 on success.
 */
int wc_Sha3_224_Update(wc_Sha3* sha3, const byte* data, word32 len)
{
    return wc_Sha3Update(sha3, data, len, WC_SHA3_224_COUNT);
}

/* Calculate the SHA3-224 hash based on all the message data seen.
 * The state is initialized ready for a new message to hash.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result. Must be at least 28 bytes.
 * returns 0 on success.
 */
int wc_Sha3_224_Final(wc_Sha3* sha3, byte* hash)
{
    return wc_Sha3Final(sha3, hash, WC_SHA3_224_COUNT, WC_SHA3_224_DIGEST_SIZE);
}

/* Dispose of any dynamically allocated data from the SHA3-224 operation.
 * (Required for async ops.)
 *
 * sha3  wc_Sha3 object holding state.
 * returns 0 on success.
 */
void wc_Sha3_224_Free(wc_Sha3* sha3)
{
    wc_Sha3Free(sha3);
}

/* Calculate the SHA3-224 hash based on all the message data so far.
 * More message data can be added, after this operation, using the current
 * state.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result. Must be at least 28 bytes.
 * returns 0 on success.
 */
int wc_Sha3_224_GetHash(wc_Sha3* sha3, byte* hash)
{
    return wc_Sha3GetHash(sha3, hash, WC_SHA3_224_COUNT, WC_SHA3_224_DIGEST_SIZE);
}

/* Copy the state of the SHA3-224 operation.
 *
 * src  wc_Sha3 object holding state top copy.
 * dst  wc_Sha3 object to copy into.
 * returns 0 on success.
 */
int wc_Sha3_224_Copy(wc_Sha3* src, wc_Sha3* dst)
{
    return wc_Sha3Copy(src, dst);
}


/* Initialize the state for a SHA3-256 hash operation.
 *
 * sha3   wc_Sha3 object holding state.
 * heap   Heap reference for dynamic memory allocation. (Used in async ops.)
 * devId  Device identifier for asynchronous operation.
 * returns 0 on success.
 */
int wc_InitSha3_256(wc_Sha3* sha3, void* heap, int devId)
{
    return wc_InitSha3(sha3, heap, devId);
}

/* Update the SHA3-256 hash state with message data.
 *
 * sha3  wc_Sha3 object holding state.
 * data  Message data to be hashed.
 * len   Length of the message data.
 * returns 0 on success.
 */
int wc_Sha3_256_Update(wc_Sha3* sha3, const byte* data, word32 len)
{
    return wc_Sha3Update(sha3, data, len, WC_SHA3_256_COUNT);
}

/* Calculate the SHA3-256 hash based on all the message data seen.
 * The state is initialized ready for a new message to hash.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result. Must be at least 32 bytes.
 * returns 0 on success.
 */
int wc_Sha3_256_Final(wc_Sha3* sha3, byte* hash)
{
    return wc_Sha3Final(sha3, hash, WC_SHA3_256_COUNT, WC_SHA3_256_DIGEST_SIZE);
}

/* Dispose of any dynamically allocated data from the SHA3-256 operation.
 * (Required for async ops.)
 *
 * sha3  wc_Sha3 object holding state.
 * returns 0 on success.
 */
void wc_Sha3_256_Free(wc_Sha3* sha3)
{
    wc_Sha3Free(sha3);
}

/* Calculate the SHA3-256 hash based on all the message data so far.
 * More message data can be added, after this operation, using the current
 * state.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result. Must be at least 32 bytes.
 * returns 0 on success.
 */
int wc_Sha3_256_GetHash(wc_Sha3* sha3, byte* hash)
{
    return wc_Sha3GetHash(sha3, hash, WC_SHA3_256_COUNT, WC_SHA3_256_DIGEST_SIZE);
}

/* Copy the state of the SHA3-256 operation.
 *
 * src  wc_Sha3 object holding state top copy.
 * dst  wc_Sha3 object to copy into.
 * returns 0 on success.
 */
int wc_Sha3_256_Copy(wc_Sha3* src, wc_Sha3* dst)
{
    return wc_Sha3Copy(src, dst);
}


/* Initialize the state for a SHA3-384 hash operation.
 *
 * sha3   wc_Sha3 object holding state.
 * heap   Heap reference for dynamic memory allocation. (Used in async ops.)
 * devId  Device identifier for asynchronous operation.
 * returns 0 on success.
 */
int wc_InitSha3_384(wc_Sha3* sha3, void* heap, int devId)
{
    return wc_InitSha3(sha3, heap, devId);
}

/* Update the SHA3-384 hash state with message data.
 *
 * sha3  wc_Sha3 object holding state.
 * data  Message data to be hashed.
 * len   Length of the message data.
 * returns 0 on success.
 */
int wc_Sha3_384_Update(wc_Sha3* sha3, const byte* data, word32 len)
{
    return wc_Sha3Update(sha3, data, len, WC_SHA3_384_COUNT);
}

/* Calculate the SHA3-384 hash based on all the message data seen.
 * The state is initialized ready for a new message to hash.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result. Must be at least 48 bytes.
 * returns 0 on success.
 */
int wc_Sha3_384_Final(wc_Sha3* sha3, byte* hash)
{
    return wc_Sha3Final(sha3, hash, WC_SHA3_384_COUNT, WC_SHA3_384_DIGEST_SIZE);
}

/* Dispose of any dynamically allocated data from the SHA3-384 operation.
 * (Required for async ops.)
 *
 * sha3  wc_Sha3 object holding state.
 * returns 0 on success.
 */
void wc_Sha3_384_Free(wc_Sha3* sha3)
{
    wc_Sha3Free(sha3);
}

/* Calculate the SHA3-384 hash based on all the message data so far.
 * More message data can be added, after this operation, using the current
 * state.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result. Must be at least 48 bytes.
 * returns 0 on success.
 */
int wc_Sha3_384_GetHash(wc_Sha3* sha3, byte* hash)
{
    return wc_Sha3GetHash(sha3, hash, WC_SHA3_384_COUNT, WC_SHA3_384_DIGEST_SIZE);
}

/* Copy the state of the SHA3-384 operation.
 *
 * src  wc_Sha3 object holding state top copy.
 * dst  wc_Sha3 object to copy into.
 * returns 0 on success.
 */
int wc_Sha3_384_Copy(wc_Sha3* src, wc_Sha3* dst)
{
    return wc_Sha3Copy(src, dst);
}


/* Initialize the state for a SHA3-512 hash operation.
 *
 * sha3   wc_Sha3 object holding state.
 * heap   Heap reference for dynamic memory allocation. (Used in async ops.)
 * devId  Device identifier for asynchronous operation.
 * returns 0 on success.
 */
int wc_InitSha3_512(wc_Sha3* sha3, void* heap, int devId)
{
    return wc_InitSha3(sha3, heap, devId);
}

/* Update the SHA3-512 hash state with message data.
 *
 * sha3  wc_Sha3 object holding state.
 * data  Message data to be hashed.
 * len   Length of the message data.
 * returns 0 on success.
 */
int wc_Sha3_512_Update(wc_Sha3* sha3, const byte* data, word32 len)
{
    return wc_Sha3Update(sha3, data, len, WC_SHA3_512_COUNT);
}

/* Calculate the SHA3-512 hash based on all the message data seen.
 * The state is initialized ready for a new message to hash.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result. Must be at least 64 bytes.
 * returns 0 on success.
 */
int wc_Sha3_512_Final(wc_Sha3* sha3, byte* hash)
{
    return wc_Sha3Final(sha3, hash, WC_SHA3_512_COUNT, WC_SHA3_512_DIGEST_SIZE);
}

/* Dispose of any dynamically allocated data from the SHA3-512 operation.
 * (Required for async ops.)
 *
 * sha3  wc_Sha3 object holding state.
 * returns 0 on success.
 */
void wc_Sha3_512_Free(wc_Sha3* sha3)
{
    wc_Sha3Free(sha3);
}

/* Calculate the SHA3-512 hash based on all the message data so far.
 * More message data can be added, after this operation, using the current
 * state.
 *
 * sha3  wc_Sha3 object holding state.
 * hash  Buffer to hold the hash result. Must be at least 64 bytes.
 * returns 0 on success.
 */
int wc_Sha3_512_GetHash(wc_Sha3* sha3, byte* hash)
{
    return wc_Sha3GetHash(sha3, hash, WC_SHA3_512_COUNT, WC_SHA3_512_DIGEST_SIZE);
}

/* Copy the state of the SHA3-512 operation.
 *
 * src  wc_Sha3 object holding state top copy.
 * dst  wc_Sha3 object to copy into.
 * returns 0 on success.
 */
int wc_Sha3_512_Copy(wc_Sha3* src, wc_Sha3* dst)
{
    return wc_Sha3Copy(src, dst);
}

#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
int wc_Sha3_SetFlags(wc_Sha3* sha3, word32 flags)
{
    if (sha3) {
        sha3->flags = flags;
    }
    return 0;
}
int wc_Sha3_GetFlags(wc_Sha3* sha3, word32* flags)
{
    if (sha3 && flags) {
        *flags = sha3->flags;
    }
    return 0;
}
#endif

#if defined(WOLFSSL_SHAKE256)
/* Initialize the state for a Shake256 hash operation.
 *
 * shake  wc_Shake object holding state.
 * heap   Heap reference for dynamic memory allocation. (Used in async ops.)
 * devId  Device identifier for asynchronous operation.
 * returns 0 on success.
 */
int wc_InitShake256(wc_Shake* shake, void* heap, int devId)
{
    return wc_InitSha3(shake, heap, devId);
}

/* Update the SHAKE256 hash state with message data.
 *
 * shake  wc_Shake object holding state.
 * data  Message data to be hashed.
 * len   Length of the message data.
 * returns 0 on success.
 */
int wc_Shake256_Update(wc_Shake* shake, const byte* data, word32 len)
{
    if (shake == NULL || (data == NULL && len > 0)) {
         return BAD_FUNC_ARG;
    }

    return Sha3Update(shake, data, len, WC_SHA3_256_COUNT);
}

/* Calculate the SHAKE256 hash based on all the message data seen.
 * The state is initialized ready for a new message to hash.
 *
 * shake  wc_Shake object holding state.
 * hash  Buffer to hold the hash result. Must be at least 64 bytes.
 * returns 0 on success.
 */
int wc_Shake256_Final(wc_Shake* shake, byte* hash, word32 hashLen)
{
    int ret;

    if (shake == NULL || hash == NULL) {
        return BAD_FUNC_ARG;
    }

    ret = Sha3Final(shake, 0x1f, hash, WC_SHA3_256_COUNT, hashLen);
    if (ret != 0)
        return ret;

    return InitSha3(shake);  /* reset state */
}

/* Dispose of any dynamically allocated data from the SHAKE256 operation.
 * (Required for async ops.)
 *
 * shake  wc_Shake object holding state.
 * returns 0 on success.
 */
void wc_Shake256_Free(wc_Shake* shake)
{
    wc_Sha3Free(shake);
}

/* Copy the state of the SHA3-512 operation.
 *
 * src  wc_Shake object holding state top copy.
 * dst  wc_Shake object to copy into.
 * returns 0 on success.
 */
int wc_Shake256_Copy(wc_Shake* src, wc_Shake* dst)
{
    return wc_Sha3Copy(src, dst);
}
#endif

#endif /* WOLFSSL_SHA3 */