summaryrefslogtreecommitdiff
path: root/FreeRTOS/Demo/CORTEX_MPU_Simulator_Keil_GCC/main.c
blob: 9a13d6f230e61a573fd00655b1748e77b9c59b01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
/*
 * FreeRTOS Kernel V10.2.1
 * Copyright (C) 2019 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * http://www.FreeRTOS.org
 * http://aws.amazon.com/freertos
 *
 * 1 tab == 4 spaces!
 */


/*
 * This file demonstrates the use of FreeRTOS-MPU.  It creates tasks in both
 * User mode and Privileged mode, and using both the xTaskCreate() and
 * xTaskCreateRestricted() API functions.  The purpose of each created task is
 * documented in the comments above the task function prototype (in this file),
 * with the task behaviour demonstrated and documented within the task function
 * itself.
 *
 * In addition a queue is used to demonstrate passing data between
 * protected/restricted tasks as well as passing data between an interrupt and
 * a protected/restricted task.  A software timer is also used.
 */

/* Standard includes. */
#include "string.h"

/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
#include "timers.h"
#include "event_groups.h"
#include "stream_buffer.h"

/*-----------------------------------------------------------*/

/* Misc constants. */
#define mainDONT_BLOCK					( 0 )

/* GCC specifics. */
#define mainALIGN_TO( x )				__attribute__((aligned(x)))

/* Hardware register addresses. */
#define mainVTOR 						( * ( volatile uint32_t * ) 0xE000ED08 )

/* The period of the timer must be less than the rate at which
configPRINT_SYSTEM_STATUS messages are sent to the check task - otherwise the
check task will think the timer has stopped. */
#define mainTIMER_PERIOD				pdMS_TO_TICKS( 200 )

/* The name of the task that is deleted by the Idle task is used in a couple of
places, so is #defined. */
#define mainTASK_TO_DELETE_NAME			"DeleteMe"

/*-----------------------------------------------------------*/
/* Prototypes for functions that implement tasks. -----------*/
/*-----------------------------------------------------------*/

/*
 * NOTE:  The filling and checking of the registers in the following two tasks
 *        is only actually performed when the GCC compiler is used.  Use of the
 *        queue to communicate with the check task is done with all compilers.
 *
 * Prototype for the first two register test tasks, which execute in User mode.
 * Amongst other things, these fill the CPU registers (other than the FPU
 * registers) with known values before checking that the registers still contain
 * the expected values.  Each of the two tasks use different values so an error
 * in the context switch mechanism can be caught.  Both tasks execute at the
 * idle priority so will get preempted regularly.  Each task repeatedly sends a
 * message on a queue to a 'check' task so the check task knows the register
 * check task is still executing and has not detected any errors.  If an error
 * is detected within the task the task is simply deleted so it no longer sends
 * messages.
 *
 * For demonstration and test purposes, both tasks obtain access to the queue
 * handle in different ways; vRegTest1Implementation() is created in Privileged
 * mode and copies the queue handle to its local stack before setting itself to
 * User mode, and vRegTest2Implementation() receives the task handle using its
 * parameter.
 */
extern void vRegTest1Implementation( void *pvParameters );
extern void vRegTest2Implementation( void *pvParameters );

/*
 * The second two register test tasks are similar to the first two, but do test
 * the floating point registers, execute in Privileged mode, and signal their
 * execution status to the 'check' task by incrementing a loop counter on each
 * iteration instead of sending a message on a queue.  The loop counters use a
 * memory region to which the User mode 'check' task has read access.
 *
 * The functions ending 'Implementation' are called by the register check tasks.
 */
static void prvRegTest3Task( void *pvParameters );
extern void vRegTest3Implementation( void );
static void prvRegTest4Task( void *pvParameters );
extern void vRegTest4Implementation( void );

/*
 * Prototype for the check task.  The check task demonstrates various features
 * of the MPU before entering a loop where it waits for messages to arrive on a
 * queue.
 *
 * Two types of messages can be processes:
 *
 * 1) "I'm Alive" messages sent from the first two register test tasks and a
 *    software timer callback, as described above.
 *
 * 2) "Print Status commands" sent periodically by the tick hook function (and
 *    therefore from within an interrupt) which commands the check task to write
 *    either pass or fail to the terminal, depending on the status of the reg
 *    test tasks (no write is performed in the simulator!).
 */
static void prvCheckTask( void *pvParameters );

/*
 * Prototype for a task created in User mode using the original vTaskCreate()
 * API function.  The task demonstrates the characteristics of such a task,
 * before simply deleting itself.
 */
static void prvOldStyleUserModeTask( void *pvParameters );

/*
 * Prototype for a task created in Privileged mode using the original
 * vTaskCreate() API function.  The task demonstrates the characteristics of
 * such a task, before simply deleting itself.
 */
static void prvOldStylePrivilegedModeTask( void *pvParameters );

/*
 * A task that exercises the API of various RTOS objects before being deleted by
 * the Idle task.  This is done for MPU API code coverage test purposes.
 */
static void prvTaskToDelete( void *pvParameters );

/*
 * Functions called by prvTaskToDelete() to exercise the MPU API.
 */
static void prvExerciseEventGroupAPI( void );
static void prvExerciseSemaphoreAPI( void );
static void prvExerciseTaskNotificationAPI( void );
static void prvExerciseStreamBufferAPI( void );
static void prvExerciseTimerAPI( void );

/*
 * Just configures any clocks and IO necessary.
 */
static void prvSetupHardware( void );

/*
 * Simply deletes the calling task.  The function is provided only because it
 * is simpler to call from asm code than the normal vTaskDelete() API function.
 * It has the noinline attribute because it is called from asm code.
 */
void vMainDeleteMe( void ) __attribute__((noinline));

/*
 * Used by the first two reg test tasks and a software timer callback function
 * to send messages to the check task.  The message just lets the check task
 * know that the tasks and timer are still functioning correctly.  If a reg test
 * task detects an error it will delete itself, and in so doing prevent itself
 * from sending any more 'I'm Alive' messages to the check task.
 */
void vMainSendImAlive( QueueHandle_t xHandle, uint32_t ulTaskNumber );

/*
 * The check task is created with access to three memory regions (plus its
 * stack).  Each memory region is configured with different parameters and
 * prvTestMemoryRegions() demonstrates what can and cannot be accessed for each
 * region.  prvTestMemoryRegions() also demonstrates a task that was created
 * as a privileged task settings its own privilege level down to that of a user
 * task.
 */
static void prvTestMemoryRegions( void );

/*
 * Callback function used with the timer that uses the queue to send messages
 * to the check task.
 */
static void prvTimerCallback( TimerHandle_t xExpiredTimer );

/*
 * The callback function and a function that is pended used when exercising the
 * timer API.
 */
static void prvPendedFunctionCall( void *pvParameter1, uint32_t ulParameter2 );
static void prvTestTimerCallback( TimerHandle_t xTimer );

/*-----------------------------------------------------------*/

/* The handle of the queue used to communicate between tasks and between tasks
and interrupts.  Note that this is a global scope variable that falls outside of
any MPU region.  As such other techniques have to be used to allow the tasks
to gain access to the queue.  See the comments in the tasks themselves for
further information. */
QueueHandle_t xGlobalScopeCheckQueue = NULL;

/* Holds the handle of a task that is deleted in the idle task hook - this is
done for code coverage test purposes only. */
static TaskHandle_t xTaskToDelete = NULL;

/* The timer that periodically sends data to the check task on the queue. */
static TimerHandle_t xTimer = NULL;

/* Just used to check start up code for initialised an uninitialised data. */
volatile uint32_t ul1 = 0x123, ul2 = 0;

#if defined ( __GNUC__ )
	/* Memory map read directl from linker variables. */
	extern uint32_t __FLASH_segment_start__[];
	extern uint32_t __FLASH_segment_end__[];
	extern uint32_t __SRAM_segment_start__[];
	extern uint32_t __SRAM_segment_end__[];
	extern uint32_t __privileged_functions_start__[];
	extern uint32_t __privileged_functions_end__[];
	extern uint32_t __privileged_data_start__[];
	extern uint32_t __privileged_data_end__[];
	extern uint32_t __privileged_functions_actual_end__[];
	extern uint32_t __privileged_data_actual_end__[];
#else
	/* Must be set manually to match memory map. */
	const uint32_t * __FLASH_segment_start__ = ( uint32_t * ) 0x00UL;
	const uint32_t * __FLASH_segment_end__ = ( uint32_t * ) 0x00080000UL;
	const uint32_t * __SRAM_segment_start__ = ( uint32_t * ) 0x20000000UL;
	const uint32_t * __SRAM_segment_end__ = ( uint32_t * ) 0x20008000UL;
	const uint32_t * __privileged_functions_start__ = ( uint32_t * ) 0x00UL;
	const uint32_t * __privileged_functions_end__ = ( uint32_t * ) 0x8000UL;
	const uint32_t * __privileged_data_start__ = ( uint32_t * ) 0x20000000UL;
	const uint32_t * __privileged_data_end__ = ( uint32_t * ) 0x20000200UL;
#endif
/*-----------------------------------------------------------*/
/* Data used by the 'check' task. ---------------------------*/
/*-----------------------------------------------------------*/

/* Define the constants used to allocate the check task stack.  Note that the
stack size is defined in words, not bytes. */
#define mainCHECK_TASK_STACK_SIZE_WORDS	128
#define mainCHECK_TASK_STACK_ALIGNMENT ( mainCHECK_TASK_STACK_SIZE_WORDS * sizeof( portSTACK_TYPE ) )

/* Declare the stack that will be used by the check task.  The kernel will
 automatically create an MPU region for the stack.  The stack alignment must
 match its size, so if 128 words are reserved for the stack then it must be
 aligned to ( 128 * 4 ) bytes. */
static portSTACK_TYPE xCheckTaskStack[ mainCHECK_TASK_STACK_SIZE_WORDS ] mainALIGN_TO( mainCHECK_TASK_STACK_ALIGNMENT );

/* Declare three arrays - an MPU region will be created for each array
using the TaskParameters_t structure below.  THIS IS JUST TO DEMONSTRATE THE
MPU FUNCTIONALITY, the data is not used by the check tasks primary function
of monitoring the reg test tasks and printing out status information.

Note that the arrays allocate slightly more RAM than is actually assigned to
the MPU region.  This is to permit writes off the end of the array to be
detected even when the arrays are placed in adjacent memory locations (with no
gaps between them).  The align size must be a power of two. */
#define mainREAD_WRITE_ARRAY_SIZE 130
#define mainREAD_WRITE_ALIGN_SIZE 128
char cReadWriteArray[ mainREAD_WRITE_ARRAY_SIZE ] mainALIGN_TO( mainREAD_WRITE_ALIGN_SIZE );

#define mainREAD_ONLY_ARRAY_SIZE 260
#define mainREAD_ONLY_ALIGN_SIZE 256
char cReadOnlyArray[ mainREAD_ONLY_ARRAY_SIZE ] mainALIGN_TO( mainREAD_ONLY_ALIGN_SIZE );

#define mainPRIVILEGED_ONLY_ACCESS_ARRAY_SIZE 130
#define mainPRIVILEGED_ONLY_ACCESS_ALIGN_SIZE 128
char cPrivilegedOnlyAccessArray[ mainPRIVILEGED_ONLY_ACCESS_ALIGN_SIZE ] mainALIGN_TO( mainPRIVILEGED_ONLY_ACCESS_ALIGN_SIZE );

/* The following two variables are used to communicate the status of the second
two register check tasks (tasks 3 and 4) to the check task.  If the variables
keep incrementing, then the register check tasks have not discovered any errors.
If a variable stops incrementing, then an error has been found.  The variables
overlay the array that the check task has access to so they can be read by the
check task without causing a memory fault.  The check task has the highest
priority so will have finished with the array before the register test tasks
start to access it. */
volatile uint32_t *pulRegTest3LoopCounter = ( uint32_t * ) &( cReadWriteArray[ 0 ] ), *pulRegTest4LoopCounter = ( uint32_t * ) &( cReadWriteArray[ 4 ] );

/* Fill in a TaskParameters_t structure to define the check task - this is the
structure passed to the xTaskCreateRestricted() function. */
static const TaskParameters_t xCheckTaskParameters =
{
	prvCheckTask,								/* pvTaskCode - the function that implements the task. */
	"Check",									/* pcName */
	mainCHECK_TASK_STACK_SIZE_WORDS,			/* usStackDepth - defined in words, not bytes. */
	( void * ) 0x12121212,						/* pvParameters - this value is just to test that the parameter is being passed into the task correctly. */
	( tskIDLE_PRIORITY + 1 ) | portPRIVILEGE_BIT,/* uxPriority - this is the highest priority task in the system.  The task is created in privileged mode to demonstrate accessing the privileged only data. */
	xCheckTaskStack,							/* puxStackBuffer - the array to use as the task stack, as declared above. */

	/* xRegions - In this case the xRegions array is used to create MPU regions
	for all three of the arrays declared directly above.  Each MPU region is
	created with different parameters.  Again, THIS IS JUST TO DEMONSTRATE THE
	MPU FUNCTIONALITY, the data is not used by the check tasks primary function
	of monitoring the reg test tasks and printing out status information.*/
	{
		/* Base address					Length									Parameters */
		{ cReadWriteArray,				mainREAD_WRITE_ALIGN_SIZE,				portMPU_REGION_READ_WRITE },
		{ cReadOnlyArray,				mainREAD_ONLY_ALIGN_SIZE,				portMPU_REGION_READ_ONLY },
		{ cPrivilegedOnlyAccessArray,	mainPRIVILEGED_ONLY_ACCESS_ALIGN_SIZE,	portMPU_REGION_PRIVILEGED_READ_WRITE }
	}
};



/*-----------------------------------------------------------*/
/* Data used by the 'reg test' tasks. -----------------------*/
/*-----------------------------------------------------------*/

/* Define the constants used to allocate the reg test task stacks.  Note that
that stack size is defined in words, not bytes. */
#define mainREG_TEST_STACK_SIZE_WORDS	128
#define mainREG_TEST_STACK_ALIGNMENT	( mainREG_TEST_STACK_SIZE_WORDS * sizeof( portSTACK_TYPE ) )

/* Declare the stacks that will be used by the reg test tasks.  The kernel will
automatically create an MPU region for the stack.  The stack alignment must
match its size, so if 128 words are reserved for the stack then it must be
aligned to ( 128 * 4 ) bytes. */
static portSTACK_TYPE xRegTest1Stack[ mainREG_TEST_STACK_SIZE_WORDS ] mainALIGN_TO( mainREG_TEST_STACK_ALIGNMENT );
static portSTACK_TYPE xRegTest2Stack[ mainREG_TEST_STACK_SIZE_WORDS ] mainALIGN_TO( mainREG_TEST_STACK_ALIGNMENT );

/* Fill in a TaskParameters_t structure per reg test task to define the tasks. */
static const TaskParameters_t xRegTest1Parameters =
{
	vRegTest1Implementation,							/* pvTaskCode - the function that implements the task. */
	"RegTest1",									/* pcName			*/
	mainREG_TEST_STACK_SIZE_WORDS,				/* usStackDepth		*/
	( void * ) configREG_TEST_TASK_1_PARAMETER,	/* pvParameters - this value is just to test that the parameter is being passed into the task correctly. */
	tskIDLE_PRIORITY | portPRIVILEGE_BIT,		/* uxPriority - note that this task is created with privileges to demonstrate one method of passing a queue handle into the task. */
	xRegTest1Stack,								/* puxStackBuffer - the array to use as the task stack, as declared above. */
	{											/* xRegions - this task does not use any non-stack data hence all members are zero. */
		/* Base address		Length		Parameters */
		{ 0x00,				0x00,			0x00 },
		{ 0x00,				0x00,			0x00 },
		{ 0x00,				0x00,			0x00 }
	}
};
/*-----------------------------------------------------------*/

static TaskParameters_t xRegTest2Parameters =
{
	vRegTest2Implementation,				/* pvTaskCode - the function that implements the task. */
	"RegTest2",						/* pcName			*/
	mainREG_TEST_STACK_SIZE_WORDS,	/* usStackDepth		*/
	( void * ) NULL,				/* pvParameters	- this task uses the parameter to pass in a queue handle, but the queue is not created yet. */
	tskIDLE_PRIORITY,				/* uxPriority		*/
	xRegTest2Stack,					/* puxStackBuffer - the array to use as the task stack, as declared above. */
	{								/* xRegions - this task does not use any non-stack data hence all members are zero. */
		/* Base address		Length		Parameters */
		{ 0x00,				0x00,			0x00 },
		{ 0x00,				0x00,			0x00 },
		{ 0x00,				0x00,			0x00 }
	}
};

/*-----------------------------------------------------------*/
/* Configures the task that is deleted. ---------------------*/
/*-----------------------------------------------------------*/

/* Define the constants used to allocate the stack of the task that is
deleted.  Note that that stack size is defined in words, not bytes. */
#define mainDELETE_TASK_STACK_SIZE_WORDS	128
#define mainTASK_TO_DELETE_STACK_ALIGNMENT	( mainDELETE_TASK_STACK_SIZE_WORDS * sizeof( portSTACK_TYPE ) )

/* Declare the stack that will be used by the task that gets deleted.  The
kernel will automatically create an MPU region for the stack.  The stack
alignment must match its size, so if 128 words are reserved for the stack
then it must be aligned to ( 128 * 4 ) bytes. */
static portSTACK_TYPE xDeleteTaskStack[ mainDELETE_TASK_STACK_SIZE_WORDS ] mainALIGN_TO( mainTASK_TO_DELETE_STACK_ALIGNMENT );

static TaskParameters_t xTaskToDeleteParameters =
{
	prvTaskToDelete,					/* pvTaskCode - the function that implements the task. */
	mainTASK_TO_DELETE_NAME,			/* pcName */
	mainDELETE_TASK_STACK_SIZE_WORDS,	/* usStackDepth */
	( void * ) NULL,					/* pvParameters - this task uses the parameter to pass in a queue handle, but the queue is not created yet. */
	tskIDLE_PRIORITY + 1,				/* uxPriority */
	xDeleteTaskStack,					/* puxStackBuffer - the array to use as the task stack, as declared above. */
	{									/* xRegions - this task does not use any non-stack data hence all members are zero. */
		/* Base address		Length		Parameters */
		{ 0x00,				0x00,			0x00 },
		{ 0x00,				0x00,			0x00 },
		{ 0x00,				0x00,			0x00 }
	}
};

/*-----------------------------------------------------------*/

int main( void )
{
	/* Used to check linker configuration. */
	configASSERT( ul1 == 0x123 );
	configASSERT( ul2 == 0 );
	prvSetupHardware();

	/* Create the queue used to pass "I'm alive" messages to the check task. */
	xGlobalScopeCheckQueue = xQueueCreate( 1, sizeof( uint32_t ) );

	/* One check task uses the task parameter to receive the queue handle.
	This allows the file scope variable to be accessed from within the task.
	The pvParameters member of xRegTest2Parameters can only be set after the
	queue has been created so is set here. */
	xRegTest2Parameters.pvParameters = xGlobalScopeCheckQueue;

	/* Create three test tasks.  Handles to the created tasks are not required,
	hence the second parameter is NULL. */
	xTaskCreateRestricted( &xRegTest1Parameters, NULL );
    xTaskCreateRestricted( &xRegTest2Parameters, NULL );
	xTaskCreateRestricted( &xCheckTaskParameters, NULL );

	/* Create a task that does nothing but ensure some of the MPU API functions
	can be called correctly, then get deleted.  This is done for code coverage
	test purposes only.  The task's handle is saved in xTaskToDelete so it can
	get deleted in the idle task hook. */
	xTaskCreateRestricted( &xTaskToDeleteParameters, &xTaskToDelete );

	/* Create the tasks that are created using the original xTaskCreate() API
	function. */
	xTaskCreate(	prvOldStyleUserModeTask,	/* The function that implements the task. */
					"Task1",					/* Text name for the task. */
					100,						/* Stack depth in words. */
					NULL,						/* Task parameters. */
					3,							/* Priority and mode (user in this case). */
					NULL						/* Handle. */
				);

	xTaskCreate(	prvOldStylePrivilegedModeTask,	/* The function that implements the task. */
					"Task2",						/* Text name for the task. */
					100,							/* Stack depth in words. */
					NULL,							/* Task parameters. */
					( 3 | portPRIVILEGE_BIT ),		/* Priority and mode. */
					NULL							/* Handle. */
				);

	/* Create the third and fourth register check tasks, as described at the top
	of this file. */
	xTaskCreate( prvRegTest3Task, "Reg3", configMINIMAL_STACK_SIZE, configREG_TEST_TASK_3_PARAMETER, tskIDLE_PRIORITY, NULL );
	xTaskCreate( prvRegTest4Task, "Reg4", configMINIMAL_STACK_SIZE, configREG_TEST_TASK_4_PARAMETER, tskIDLE_PRIORITY, NULL );

	/* Create and start the software timer. */
	xTimer = xTimerCreate( "Timer", 			/* Test name for the timer. */
							mainTIMER_PERIOD, 	/* Period of the timer. */
							pdTRUE,				/* The timer will auto-reload itself. */
							( void * ) 0,		/* The timer's ID is used to count the number of times it expires - initialise this to 0. */
							prvTimerCallback );	/* The function called when the timer expires. */
	configASSERT( xTimer );
	xTimerStart( xTimer, mainDONT_BLOCK );

	/* Start the scheduler. */
	vTaskStartScheduler();

	/* Will only get here if there was insufficient memory to create the idle
	task. */
	for( ;; );
}
/*-----------------------------------------------------------*/

static void prvCheckTask( void *pvParameters )
{
/* This task is created in privileged mode so can access the file scope
queue variable.  Take a stack copy of this before the task is set into user
mode.  Once that task is in user mode the file scope queue variable will no
longer be accessible but the stack copy will. */
QueueHandle_t xQueue = xGlobalScopeCheckQueue;
int32_t lMessage;
uint32_t ulStillAliveCounts[ 3 ] = { 0 };
const char *pcStatusMessage = "PASS\r\n";
uint32_t ulLastRegTest3CountValue = 0, ulLastRegTest4Value = 0;

/* The register test tasks that also test the floating point registers increment
a counter on each iteration of their loop.  The counters are inside the array
that this task has access to. */
volatile uint32_t *pulOverlaidCounter3 = ( uint32_t * ) &( cReadWriteArray[ 0 ] ), *pulOverlaidCounter4 = ( uint32_t * ) &( cReadWriteArray[ 4 ] );

/* ulCycleCount is incremented on each cycle of the check task.  It can be
viewed updating in the Keil watch window as the simulator does not print to
the ITM port. */
volatile uint32_t ulCycleCount = 0;

	/* Just to remove compiler warning. */
	( void ) pvParameters;

	/* Demonstrate how the various memory regions can and can't be accessed.
	The task privilege level is set down to user mode within this function. */
	prvTestMemoryRegions();

	/* Clear overlaid reg test counters before entering the loop below. */
	*pulOverlaidCounter3 = 0UL;
	*pulOverlaidCounter4 = 0UL;

	/* This loop performs the main function of the task, which is blocking
	on a message queue then processing each message as it arrives. */
	for( ;; )
	{
		/* Wait for the next message to arrive. */
		xQueueReceive( xQueue, &lMessage, portMAX_DELAY );

		switch( lMessage )
		{
			case configREG_TEST_1_STILL_EXECUTING	:
			case configREG_TEST_2_STILL_EXECUTING	:
			case configTIMER_STILL_EXECUTING		:
					/* Message from the first or second register check task, or
					the timer callback function.  Increment the count of the
					number of times the message source has sent the message as
					the message source must still be executed. */
					( ulStillAliveCounts[ lMessage ] )++;
					break;

			case configPRINT_SYSTEM_STATUS		:
					/* Message from tick hook, time to print out the system
					status.  If messages have stopped arriving from either of
					the first two reg test task or the timer callback then the
					status must be set to fail. */
					if( ( ulStillAliveCounts[ 0 ] == 0 ) || ( ulStillAliveCounts[ 1 ] == 0 ) || ( ulStillAliveCounts[ 2 ] == 0 ) )
					{
						/* One or both of the test tasks are no longer sending
						'still alive' messages. */
						pcStatusMessage = "FAIL\r\n";
					}
					else
					{
						/* Reset the count of 'still alive' messages. */
						memset( ( void * ) ulStillAliveCounts, 0x00, sizeof( ulStillAliveCounts ) );
					}

					/* Check that the register test 3 task is still incrementing
					its counter, and therefore still running. */
					if( ulLastRegTest3CountValue == *pulOverlaidCounter3 )
					{
						pcStatusMessage = "FAIL\r\n";
					}
					ulLastRegTest3CountValue = *pulOverlaidCounter3;

					/* Check that the register test 4 task is still incrementing
					its counter, and therefore still running. */
					if( ulLastRegTest4Value == *pulOverlaidCounter4 )
					{
						pcStatusMessage = "FAIL\r\n";
					}
					ulLastRegTest4Value = *pulOverlaidCounter4;

					/**** Print pcStatusMessage here. ****/
					( void ) pcStatusMessage;

					/* The cycle count can be viewed updating in the Keil watch
					window if ITM printf is not being used. */
					ulCycleCount++;
					break;

		default :
					/* Something unexpected happened.  Delete this task so the
					error is apparent (no output will be displayed). */
					vMainDeleteMe();
					break;
		}
	}
}
/*-----------------------------------------------------------*/

static void prvTestMemoryRegions( void )
{
int32_t x;
char cTemp;

	/* The check task (from which this function is called) is created in the
	Privileged mode.  The privileged array can be both read from and written
	to while this task is privileged. */
	cPrivilegedOnlyAccessArray[ 0 ] = 'a';
	if( cPrivilegedOnlyAccessArray[ 0 ] != 'a' )
	{
		/* Something unexpected happened.  Delete this task so the error is
		apparent (no output will be displayed). */
		vMainDeleteMe();
	}

	/* Writing off the end of the RAM allocated to this task will *NOT* cause a
	protection fault because the task is still executing in a privileged mode.
	Uncomment the following to test. */
	/*cPrivilegedOnlyAccessArray[ mainPRIVILEGED_ONLY_ACCESS_ALIGN_SIZE ] = 'a';*/

	/* Now set the task into user mode. */
	portSWITCH_TO_USER_MODE();

	/* Accessing the privileged only array will now cause a fault.  Uncomment
	the following line to test. */
	/*cPrivilegedOnlyAccessArray[ 0 ] = 'a';*/

	/* The read/write array can still be successfully read and written. */
	for( x = 0; x < mainREAD_WRITE_ALIGN_SIZE; x++ )
	{
		cReadWriteArray[ x ] = 'a';
		if( cReadWriteArray[ x ] != 'a' )
		{
			/* Something unexpected happened.  Delete this task so the error is
			apparent (no output will be displayed). */
			vMainDeleteMe();
		}
	}

	/* But attempting to read or write off the end of the RAM allocated to this
	task will cause a fault.  Uncomment either of the following two lines to
	test. */
	/* cReadWriteArray[ 0 ] = cReadWriteArray[ -1 ]; */
	/* cReadWriteArray[ mainREAD_WRITE_ALIGN_SIZE ] = 0x00; */

	/* The read only array can be successfully read... */
	for( x = 0; x < mainREAD_ONLY_ALIGN_SIZE; x++ )
	{
		cTemp = cReadOnlyArray[ x ];
	}

	/* ...but cannot be written.  Uncomment the following line to test. */
	/* cReadOnlyArray[ 0 ] = 'a'; */

	/* Writing to the first and last locations in the stack array should not
	cause a protection fault.  Note that doing this will cause the kernel to
	detect a stack overflow if configCHECK_FOR_STACK_OVERFLOW is greater than
	1, hence the test is commented out by default. */
	/* xCheckTaskStack[ 0 ] = 0;
	xCheckTaskStack[ mainCHECK_TASK_STACK_SIZE_WORDS - 1 ] = 0; */

	/* Writing off either end of the stack array should cause a protection
	fault, uncomment either of the following two lines to test. */
	/* xCheckTaskStack[ -1 ] = 0; */
	/* xCheckTaskStack[ mainCHECK_TASK_STACK_SIZE_WORDS ] = 0; */

	( void ) cTemp;
}
/*-----------------------------------------------------------*/

static void prvExerciseEventGroupAPI( void )
{
EventGroupHandle_t xEventGroup;
EventBits_t xBits;
const EventBits_t xBitsToWaitFor = ( EventBits_t ) 0xff, xBitToClear = ( EventBits_t ) 0x01;

	/* Exercise some event group functions. */
	xEventGroup = xEventGroupCreate();
	configASSERT( xEventGroup );

	/* No bits should be set. */
	xBits = xEventGroupWaitBits( xEventGroup, xBitsToWaitFor, pdTRUE, pdFALSE, mainDONT_BLOCK );
	configASSERT( xBits == ( EventBits_t ) 0 );

	/* Set bits and read back to ensure the bits were set. */
	xEventGroupSetBits( xEventGroup, xBitsToWaitFor );
	xBits = xEventGroupGetBits( xEventGroup );
	configASSERT( xBits == xBitsToWaitFor );

	/* Clear a bit and read back again using a different API function. */
	xEventGroupClearBits( xEventGroup, xBitToClear );
	xBits = xEventGroupSync( xEventGroup, 0x00, xBitsToWaitFor, mainDONT_BLOCK );
	configASSERT( xBits == ( xBitsToWaitFor & ~xBitToClear ) );

	/* Finished with the event group. */
	vEventGroupDelete( xEventGroup );
}
/*-----------------------------------------------------------*/

static void prvExerciseSemaphoreAPI( void )
{
SemaphoreHandle_t xSemaphore;
const UBaseType_t uxMaxCount = 5, uxInitialCount = 0;

	/* Most of the semaphore API is common to the queue API and is already being
	used.  This function uses a few semaphore functions that are unique to the
	RTOS objects, rather than generic and used by queues also.

	First create and use a counting semaphore. */
	xSemaphore = xSemaphoreCreateCounting( uxMaxCount, uxInitialCount );
	configASSERT( xSemaphore );

	/* Give the semaphore a couple of times and ensure the count is returned
	correctly. */
	xSemaphoreGive( xSemaphore );
	xSemaphoreGive( xSemaphore );
	configASSERT( uxSemaphoreGetCount( xSemaphore ) == 2 );
	vSemaphoreDelete( xSemaphore );

	/* Create a recursive mutex, and ensure the mutex holder and count are
	returned returned correctly. */
	xSemaphore = xSemaphoreCreateRecursiveMutex();
	configASSERT( uxSemaphoreGetCount( xSemaphore ) == 1 );
	configASSERT( xSemaphore );
	xSemaphoreTakeRecursive( xSemaphore, mainDONT_BLOCK );
	xSemaphoreTakeRecursive( xSemaphore, mainDONT_BLOCK );
	configASSERT( xSemaphoreGetMutexHolder( xSemaphore ) == xTaskGetCurrentTaskHandle() );
	configASSERT( xSemaphoreGetMutexHolder( xSemaphore ) == xTaskGetHandle( mainTASK_TO_DELETE_NAME ) );
	xSemaphoreGiveRecursive( xSemaphore );
	configASSERT( uxSemaphoreGetCount( xSemaphore ) == 0 );
	xSemaphoreGiveRecursive( xSemaphore );
	configASSERT( uxSemaphoreGetCount( xSemaphore ) == 1 );
	configASSERT( xSemaphoreGetMutexHolder( xSemaphore ) == NULL );
	vSemaphoreDelete( xSemaphore );

	/* Create a normal mutex, and sure the mutex holder and count are returned
	returned correctly. */
	xSemaphore = xSemaphoreCreateMutex();
	configASSERT( xSemaphore );
	xSemaphoreTake( xSemaphore, mainDONT_BLOCK );
	xSemaphoreTake( xSemaphore, mainDONT_BLOCK );
	configASSERT( uxSemaphoreGetCount( xSemaphore ) == 0 ); /* Not recursive so can only be 1. */
	configASSERT( xSemaphoreGetMutexHolder( xSemaphore ) == xTaskGetCurrentTaskHandle() );
	xSemaphoreGive( xSemaphore );
	configASSERT( uxSemaphoreGetCount( xSemaphore ) == 1 );
	configASSERT( xSemaphoreGetMutexHolder( xSemaphore ) == NULL );
	vSemaphoreDelete( xSemaphore );
}
/*-----------------------------------------------------------*/

static void prvExerciseTaskNotificationAPI( void )
{
uint32_t ulNotificationValue;
BaseType_t xReturned;

	/* The task should not yet have a notification pending. */
	xReturned = xTaskNotifyWait( 0, 0, &ulNotificationValue, mainDONT_BLOCK );
	configASSERT( xReturned == pdFAIL );
	configASSERT( ulNotificationValue == 0UL );

	/* Exercise the 'give' and 'take' versions of the notification API. */
	xTaskNotifyGive( xTaskGetCurrentTaskHandle() );
	xTaskNotifyGive( xTaskGetCurrentTaskHandle() );
	ulNotificationValue = ulTaskNotifyTake( pdTRUE, mainDONT_BLOCK );
	configASSERT( ulNotificationValue == 2 );

	/* Exercise the 'notify' and 'clear' API. */
	ulNotificationValue = 20;
	xTaskNotify( xTaskGetCurrentTaskHandle(), ulNotificationValue, eSetValueWithOverwrite );
	ulNotificationValue = 0;
	xReturned = xTaskNotifyWait( 0, 0, &ulNotificationValue, mainDONT_BLOCK );
	configASSERT( xReturned == pdPASS );
	configASSERT( ulNotificationValue == 20 );
	xTaskNotify( xTaskGetCurrentTaskHandle(), ulNotificationValue, eSetValueWithOverwrite );
	xReturned = xTaskNotifyStateClear( NULL );
	configASSERT( xReturned == pdTRUE ); /* First time a notification was pending. */
	xReturned = xTaskNotifyStateClear( NULL );
	configASSERT( xReturned == pdFALSE ); /* Second time the notification was already clear. */
}
/*-----------------------------------------------------------*/

static void prvTaskToDelete( void *pvParameters )
{
	/* Remove compiler warnings about unused parameters. */
	( void ) pvParameters;

	/* Check the enter and exit critical macros are working correctly.  If the
	SVC priority is below configMAX_SYSCALL_INTERRUPT_PRIORITY then this will
	fault. */
	taskENTER_CRITICAL();
	taskEXIT_CRITICAL();

	/* Exercise the API of various RTOS objects. */
	prvExerciseEventGroupAPI();
	prvExerciseSemaphoreAPI();
	prvExerciseTaskNotificationAPI();
	prvExerciseStreamBufferAPI();
	prvExerciseTimerAPI();

	/* For code coverage test purposes it is deleted by the Idle task. */
	configASSERT( uxTaskGetStackHighWaterMark( NULL ) > 0 );
	configASSERT( uxTaskGetStackHighWaterMark2( NULL ) > 0 );
	/* Run time stats are not being gathered - this is just to exercise
	API. */
	configASSERT( ulTaskGetIdleRunTimeCounter() == 0 ); 
	vTaskSuspend( NULL );
}
/*-----------------------------------------------------------*/

static void prvPendedFunctionCall( void *pvParameter1, uint32_t ulParameter2 )
{
uint32_t *pulCounter = ( uint32_t * ) pvParameter1;

	/* Increment the paramater to show the pended function has executed. */
	( *pulCounter )++;
}
/*-----------------------------------------------------------*/

static void prvTestTimerCallback( TimerHandle_t xTimer )
{
uint32_t ulTimerID;

	/* Increment the timer's ID to show the callback has executed. */
	ulTimerID = ( uint32_t ) pvTimerGetTimerID( xTimer );
	ulTimerID++;
	vTimerSetTimerID( xTimer, ( void * ) ulTimerID );
}
/*-----------------------------------------------------------*/

static void prvExerciseTimerAPI( void )
{
TimerHandle_t xTimer;
const char * const pcTimerName = "TestTimer";
const TickType_t x3ms = pdMS_TO_TICKS( 3 );
uint32_t ulValueForTesting = 0;

	xTimer = xTimerCreate( 	pcTimerName,
							x3ms,
							pdFALSE, /* Created as a one-shot timer. */
							0,
							prvTestTimerCallback );
	configASSERT( xTimer );
	configASSERT( xTimerIsTimerActive( xTimer ) == pdFALSE );
	configASSERT( xTimerGetTimerDaemonTaskHandle() != NULL );
	configASSERT( strcmp( pcTimerName, pcTimerGetName( xTimer ) ) == 0 );
	configASSERT( xTimerGetPeriod( xTimer ) == x3ms );

	/* Pend a function then wait for it to execute.  All it does is increment
	its parameter. */
	xTimerPendFunctionCall( prvPendedFunctionCall, &ulValueForTesting, 0, 0 );
	vTaskDelay( x3ms );
	configASSERT( ulValueForTesting == 1 );

	/* Timer was created as a one-shot timer.  Its callback just increments the
	timer's ID - so set the ID to 0, let the timer run for a number of timeout
	periods, then check the timer has only executed once. */
	vTimerSetTimerID( xTimer, ( void * ) 0 );
	xTimerStart( xTimer, 0 );
	vTaskDelay( 3UL * x3ms );
	configASSERT( ( ( uint32_t ) ( pvTimerGetTimerID( xTimer ) ) ) == 1UL );

	/* Now change the timer to be an auto-reload timer and check it executes
	the expected number of times. */
	vTimerSetReloadMode( xTimer, pdTRUE );
	xTimerStart( xTimer, 0 );
	vTaskDelay( 3UL * x3ms );
	configASSERT( ( uint32_t ) ( pvTimerGetTimerID( xTimer ) ) > 3UL );
	configASSERT( xTimerStop( xTimer, 0 ) != pdFAIL );

	/* Clean up at the end. */
	xTimerDelete( xTimer, portMAX_DELAY );
}
/*-----------------------------------------------------------*/

static void prvExerciseStreamBufferAPI( void )
{
uint8_t ucBuffer[ 10 ];
BaseType_t x, xRead;
size_t xReturned;
StreamBufferHandle_t xStreamBuffer;

	/* Just makes API calls to ensure the MPU versions are used. */

	xStreamBuffer = xStreamBufferCreate( sizeof( ucBuffer ) , 1 );
	configASSERT( xStreamBuffer );

	for( x = 0; x < ( sizeof( ucBuffer ) * 2 ); x++ )
	{
		/* Write and check the value is written, then read and check the value
		read is expected. */
		xReturned = xStreamBufferSend( xStreamBuffer,
									   ( void * ) &x,
									   sizeof( x ),
									   0 );
		configASSERT( xReturned == sizeof( x ) );

		xReturned = xStreamBufferReceive( xStreamBuffer,
										  ( void * ) &xRead,
										  sizeof( xRead ),
										  0 );
		configASSERT( xReturned == sizeof( xRead ) );
		configASSERT( xRead == x );
		configASSERT( xStreamBufferIsFull( xStreamBuffer ) == pdFALSE );
		configASSERT( xStreamBufferIsEmpty( xStreamBuffer ) == pdTRUE );
		configASSERT( xStreamBufferSpacesAvailable( xStreamBuffer ) == sizeof( ucBuffer ) );
		configASSERT( xStreamBufferBytesAvailable( xStreamBuffer ) == 0 );
	}

	/* Call the functions that have not been exercised yet before finishing by
	deleting the stream buffer. */
	configASSERT( xStreamBufferSetTriggerLevel( xStreamBuffer, 0 ) == pdTRUE );
	configASSERT( xStreamBufferReset( xStreamBuffer ) == pdPASS );
	vStreamBufferDelete( xStreamBuffer );
}
/*-----------------------------------------------------------*/

void vApplicationIdleHook( void )
{
volatile const uint32_t *pul;
volatile uint32_t ulReadData;

	/* The idle task, and therefore this function, run in Supervisor mode and
	can therefore access all memory.  Try reading from corners of flash and
	RAM to ensure a memory fault does not occur.

	Start with the edges of the privileged data area. */
	pul = __privileged_data_start__;
	ulReadData = *pul;
	pul = __privileged_data_end__ - 1;
	ulReadData = *pul;

	/* Next the standard SRAM area. */
	pul = __SRAM_segment_end__ - 1;
	ulReadData = *pul;

	/* And the standard Flash area - the start of which is marked for
	privileged access only. */
	pul = __FLASH_segment_start__;
	ulReadData = *pul;
	pul = __FLASH_segment_end__ - 1;
	ulReadData = *pul;

	/* Reading off the end of Flash or SRAM space should cause a fault.
	Uncomment one of the following two pairs of lines to test. */

	/* pul = __FLASH_segment_end__ + 4;
	ulReadData = *pul; */

	/* pul = __SRAM_segment_end__ + 1;
	ulReadData = *pul; */

	/* One task is created purely so it can be deleted - done for code coverage
	test purposes. */
	if( xTaskToDelete != NULL )
	{
		if( eTaskGetState( xTaskToDelete ) == eSuspended )
		{
			/* The task has finished its tests and can be deleted. */
			vTaskDelete( xTaskToDelete );
			xTaskToDelete = NULL;
		}
	}

	( void ) ulReadData;
}
/*-----------------------------------------------------------*/

static void prvOldStyleUserModeTask( void *pvParameters )
{
/*const volatile uint32_t *pulStandardPeripheralRegister = ( volatile uint32_t * ) 0x40000000;*/
volatile const uint32_t *pul;
volatile uint32_t ulReadData;

/* The following lines are commented out to prevent the unused variable
compiler warnings when the tests that use the variable are also commented out. */
/* extern uint32_t __privileged_functions_start__[]; */
/* const volatile uint32_t *pulSystemPeripheralRegister = ( volatile uint32_t * ) 0xe000e014; */

	( void ) pvParameters;

	/* This task is created in User mode using the original xTaskCreate() API
	function.  It should have access to all Flash and RAM except that marked
	as Privileged access only.  Reading from the start and end of the non-
	privileged RAM should not cause a problem (the privileged RAM is the first
	block at the bottom of the RAM memory). */
	pul = __privileged_data_end__ + 1;
	ulReadData = *pul;
	pul = __SRAM_segment_end__ - 1;
	ulReadData = *pul;

	/* Likewise reading from the start and end of the non-privileged Flash
	should not be a problem (the privileged Flash is the first block at the
	bottom of the Flash memory). */
	pul = __privileged_functions_end__ + 1;
	ulReadData = *pul;
	pul = __FLASH_segment_end__ - 1;
	ulReadData = *pul;

	/* Standard peripherals are accessible. */
	/*ulReadData = *pulStandardPeripheralRegister;*/

	/* System peripherals are not accessible.  Uncomment the following line
	to test.  Also uncomment the declaration of pulSystemPeripheralRegister
	at the top of this function.
	ulReadData = *pulSystemPeripheralRegister; */

	/* Reading from anywhere inside the privileged Flash or RAM should cause a
	fault.  This can be tested by uncommenting any of the following pairs of
	lines.  Also uncomment the declaration of __privileged_functions_start__
	at the top of this function. */

	/*pul = __privileged_functions_start__;
	ulReadData = *pul;*/

	/*pul = __privileged_functions_end__ - 1;
	ulReadData = *pul;*/

	/*pul = __privileged_data_start__;
	ulReadData = *pul;*/

	/*pul = __privileged_data_end__ - 1;
	ulReadData = *pul;*/

	/* Must not just run off the end of a task function, so delete this task.
	Note that because this task was created using xTaskCreate() the stack was
	allocated dynamically and I have not included any code to free it again. */
	vTaskDelete( NULL );

	( void ) ulReadData;
}
/*-----------------------------------------------------------*/

static void prvOldStylePrivilegedModeTask( void *pvParameters )
{
volatile const uint32_t *pul;
volatile uint32_t ulReadData;
const volatile uint32_t *pulSystemPeripheralRegister = ( volatile uint32_t * ) 0xe000e014; /* Systick */
/*const volatile uint32_t *pulStandardPeripheralRegister = ( volatile uint32_t * ) 0x40000000;*/

	( void ) pvParameters;

	/* This task is created in Privileged mode using the original xTaskCreate()
	API	function.  It should have access to all Flash and RAM including that
	marked as Privileged access only.  So reading from the start and end of the
	non-privileged RAM should not cause a problem (the privileged RAM is the
	first block at the bottom of the RAM memory). */
	pul = __privileged_data_end__ + 1;
	ulReadData = *pul;
	pul = __SRAM_segment_end__ - 1;
	ulReadData = *pul;

	/* Likewise reading from the start and end of the non-privileged Flash
	should not be a problem (the privileged Flash is the first block at the
	bottom of the Flash memory). */
	pul = __privileged_functions_end__ + 1;
	ulReadData = *pul;
	pul = __FLASH_segment_end__ - 1;
	ulReadData = *pul;

	/* Reading from anywhere inside the privileged Flash or RAM should also
	not be a problem. */
	pul = __privileged_functions_start__;
	ulReadData = *pul;
	pul = __privileged_functions_end__ - 1;
	ulReadData = *pul;
	pul = __privileged_data_start__;
	ulReadData = *pul;
	pul = __privileged_data_end__ - 1;
	ulReadData = *pul;

	/* Finally, accessing both System and normal peripherals should both be
	possible. */
	ulReadData = *pulSystemPeripheralRegister;
	/*ulReadData = *pulStandardPeripheralRegister;*/

	/* Must not just run off the end of a task function, so delete this task.
	Note that because this task was created using xTaskCreate() the stack was
	allocated dynamically and I have not included any code to free it again. */
	vTaskDelete( NULL );

	( void ) ulReadData;
}
/*-----------------------------------------------------------*/

void vMainDeleteMe( void )
{
	vTaskDelete( NULL );
}
/*-----------------------------------------------------------*/

void vMainSendImAlive( QueueHandle_t xHandle, uint32_t ulTaskNumber )
{
	if( xHandle != NULL )
	{
		xQueueSend( xHandle, &ulTaskNumber, mainDONT_BLOCK );
	}
}
/*-----------------------------------------------------------*/

static void prvSetupHardware( void )
{
}
/*-----------------------------------------------------------*/

void vApplicationTickHook( void )
{
static uint32_t ulCallCount = 0;
const uint32_t ulCallsBetweenSends = pdMS_TO_TICKS( 1000 );
const uint32_t ulMessage = configPRINT_SYSTEM_STATUS;
portBASE_TYPE xDummy;

	/* If configUSE_TICK_HOOK is set to 1 then this function will get called
	from each RTOS tick.  It is called from the tick interrupt and therefore
	will be executing in the privileged state. */

	ulCallCount++;

	/* Is it time to print out the pass/fail message again? */
	if( ulCallCount >= ulCallsBetweenSends )
	{
		ulCallCount = 0;

		/* Send a message to the check task to command it to check that all
		the tasks are still running then print out the status.

		This is running in an ISR so has to use the "FromISR" version of
		xQueueSend().  Because it is in an ISR it is running with privileges
		so can access xGlobalScopeCheckQueue directly. */
		xQueueSendFromISR( xGlobalScopeCheckQueue, &ulMessage, &xDummy );
	}
}
/*-----------------------------------------------------------*/

void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName )
{
	/* If configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2 then this
	function will automatically get called if a task overflows its stack. */
	( void ) pxTask;
	( void ) pcTaskName;
	for( ;; );
}
/*-----------------------------------------------------------*/

void vApplicationMallocFailedHook( void )
{
	/* If configUSE_MALLOC_FAILED_HOOK is set to 1 then this function will
	be called automatically if a call to pvPortMalloc() fails.  pvPortMalloc()
	is called automatically when a task, queue or semaphore is created. */
	for( ;; );
}
/*-----------------------------------------------------------*/

static void prvTimerCallback( TimerHandle_t xExpiredTimer )
{
uint32_t ulCount;

	/* The count of the number of times this timer has expired is saved in the
	timer's ID.  Obtain the current count. */
	ulCount = ( uint32_t ) pvTimerGetTimerID( xTimer );

	/* Increment the count, and save it back into the timer's ID. */
	ulCount++;
	vTimerSetTimerID( xTimer, ( void * ) ulCount );

	/* Let the check task know the timer is still running. */
	vMainSendImAlive( xGlobalScopeCheckQueue, configTIMER_STILL_EXECUTING );
}
/*-----------------------------------------------------------*/

/* configUSE_STATIC_ALLOCATION is set to 1, so the application must provide an
implementation of vApplicationGetIdleTaskMemory() to provide the memory that is
used by the Idle task. */
void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize )
{
/* If the buffers to be provided to the Idle task are declared inside this
function then they must be declared static - otherwise they will be allocated on
the stack and so not exists after this function exits. */
static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];

	/* Pass out a pointer to the StaticTask_t structure in which the Idle task's
	state will be stored. */
	*ppxIdleTaskTCBBuffer = &xIdleTaskTCB;

	/* Pass out the array that will be used as the Idle task's stack. */
	*ppxIdleTaskStackBuffer = uxIdleTaskStack;

	/* Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
	Note that, as the array is necessarily of type StackType_t,
	configMINIMAL_STACK_SIZE is specified in words, not bytes. */
	*pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
}
/*-----------------------------------------------------------*/

/* configUSE_STATIC_ALLOCATION and configUSE_TIMERS are both set to 1, so the
application must provide an implementation of vApplicationGetTimerTaskMemory()
to provide the memory that is used by the Timer service task. */
void vApplicationGetTimerTaskMemory( StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t **ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize )
{
/* If the buffers to be provided to the Timer task are declared inside this
function then they must be declared static - otherwise they will be allocated on
the stack and so not exists after this function exits. */
static StaticTask_t xTimerTaskTCB;
static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];

	/* Pass out a pointer to the StaticTask_t structure in which the Timer
	task's state will be stored. */
	*ppxTimerTaskTCBBuffer = &xTimerTaskTCB;

	/* Pass out the array that will be used as the Timer task's stack. */
	*ppxTimerTaskStackBuffer = uxTimerTaskStack;

	/* Pass out the size of the array pointed to by *ppxTimerTaskStackBuffer.
	Note that, as the array is necessarily of type StackType_t,
	configMINIMAL_STACK_SIZE is specified in words, not bytes. */
	*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
}
/*-----------------------------------------------------------*/

static void prvRegTest3Task( void *pvParameters )
{
	/* Although the regtest task is written in assembler, its entry point is
	written in C for convenience of checking the task parameter is being passed
	in correctly. */
	if( pvParameters == configREG_TEST_TASK_3_PARAMETER )
	{
		/* Start the part of the test that is written in assembler. */
		vRegTest3Implementation();
	}

	/* The following line will only execute if the task parameter is found to
	be incorrect.  The check task will detect that the regtest loop counter is
	not being incremented and flag an error. */
	vTaskDelete( NULL );
}
/*-----------------------------------------------------------*/

static void prvRegTest4Task( void *pvParameters )
{
	/* Although the regtest task is written in assembler, its entry point is
	written in C for convenience of checking the task parameter is being passed
	in correctly. */
	if( pvParameters == configREG_TEST_TASK_4_PARAMETER )
	{
		/* Start the part of the test that is written in assembler. */
		vRegTest4Implementation();
	}

	/* The following line will only execute if the task parameter is found to
	be incorrect.  The check task will detect that the regtest loop counter is
	not being incremented and flag an error. */
	vTaskDelete( NULL );
}
/*-----------------------------------------------------------*/