summaryrefslogtreecommitdiff
path: root/FreeRTOS/Demo/Common/Minimal/StaticAllocation.c
blob: 32e6777314a885bacf0b6be60a9af187b8c0e74e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
/*
 * FreeRTOS Kernel V10.2.1
 * Copyright (C) 2019 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * http://www.FreeRTOS.org
 * http://aws.amazon.com/freertos
 *
 * 1 tab == 4 spaces!
 */


/*
 * Demonstrates how to create FreeRTOS objects using pre-allocated memory,
 * rather than the normal dynamically allocated memory, and tests objects being
 * created and deleted with both statically allocated memory and dynamically
 * allocated memory.
 *
 * See http://www.FreeRTOS.org/Static_Vs_Dynamic_Memory_Allocation.html
 */

/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
#include "event_groups.h"
#include "timers.h"

/* Demo program include files. */
#include "StaticAllocation.h"

/* Exclude the entire file if configSUPPORT_STATIC_ALLOCATION is 0. */
#if( configSUPPORT_STATIC_ALLOCATION == 1 )

/* The priority at which the task that performs the tests is created. */
#define staticTASK_PRIORITY					( tskIDLE_PRIORITY + 2 )

/* The length of the queue, in items, not bytes, used in the queue static
allocation tests. */
#define staticQUEUE_LENGTH_IN_ITEMS			( 5 )

/* A block time of 0 simply means "don't block". */
#define staticDONT_BLOCK					( ( TickType_t ) 0 )

/* Binary semaphores have a maximum count of 1. */
#define staticBINARY_SEMAPHORE_MAX_COUNT	( 1 )

/* The size of the stack used by the task that runs the tests. */
#define staticCREATOR_TASK_STACK_SIZE		( configMINIMAL_STACK_SIZE * 2 )

/* The number of times the software timer will execute before stopping itself. */
#define staticMAX_TIMER_CALLBACK_EXECUTIONS	( 5 )


/*-----------------------------------------------------------*/

/*
 * The task that repeatedly creates and deletes statically allocated tasks, and
 * other RTOS objects.
 */
static void prvStaticallyAllocatedCreator( void *pvParameters );

/*
 * The callback function used by the software timer that is repeatedly created
 * and deleted using both static and dynamically allocated memory.
 */
static void prvTimerCallback( TimerHandle_t xExpiredTimer );

/*
 * A task that is created and deleted multiple times, using both statically and
 * dynamically allocated stack and TCB.
 */
static void prvStaticallyAllocatedTask( void *pvParameters );

/*
 * A function that demonstrates and tests the API functions that create and
 * delete tasks using both statically and dynamically allocated TCBs and stacks.
 */
static void prvCreateAndDeleteStaticallyAllocatedTasks( void );

/*
 * A function that demonstrates and tests the API functions that create and
 * delete event groups using both statically and dynamically allocated RAM.
 */
static void prvCreateAndDeleteStaticallyAllocatedEventGroups( void );

/*
 * A function that demonstrates and tests the API functions that create and
 * delete queues using both statically and dynamically allocated RAM.
 */
static void prvCreateAndDeleteStaticallyAllocatedQueues( void );

/*
 * A function that demonstrates and tests the API functions that create and
 * delete binary semaphores using both statically and dynamically allocated RAM.
 */
static void prvCreateAndDeleteStaticallyAllocatedBinarySemaphores( void );

/*
 * A function that demonstrates and tests the API functions that create and
 * delete software timers using both statically and dynamically allocated RAM.
 */
static void prvCreateAndDeleteStaticallyAllocatedTimers( void );

/*
 * A function that demonstrates and tests the API functions that create and
 * delete mutexes using both statically and dynamically allocated RAM.
 */
static void prvCreateAndDeleteStaticallyAllocatedMutexes( void );

/*
 * A function that demonstrates and tests the API functions that create and
 * delete counting semaphores using both statically and dynamically allocated
 * RAM.
 */
static void prvCreateAndDeleteStaticallyAllocatedCountingSemaphores( void );

/*
 * A function that demonstrates and tests the API functions that create and
 * delete recursive mutexes using both statically and dynamically allocated RAM.
 */
static void prvCreateAndDeleteStaticallyAllocatedRecursiveMutexes( void );

/*
 * Utility function to create pseudo random numbers.
 */
static UBaseType_t prvRand( void );

/*
 * The task that creates and deletes other tasks has to delay occasionally to
 * ensure lower priority tasks are not starved of processing time.  A pseudo
 * random delay time is used just to add a little bit of randomisation into the
 * execution pattern.  prvGetNextDelayTime() generates the pseudo random delay.
 */
static TickType_t prvGetNextDelayTime( void );

/*
 * Checks the basic operation of a queue after it has been created.
 */
static void prvSanityCheckCreatedQueue( QueueHandle_t xQueue );

/*
 * Checks the basic operation of a recursive mutex after it has been created.
 */
static void prvSanityCheckCreatedRecursiveMutex( SemaphoreHandle_t xSemaphore );

/*
 * Checks the basic operation of a binary semaphore after it has been created.
 */
static void prvSanityCheckCreatedSemaphore( SemaphoreHandle_t xSemaphore, UBaseType_t uxMaxCount );

/*
 * Checks the basic operation of an event group after it has been created.
 */
static void prvSanityCheckCreatedEventGroup( EventGroupHandle_t xEventGroup );

/*-----------------------------------------------------------*/

/* StaticTask_t is a publicly accessible structure that has the same size and
alignment requirements as the real TCB structure.  It is provided as a mechanism
for applications to know the size of the TCB (which is dependent on the
architecture and configuration file settings) without breaking the strict data
hiding policy by exposing the real TCB.  This StaticTask_t variable is passed
into the xTaskCreateStatic() function that creates the
prvStaticallyAllocatedCreator() task, and will hold the TCB of the created
tasks. */
static StaticTask_t xCreatorTaskTCBBuffer;

/* This is the stack that will be used by the prvStaticallyAllocatedCreator()
task, which is itself created using statically allocated buffers (so without any
dynamic memory allocation). */
static StackType_t uxCreatorTaskStackBuffer[ staticCREATOR_TASK_STACK_SIZE ];

/* Used by the pseudo random number generating function. */
static uint32_t ulNextRand = 0;

/* Used so a check task can ensure this test is still executing, and not
stalled. */
static volatile UBaseType_t uxCycleCounter = 0;

/* A variable that gets set to pdTRUE if an error is detected. */
static volatile BaseType_t xErrorOccurred = pdFALSE;

/*-----------------------------------------------------------*/

void vStartStaticallyAllocatedTasks( void  )
{
	/* Create a single task, which then repeatedly creates and deletes the other
	RTOS objects using both statically and dynamically allocated RAM. */
	xTaskCreateStatic( prvStaticallyAllocatedCreator,		/* The function that implements the task being created. */
					   "StatCreate",						/* Text name for the task - not used by the RTOS, its just to assist debugging. */
					   staticCREATOR_TASK_STACK_SIZE,		/* Size of the buffer passed in as the stack - in words, not bytes! */
					   NULL,								/* Parameter passed into the task - not used in this case. */
					   staticTASK_PRIORITY,					/* Priority of the task. */
					   &( uxCreatorTaskStackBuffer[ 0 ] ),  /* The buffer to use as the task's stack. */
					   &xCreatorTaskTCBBuffer );			/* The variable that will hold the task's TCB. */
}
/*-----------------------------------------------------------*/

static void prvStaticallyAllocatedCreator( void *pvParameters )
{
	/* Avoid compiler warnings. */
	( void ) pvParameters;

	for( ;; )
	{
		/* Loop, running functions that create and delete the various RTOS
		objects that can be optionally created using either static or dynamic
		memory allocation. */
		prvCreateAndDeleteStaticallyAllocatedTasks();
		prvCreateAndDeleteStaticallyAllocatedQueues();

		/* Delay to ensure lower priority tasks get CPU time, and increment the
		cycle counter so a 'check' task can determine that this task is still
		executing. */
		vTaskDelay( prvGetNextDelayTime() );
		uxCycleCounter++;

		prvCreateAndDeleteStaticallyAllocatedBinarySemaphores();
		prvCreateAndDeleteStaticallyAllocatedCountingSemaphores();

		vTaskDelay( prvGetNextDelayTime() );
		uxCycleCounter++;

		prvCreateAndDeleteStaticallyAllocatedMutexes();
		prvCreateAndDeleteStaticallyAllocatedRecursiveMutexes();

		vTaskDelay( prvGetNextDelayTime() );
		uxCycleCounter++;

		prvCreateAndDeleteStaticallyAllocatedEventGroups();
		prvCreateAndDeleteStaticallyAllocatedTimers();
	}
}
/*-----------------------------------------------------------*/

static void prvCreateAndDeleteStaticallyAllocatedCountingSemaphores( void )
{
SemaphoreHandle_t xSemaphore;
const UBaseType_t uxMaxCount = ( UBaseType_t ) 10;

/* StaticSemaphore_t is a publicly accessible structure that has the same size
and alignment requirements as the real semaphore structure.  It is provided as a
mechanism for applications to know the size of the semaphore (which is dependent
on the architecture and configuration file settings) without breaking the strict
data hiding policy by exposing the real semaphore internals.  This
StaticSemaphore_t variable is passed into the xSemaphoreCreateCountingStatic()
function calls within this function.  NOTE: In most usage scenarios now it is
faster and more memory efficient to use a direct to task notification instead of
a counting semaphore.  http://www.freertos.org/RTOS-task-notifications.html */
StaticSemaphore_t xSemaphoreBuffer;

	/* Create the semaphore.  xSemaphoreCreateCountingStatic() has one more
	parameter than the usual xSemaphoreCreateCounting() function.  The parameter
	is a pointer to the pre-allocated StaticSemaphore_t structure, which will
	hold information on the semaphore in an anonymous way.  If the pointer is
	passed as NULL then the structure will be allocated dynamically, just as
	when xSemaphoreCreateCounting() is called. */
	xSemaphore = xSemaphoreCreateCountingStatic( uxMaxCount, 0, &xSemaphoreBuffer );

	/* The semaphore handle should equal the static semaphore structure passed
	into the xSemaphoreCreateBinaryStatic() function. */
	configASSERT( xSemaphore == ( SemaphoreHandle_t ) &xSemaphoreBuffer );

	/* Ensure the semaphore passes a few sanity checks as a valid semaphore. */
	prvSanityCheckCreatedSemaphore( xSemaphore, uxMaxCount );

	/* Delete the semaphore again so the buffers can be reused. */
	vSemaphoreDelete( xSemaphore );

	#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	{
		/* Now do the same but using dynamically allocated buffers to ensure the
		delete functions are working correctly in both the static and dynamic
		allocation cases. */
		xSemaphore = xSemaphoreCreateCounting( uxMaxCount, 0 );
		configASSERT( xSemaphore != NULL );
		prvSanityCheckCreatedSemaphore( xSemaphore, uxMaxCount );
		vSemaphoreDelete( xSemaphore );
	}
	#endif
}
/*-----------------------------------------------------------*/

static void prvCreateAndDeleteStaticallyAllocatedRecursiveMutexes( void )
{
SemaphoreHandle_t xSemaphore;

/* StaticSemaphore_t is a publicly accessible structure that has the same size
and alignment requirements as the real semaphore structure.  It is provided as a
mechanism for applications to know the size of the semaphore (which is dependent
on the architecture and configuration file settings) without breaking the strict
data hiding policy by exposing the real semaphore internals.  This
StaticSemaphore_t variable is passed into the
xSemaphoreCreateRecursiveMutexStatic() function calls within this function. */
StaticSemaphore_t xSemaphoreBuffer;

	/* Create the semaphore.  xSemaphoreCreateRecursiveMutexStatic() has one
	more parameter than the usual xSemaphoreCreateRecursiveMutex() function.
	The parameter is a pointer to the pre-allocated StaticSemaphore_t structure,
	which will hold information on the semaphore in an anonymous way.  If the
	pointer is passed as NULL then the structure will be allocated dynamically,
	just as	when xSemaphoreCreateRecursiveMutex() is called. */
	xSemaphore = xSemaphoreCreateRecursiveMutexStatic( &xSemaphoreBuffer );

	/* The semaphore handle should equal the static semaphore structure passed
	into the xSemaphoreCreateBinaryStatic() function. */
	configASSERT( xSemaphore == ( SemaphoreHandle_t ) &xSemaphoreBuffer );

	/* Ensure the semaphore passes a few sanity checks as a valid
	recursive semaphore. */
	prvSanityCheckCreatedRecursiveMutex( xSemaphore );

	/* Delete the semaphore again so the buffers can be reused. */
	vSemaphoreDelete( xSemaphore );

	/* Now do the same using dynamically allocated buffers to ensure the delete
	functions are working correctly in both the static and dynamic memory
	allocation cases. */
	#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	{
		xSemaphore = xSemaphoreCreateRecursiveMutex();
		configASSERT( xSemaphore != NULL );
		prvSanityCheckCreatedRecursiveMutex( xSemaphore );
		vSemaphoreDelete( xSemaphore );
	}
	#endif
}
/*-----------------------------------------------------------*/

static void prvCreateAndDeleteStaticallyAllocatedQueues( void )
{
QueueHandle_t xQueue;

/* StaticQueue_t is a publicly accessible structure that has the same size and
alignment requirements as the real queue structure.  It is provided as a
mechanism for applications to know the size of the queue (which is dependent on
the architecture and configuration file settings) without breaking the strict
data hiding policy by exposing the real queue internals.  This StaticQueue_t
variable is passed into the xQueueCreateStatic() function calls within this
function. */
static StaticQueue_t xStaticQueue;

/* The queue storage area must be large enough to hold the maximum number of
items it is possible for the queue to hold at any one time, which equals the
queue length (in items, not bytes) multiplied by the size of each item.  In this
case the queue will hold staticQUEUE_LENGTH_IN_ITEMS 64-bit items.  See
http://www.freertos.org/Embedded-RTOS-Queues.html */
static uint8_t ucQueueStorageArea[ staticQUEUE_LENGTH_IN_ITEMS * sizeof( uint64_t ) ];

	/* Create the queue.  xQueueCreateStatic() has two more parameters than the
	usual xQueueCreate() function.  The first new parameter is a pointer to the
	pre-allocated queue storage area.  The second new parameter is a pointer to
	the StaticQueue_t structure that will hold the queue state information in
	an anonymous way.  If the two pointers are passed as NULL then the data
	will be allocated dynamically as if xQueueCreate() had been called. */
	xQueue = xQueueCreateStatic( staticQUEUE_LENGTH_IN_ITEMS, /* The maximum number of items the queue can hold. */
								 sizeof( uint64_t ), /* The size of each item. */
								 ucQueueStorageArea, /* The buffer used to hold items within the queue. */
								 &xStaticQueue );	 /* The static queue structure that will hold the state of the queue. */

	/* The queue handle should equal the static queue structure passed into the
	xQueueCreateStatic() function. */
	configASSERT( xQueue == ( QueueHandle_t ) &xStaticQueue );

	/* Ensure the queue passes a few sanity checks as a valid queue. */
	prvSanityCheckCreatedQueue( xQueue );

	/* Delete the queue again so the buffers can be reused. */
	vQueueDelete( xQueue );

	/* Now do the same using a dynamically allocated queue to ensure the delete
	function is working correctly in both the static and dynamic memory
	allocation cases. */
	#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	{
		xQueue = xQueueCreate( staticQUEUE_LENGTH_IN_ITEMS, /* The maximum number of items the queue can hold. */
							   sizeof( uint64_t ) ); 		/* The size of each item. */

		/* The queue handle should equal the static queue structure passed into the
		xQueueCreateStatic() function. */
		configASSERT( xQueue != NULL );

		/* Ensure the queue passes a few sanity checks as a valid queue. */
		prvSanityCheckCreatedQueue( xQueue );

		/* Delete the queue again so the buffers can be reused. */
		vQueueDelete( xQueue );
	}
	#endif
}
/*-----------------------------------------------------------*/

static void prvCreateAndDeleteStaticallyAllocatedMutexes( void )
{
SemaphoreHandle_t xSemaphore;
BaseType_t xReturned;

/* StaticSemaphore_t is a publicly accessible structure that has the same size
and alignment requirements as the real semaphore structure.  It is provided as a
mechanism for applications to know the size of the semaphore (which is dependent
on the architecture and configuration file settings) without breaking the strict
data hiding policy by exposing the real semaphore internals.  This
StaticSemaphore_t variable is passed into the xSemaphoreCreateMutexStatic()
function calls within this function. */
StaticSemaphore_t xSemaphoreBuffer;

	/* Create the semaphore.  xSemaphoreCreateMutexStatic() has one more
	parameter than the usual xSemaphoreCreateMutex() function.  The parameter
	is a pointer to the pre-allocated StaticSemaphore_t structure, which will
	hold information on the semaphore in an anonymous way.  If the pointer is
	passed as NULL then the structure will be allocated dynamically, just as
	when xSemaphoreCreateMutex() is called. */
	xSemaphore = xSemaphoreCreateMutexStatic( &xSemaphoreBuffer );

	/* The semaphore handle should equal the static semaphore structure passed
	into the xSemaphoreCreateMutexStatic() function. */
	configASSERT( xSemaphore == ( SemaphoreHandle_t ) &xSemaphoreBuffer );

	/* Take the mutex so the mutex is in the state expected by the
	prvSanityCheckCreatedSemaphore() function. */
	xReturned = xSemaphoreTake( xSemaphore, staticDONT_BLOCK );

	if( xReturned != pdPASS )
	{
		xErrorOccurred = pdTRUE;
	}

	/* Ensure the semaphore passes a few sanity checks as a valid semaphore. */
	prvSanityCheckCreatedSemaphore( xSemaphore, staticBINARY_SEMAPHORE_MAX_COUNT );

	/* Delete the semaphore again so the buffers can be reused. */
	vSemaphoreDelete( xSemaphore );

	/* Now do the same using a dynamically allocated mutex to ensure the delete
	function is working correctly in both the static and dynamic allocation
	cases. */
	#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	{
		xSemaphore = xSemaphoreCreateMutex();

		/* The semaphore handle should equal the static semaphore structure
		passed into the xSemaphoreCreateMutexStatic() function. */
		configASSERT( xSemaphore != NULL );

		/* Take the mutex so the mutex is in the state expected by the
		prvSanityCheckCreatedSemaphore() function. */
		xReturned = xSemaphoreTake( xSemaphore, staticDONT_BLOCK );

		if( xReturned != pdPASS )
		{
			xErrorOccurred = pdTRUE;
		}

		/* Ensure the semaphore passes a few sanity checks as a valid semaphore. */
		prvSanityCheckCreatedSemaphore( xSemaphore, staticBINARY_SEMAPHORE_MAX_COUNT );

		/* Delete the semaphore again so the buffers can be reused. */
		vSemaphoreDelete( xSemaphore );
	}
	#endif
}
/*-----------------------------------------------------------*/

static void prvCreateAndDeleteStaticallyAllocatedBinarySemaphores( void )
{
SemaphoreHandle_t xSemaphore;

/* StaticSemaphore_t is a publicly accessible structure that has the same size
and alignment requirements as the real semaphore structure.  It is provided as a
mechanism for applications to know the size of the semaphore (which is dependent
on the architecture and configuration file settings) without breaking the strict
data hiding policy by exposing the real semaphore internals.  This
StaticSemaphore_t variable is passed into the xSemaphoreCreateBinaryStatic()
function calls within this function.  NOTE: In most usage scenarios now it is
faster and more memory efficient to use a direct to task notification instead of
a binary semaphore.  http://www.freertos.org/RTOS-task-notifications.html */
StaticSemaphore_t xSemaphoreBuffer;

	/* Create the semaphore.  xSemaphoreCreateBinaryStatic() has one more
	parameter than the usual xSemaphoreCreateBinary() function.  The parameter
	is a pointer to the pre-allocated StaticSemaphore_t structure, which will
	hold information on the semaphore in an anonymous way.  If the pointer is
	passed as NULL then the structure will be allocated dynamically, just as
	when xSemaphoreCreateBinary() is called. */
	xSemaphore = xSemaphoreCreateBinaryStatic( &xSemaphoreBuffer );

	/* The semaphore handle should equal the static semaphore structure passed
	into the xSemaphoreCreateBinaryStatic() function. */
	configASSERT( xSemaphore == ( SemaphoreHandle_t ) &xSemaphoreBuffer );

	/* Ensure the semaphore passes a few sanity checks as a valid semaphore. */
	prvSanityCheckCreatedSemaphore( xSemaphore, staticBINARY_SEMAPHORE_MAX_COUNT );

	/* Delete the semaphore again so the buffers can be reused. */
	vSemaphoreDelete( xSemaphore );

	/* Now do the same using a dynamically allocated semaphore to check the
	delete function is working correctly in both the static and dynamic
	allocation cases. */
	#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	{
		xSemaphore = xSemaphoreCreateBinary();
		configASSERT( xSemaphore != NULL );
		prvSanityCheckCreatedSemaphore( xSemaphore, staticBINARY_SEMAPHORE_MAX_COUNT );
		vSemaphoreDelete( xSemaphore );
	}
	#endif

	/* There isn't a static version of the old and deprecated
	vSemaphoreCreateBinary() macro (because its deprecated!), but check it is
	still functioning correctly. */
	#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	{
		vSemaphoreCreateBinary( xSemaphore );

		/* The macro starts with the binary semaphore available, but the test
		function expects it to be unavailable. */
		if( xSemaphoreTake( xSemaphore, staticDONT_BLOCK ) == pdFAIL )
		{
			xErrorOccurred = pdTRUE;
		}

		prvSanityCheckCreatedSemaphore( xSemaphore, staticBINARY_SEMAPHORE_MAX_COUNT );
		vSemaphoreDelete( xSemaphore );
	}
	#endif
}
/*-----------------------------------------------------------*/

static void prvTimerCallback( TimerHandle_t xExpiredTimer )
{
UBaseType_t *puxVariableToIncrement;
BaseType_t xReturned;

	/* The timer callback just demonstrates it is executing by incrementing a
	variable - the address of which is passed into the timer as its ID.  Obtain
	the address of the variable to increment. */
	puxVariableToIncrement = ( UBaseType_t * ) pvTimerGetTimerID( xExpiredTimer );

	/* Increment the variable to show the timer callback has executed. */
	( *puxVariableToIncrement )++;

	/* If this callback has executed the required number of times, stop the
	timer. */
	if( *puxVariableToIncrement == staticMAX_TIMER_CALLBACK_EXECUTIONS )
	{
		/* This is called from a timer callback so must not block.  See
		http://www.FreeRTOS.org/FreeRTOS-timers-xTimerStop.html */
		xReturned = xTimerStop( xExpiredTimer, staticDONT_BLOCK );

		if( xReturned != pdPASS )
		{
			xErrorOccurred = pdTRUE;
		}
	}
}
/*-----------------------------------------------------------*/

static void prvCreateAndDeleteStaticallyAllocatedTimers( void )
{
TimerHandle_t xTimer;
UBaseType_t uxVariableToIncrement;
const TickType_t xTimerPeriod = pdMS_TO_TICKS( 20 );
BaseType_t xReturned;

/* StaticTimer_t is a publicly accessible structure that has the same size
and alignment requirements as the real timer structure.  It is provided as a
mechanism for applications to know the size of the timer structure (which is
dependent on the architecture and configuration file settings) without breaking
the strict data hiding policy by exposing the real timer internals.  This
StaticTimer_t variable is passed into the xTimerCreateStatic() function calls
within this function. */
StaticTimer_t xTimerBuffer;

	/* Create the software time.  xTimerCreateStatic() has an extra parameter
	than the normal xTimerCreate() API function.  The parameter is a pointer to
	the StaticTimer_t structure that will hold the software timer structure.  If
	the parameter is passed as NULL then the structure will be allocated
	dynamically, just as if xTimerCreate() had been called. */
	xTimer = xTimerCreateStatic( "T1",					/* Text name for the task.  Helps debugging only.  Not used by FreeRTOS. */
								 xTimerPeriod,			/* The period of the timer in ticks. */
								 pdTRUE,				/* This is an auto-reload timer. */
								 ( void * ) &uxVariableToIncrement,	/* The variable incremented by the test is passed into the timer callback using the timer ID. */
								 prvTimerCallback,		/* The function to execute when the timer expires. */
								 &xTimerBuffer );		/* The buffer that will hold the software timer structure. */

	/* The timer handle should equal the static timer structure passed into the
	xTimerCreateStatic() function. */
	configASSERT( xTimer == ( TimerHandle_t ) &xTimerBuffer );

	/* Set the variable to 0, wait for a few timer periods to expire, then check
	the timer callback has incremented the variable to the expected value. */
	uxVariableToIncrement = 0;

	/* This is a low priority so a block time should not be needed. */
	xReturned = xTimerStart( xTimer, staticDONT_BLOCK );

	if( xReturned != pdPASS )
	{
		xErrorOccurred = pdTRUE;
	}

	vTaskDelay( xTimerPeriod * staticMAX_TIMER_CALLBACK_EXECUTIONS );

	/* By now the timer should have expired staticMAX_TIMER_CALLBACK_EXECUTIONS
	times, and then stopped itself. */
	if( uxVariableToIncrement != staticMAX_TIMER_CALLBACK_EXECUTIONS )
	{
		xErrorOccurred = pdTRUE;
	}

	/* Finished with the timer, delete it. */
	xReturned = xTimerDelete( xTimer, staticDONT_BLOCK );

	/* Again, as this is a low priority task it is expected that the timer
	command will have been sent even without a block time being used. */
	if( xReturned != pdPASS )
	{
		xErrorOccurred = pdTRUE;
	}

	/* Just to show the check task that this task is still executing. */
	uxCycleCounter++;

	/* Now do the same using a dynamically allocated software timer to ensure
	the delete function is working correctly in both the static and dynamic
	allocation cases. */
	#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	{
		xTimer = xTimerCreate( "T1",								/* Text name for the task.  Helps debugging only.  Not used by FreeRTOS. */
							    xTimerPeriod,						/* The period of the timer in ticks. */
								pdTRUE,								/* This is an auto-reload timer. */
								( void * ) &uxVariableToIncrement,	/* The variable incremented by the test is passed into the timer callback using the timer ID. */
								prvTimerCallback );					/* The function to execute when the timer expires. */

		configASSERT( xTimer != NULL );

		uxVariableToIncrement = 0;
		xReturned = xTimerStart( xTimer, staticDONT_BLOCK );

		if( xReturned != pdPASS )
		{
			xErrorOccurred = pdTRUE;
		}

		vTaskDelay( xTimerPeriod * staticMAX_TIMER_CALLBACK_EXECUTIONS );

		if( uxVariableToIncrement != staticMAX_TIMER_CALLBACK_EXECUTIONS )
		{
			xErrorOccurred = pdTRUE;
		}

		xReturned = xTimerDelete( xTimer, staticDONT_BLOCK );

		if( xReturned != pdPASS )
		{
			xErrorOccurred = pdTRUE;
		}
	}
	#endif
}
/*-----------------------------------------------------------*/

static void prvCreateAndDeleteStaticallyAllocatedEventGroups( void )
{
EventGroupHandle_t xEventGroup;

/* StaticEventGroup_t is a publicly accessible structure that has the same size
and alignment requirements as the real event group structure.  It is provided as
a mechanism for applications to know the size of the event group (which is
dependent on the architecture and configuration file settings) without breaking
the strict data hiding policy by exposing the real event group internals.  This
StaticEventGroup_t variable is passed into the xSemaphoreCreateEventGroupStatic()
function calls within this function. */
StaticEventGroup_t xEventGroupBuffer;

	/* Create the event group.  xEventGroupCreateStatic() has an extra parameter
	than the normal xEventGroupCreate() API function.  The parameter is a
	pointer to the StaticEventGroup_t structure that will hold the event group
	structure. */
	xEventGroup = xEventGroupCreateStatic( &xEventGroupBuffer );

	/* The event group handle should equal the static event group structure
	passed into the xEventGroupCreateStatic() function. */
	configASSERT( xEventGroup == ( EventGroupHandle_t ) &xEventGroupBuffer );

	/* Ensure the event group passes a few sanity checks as a valid event
	group. */
	prvSanityCheckCreatedEventGroup( xEventGroup );

	/* Delete the event group again so the buffers can be reused. */
	vEventGroupDelete( xEventGroup );

	/* Now do the same using a dynamically allocated event group to ensure the
	delete function is working correctly in both the static and dynamic
	allocation cases. */
	#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	{
		xEventGroup = xEventGroupCreate();
		configASSERT( xEventGroup != NULL );
		prvSanityCheckCreatedEventGroup( xEventGroup );
		vEventGroupDelete( xEventGroup );
	}
	#endif
}
/*-----------------------------------------------------------*/

static void prvCreateAndDeleteStaticallyAllocatedTasks( void )
{
TaskHandle_t xCreatedTask;

/* The variable that will hold the TCB of tasks created by this function.  See
the comments above the declaration of the xCreatorTaskTCBBuffer variable for
more information.  NOTE:  This is not static so relies on the tasks that use it
being deleted before this function returns and deallocates its stack.  That will
only be the case if configUSE_PREEMPTION is set to 1. */
StaticTask_t xTCBBuffer;

/* This buffer that will be used as the stack of tasks created by this function.
See the comments above the declaration of the uxCreatorTaskStackBuffer[] array
above for more information. */
static StackType_t uxStackBuffer[ configMINIMAL_STACK_SIZE ];

	/* Create the task.  xTaskCreateStatic() has two more parameters than
	the usual xTaskCreate() function.  The first new parameter is a pointer to
	the pre-allocated stack.  The second new parameter is a pointer to the
	StaticTask_t structure that will hold the task's TCB.  If both pointers are
	passed as NULL then the respective object will be allocated dynamically as
	if xTaskCreate() had been called. */
	xCreatedTask = xTaskCreateStatic(
						prvStaticallyAllocatedTask, 	/* Function that implements the task. */
						"Static",						/* Human readable name for the task. */
						configMINIMAL_STACK_SIZE,		/* Task's stack size, in words (not bytes!). */
						NULL,							/* Parameter to pass into the task. */
						uxTaskPriorityGet( NULL ) + 1,	/* The priority of the task. */
						&( uxStackBuffer[ 0 ] ),		/* The buffer to use as the task's stack. */
						&xTCBBuffer );					/* The variable that will hold that task's TCB. */

	/* Check the task was created correctly, then delete the task. */
	if( xCreatedTask == NULL )
	{
		xErrorOccurred = pdTRUE;
	}
	else if( eTaskGetState( xCreatedTask ) != eSuspended )
	{
		/* The created task had a higher priority so should have executed and
		suspended itself by now. */
		xErrorOccurred = pdTRUE;
	}
	else
	{
		vTaskDelete( xCreatedTask );
	}

	/* Now do the same using a dynamically allocated task to ensure the delete
	function is working correctly in both the static and dynamic allocation
	cases. */
	#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	{
	BaseType_t xReturned;

		xReturned = xTaskCreate(
									prvStaticallyAllocatedTask,		/* Function that implements the task - the same function is used but is actually dynamically allocated this time. */
									"Static",						/* Human readable name for the task. */
									configMINIMAL_STACK_SIZE,		/* Task's stack size, in words (not bytes!). */
									NULL,							/* Parameter to pass into the task. */
									uxTaskPriorityGet( NULL ) + 1,	/* The priority of the task. */
									&xCreatedTask );				/* Handle of the task being created. */

		if( eTaskGetState( xCreatedTask ) != eSuspended )
		{
			xErrorOccurred = pdTRUE;
		}

		configASSERT( xReturned == pdPASS );
		if( xReturned != pdPASS )
		{
			xErrorOccurred = pdTRUE;
		}
		vTaskDelete( xCreatedTask );
	}
	#endif
}
/*-----------------------------------------------------------*/

static void prvStaticallyAllocatedTask( void *pvParameters )
{
	( void ) pvParameters;

	/* The created task just suspends itself to wait to get deleted.  The task
	that creates this task checks this task is in the expected Suspended state
	before deleting it. */
	vTaskSuspend( NULL );
}
/*-----------------------------------------------------------*/

static UBaseType_t prvRand( void )
{
const uint32_t ulMultiplier = 0x015a4e35UL, ulIncrement = 1UL;

	/* Utility function to generate a pseudo random number. */
	ulNextRand = ( ulMultiplier * ulNextRand ) + ulIncrement;
	return( ( ulNextRand >> 16UL ) & 0x7fffUL );
}
/*-----------------------------------------------------------*/

static TickType_t prvGetNextDelayTime( void )
{
TickType_t xNextDelay;
const TickType_t xMaxDelay = pdMS_TO_TICKS( ( TickType_t ) 150 );
const TickType_t xMinDelay = pdMS_TO_TICKS( ( TickType_t ) 75 );
const TickType_t xTinyDelay = pdMS_TO_TICKS( ( TickType_t ) 2 );

	/* Generate the next delay time.  This is kept within a narrow band so as
	not to disturb the timing of other tests - but does add in some pseudo
	randomisation into the tests. */
	do
	{
		xNextDelay = prvRand() % xMaxDelay;

		/* Just in case this loop is executed lots of times. */
		vTaskDelay( xTinyDelay );

	} while ( xNextDelay < xMinDelay );

	return xNextDelay;
}
/*-----------------------------------------------------------*/

static void prvSanityCheckCreatedEventGroup( EventGroupHandle_t xEventGroup )
{
EventBits_t xEventBits;
const EventBits_t xFirstTestBits = ( EventBits_t ) 0xaa, xSecondTestBits = ( EventBits_t ) 0x55;

	/* The event group should not have any bits set yet. */
	xEventBits = xEventGroupGetBits( xEventGroup );

	if( xEventBits != ( EventBits_t ) 0 )
	{
		xErrorOccurred = pdTRUE;
	}

	/* Some some bits, then read them back to check they are as expected. */
	xEventGroupSetBits( xEventGroup, xFirstTestBits );

	xEventBits = xEventGroupGetBits( xEventGroup );

	if( xEventBits != xFirstTestBits )
	{
		xErrorOccurred = pdTRUE;
	}

	xEventGroupSetBits( xEventGroup, xSecondTestBits );

	xEventBits = xEventGroupGetBits( xEventGroup );

	if( xEventBits != ( xFirstTestBits | xSecondTestBits ) )
	{
		xErrorOccurred = pdTRUE;
	}

	/* Finally try clearing some bits too and check that operation proceeds as
	expected. */
	xEventGroupClearBits( xEventGroup, xFirstTestBits );

	xEventBits = xEventGroupGetBits( xEventGroup );

	if( xEventBits != xSecondTestBits )
	{
		xErrorOccurred = pdTRUE;
	}
}
/*-----------------------------------------------------------*/

static void prvSanityCheckCreatedSemaphore( SemaphoreHandle_t xSemaphore, UBaseType_t uxMaxCount )
{
BaseType_t xReturned;
UBaseType_t x;
const TickType_t xShortBlockTime = pdMS_TO_TICKS( 10 );
TickType_t xTickCount;

	/* The binary semaphore should start 'empty', so a call to xSemaphoreTake()
	should fail. */
	xTickCount = xTaskGetTickCount();
	xReturned = xSemaphoreTake( xSemaphore, xShortBlockTime );

	if( ( ( TickType_t ) ( xTaskGetTickCount() - xTickCount ) ) < xShortBlockTime )
	{
		/* Did not block on the semaphore as long as expected. */
		xErrorOccurred = pdTRUE;
	}

	if( xReturned != pdFAIL )
	{
		xErrorOccurred = pdTRUE;
	}

	/* Should be possible to 'give' the semaphore up to a maximum of uxMaxCount
	times. */
	for( x = 0; x < uxMaxCount; x++ )
	{
		xReturned = xSemaphoreGive( xSemaphore );

		if( xReturned == pdFAIL )
		{
			xErrorOccurred = pdTRUE;
		}
	}

	/* Giving the semaphore again should fail, as it is 'full'. */
	xReturned = xSemaphoreGive( xSemaphore );

	if( xReturned != pdFAIL )
	{
		xErrorOccurred = pdTRUE;
	}

	configASSERT( uxSemaphoreGetCount( xSemaphore ) == uxMaxCount );

	/* Should now be possible to 'take' the semaphore up to a maximum of
	uxMaxCount times without blocking. */
	for( x = 0; x < uxMaxCount; x++ )
	{
		xReturned = xSemaphoreTake( xSemaphore, staticDONT_BLOCK );

		if( xReturned == pdFAIL )
		{
			xErrorOccurred = pdTRUE;
		}
	}

	/* Back to the starting condition, where the semaphore should not be
	available. */
	xTickCount = xTaskGetTickCount();
	xReturned = xSemaphoreTake( xSemaphore, xShortBlockTime );

	if( ( ( TickType_t ) ( xTaskGetTickCount() - xTickCount ) ) < xShortBlockTime )
	{
		/* Did not block on the semaphore as long as expected. */
		xErrorOccurred = pdTRUE;
	}

	if( xReturned != pdFAIL )
	{
		xErrorOccurred = pdTRUE;
	}

	configASSERT( uxSemaphoreGetCount( xSemaphore ) == 0 );
}
/*-----------------------------------------------------------*/

static void prvSanityCheckCreatedQueue( QueueHandle_t xQueue )
{
uint64_t ull, ullRead;
BaseType_t xReturned, xLoop;

	/* This test is done twice to ensure the queue storage area wraps. */
	for( xLoop = 0; xLoop < 2; xLoop++ )
	{
		/* A very basic test that the queue can be written to and read from as
		expected.  First the queue should be empty. */
		xReturned = xQueueReceive( xQueue, &ull, staticDONT_BLOCK );
		if( xReturned != errQUEUE_EMPTY )
		{
			xErrorOccurred = pdTRUE;
		}

		/* Now it should be possible to write to the queue staticQUEUE_LENGTH_IN_ITEMS
		times. */
		for( ull = 0; ull < staticQUEUE_LENGTH_IN_ITEMS; ull++ )
		{
			xReturned = xQueueSend( xQueue, &ull, staticDONT_BLOCK );
			if( xReturned != pdPASS )
			{
				xErrorOccurred = pdTRUE;
			}
		}

		/* Should not now be possible to write to the queue again. */
		xReturned = xQueueSend( xQueue, &ull, staticDONT_BLOCK );
		if( xReturned != errQUEUE_FULL )
		{
			xErrorOccurred = pdTRUE;
		}

		/* Now read back from the queue to ensure the data read back matches that
		written. */
		for( ull = 0; ull < staticQUEUE_LENGTH_IN_ITEMS; ull++ )
		{
			xReturned = xQueueReceive( xQueue, &ullRead, staticDONT_BLOCK );

			if( xReturned != pdPASS )
			{
				xErrorOccurred = pdTRUE;
			}

			if( ullRead != ull )
			{
				xErrorOccurred = pdTRUE;
			}
		}

		/* The queue should be empty again. */
		xReturned = xQueueReceive( xQueue, &ull, staticDONT_BLOCK );
		if( xReturned != errQUEUE_EMPTY )
		{
			xErrorOccurred = pdTRUE;
		}
	}
}
/*-----------------------------------------------------------*/

static void prvSanityCheckCreatedRecursiveMutex( SemaphoreHandle_t xSemaphore )
{
const BaseType_t xLoops = 5;
BaseType_t x, xReturned;

	/* A very basic test that the recursive semaphore behaved like a recursive
	semaphore. First the semaphore should not be able to be given, as it has not
	yet been taken. */
	xReturned = xSemaphoreGiveRecursive( xSemaphore );

	if( xReturned != pdFAIL )
	{
		xErrorOccurred = pdTRUE;
	}

	/* Now it should be possible to take the mutex a number of times. */
	for( x = 0; x < xLoops; x++ )
	{
		xReturned = xSemaphoreTakeRecursive( xSemaphore, staticDONT_BLOCK );

		if( xReturned != pdPASS )
		{
			xErrorOccurred = pdTRUE;
		}
	}

	/* Should be possible to give the semaphore the same number of times as it
	was given in the loop above. */
	for( x = 0; x < xLoops; x++ )
	{
		xReturned = xSemaphoreGiveRecursive( xSemaphore );

		if( xReturned != pdPASS )
		{
			xErrorOccurred = pdTRUE;
		}
	}

	/* No more gives should be possible though. */
	xReturned = xSemaphoreGiveRecursive( xSemaphore );

	if( xReturned != pdFAIL )
	{
		xErrorOccurred = pdTRUE;
	}
}
/*-----------------------------------------------------------*/

BaseType_t xAreStaticAllocationTasksStillRunning( void )
{
static UBaseType_t uxLastCycleCounter = 0;
BaseType_t xReturn;

	if( uxCycleCounter == uxLastCycleCounter )
	{
		xErrorOccurred = pdTRUE;
	}
	else
	{
		uxLastCycleCounter = uxCycleCounter;
	}

	if( xErrorOccurred != pdFALSE )
	{
		xReturn = pdFAIL;
	}
	else
	{
		xReturn = pdPASS;
	}

	return xReturn;
}
/*-----------------------------------------------------------*/

/* Exclude the entire file if configSUPPORT_STATIC_ALLOCATION is 0. */
#endif /* configSUPPORT_STATIC_ALLOCATION == 1 */