1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
|
/*
* FreeRTOS Kernel V10.1.0
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
/* Standard includes. */
#include <stdio.h>
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#ifdef __GNUC__
#include "mmsystem.h"
#else
#pragma comment(lib, "winmm.lib")
#endif
#define portMAX_INTERRUPTS ( ( uint32_t ) sizeof( uint32_t ) * 8UL ) /* The number of bits in an uint32_t. */
#define portNO_CRITICAL_NESTING ( ( uint32_t ) 0 )
/* The priorities at which the various components of the simulation execute. */
#define portDELETE_SELF_THREAD_PRIORITY THREAD_PRIORITY_TIME_CRITICAL /* Must be highest. */
#define portSIMULATED_INTERRUPTS_THREAD_PRIORITY THREAD_PRIORITY_TIME_CRITICAL
#define portSIMULATED_TIMER_THREAD_PRIORITY THREAD_PRIORITY_HIGHEST
#define portTASK_THREAD_PRIORITY THREAD_PRIORITY_ABOVE_NORMAL
/*
* Created as a high priority thread, this function uses a timer to simulate
* a tick interrupt being generated on an embedded target. In this Windows
* environment the timer does not achieve anything approaching real time
* performance though.
*/
static DWORD WINAPI prvSimulatedPeripheralTimer( LPVOID lpParameter );
/*
* Process all the simulated interrupts - each represented by a bit in
* ulPendingInterrupts variable.
*/
static void prvProcessSimulatedInterrupts( void );
/*
* Interrupt handlers used by the kernel itself. These are executed from the
* simulated interrupt handler thread.
*/
static uint32_t prvProcessYieldInterrupt( void );
static uint32_t prvProcessTickInterrupt( void );
/*
* Called when the process exits to let Windows know the high timer resolution
* is no longer required.
*/
static BOOL WINAPI prvEndProcess( DWORD dwCtrlType );
/*-----------------------------------------------------------*/
/* The WIN32 simulator runs each task in a thread. The context switching is
managed by the threads, so the task stack does not have to be managed directly,
although the task stack is still used to hold an xThreadState structure this is
the only thing it will ever hold. The structure indirectly maps the task handle
to a thread handle. */
typedef struct
{
/* Handle of the thread that executes the task. */
void *pvThread;
} xThreadState;
/* Simulated interrupts waiting to be processed. This is a bit mask where each
bit represents one interrupt, so a maximum of 32 interrupts can be simulated. */
static volatile uint32_t ulPendingInterrupts = 0UL;
/* An event used to inform the simulated interrupt processing thread (a high
priority thread that simulated interrupt processing) that an interrupt is
pending. */
static void *pvInterruptEvent = NULL;
/* Mutex used to protect all the simulated interrupt variables that are accessed
by multiple threads. */
static void *pvInterruptEventMutex = NULL;
/* The critical nesting count for the currently executing task. This is
initialised to a non-zero value so interrupts do not become enabled during
the initialisation phase. As each task has its own critical nesting value
ulCriticalNesting will get set to zero when the first task runs. This
initialisation is probably not critical in this simulated environment as the
simulated interrupt handlers do not get created until the FreeRTOS scheduler is
started anyway. */
static uint32_t ulCriticalNesting = 9999UL;
/* Handlers for all the simulated software interrupts. The first two positions
are used for the Yield and Tick interrupts so are handled slightly differently,
all the other interrupts can be user defined. */
static uint32_t (*ulIsrHandler[ portMAX_INTERRUPTS ])( void ) = { 0 };
/* Pointer to the TCB of the currently executing task. */
extern void *pxCurrentTCB;
/* Used to ensure nothing is processed during the startup sequence. */
static BaseType_t xPortRunning = pdFALSE;
/*-----------------------------------------------------------*/
static DWORD WINAPI prvSimulatedPeripheralTimer( LPVOID lpParameter )
{
TickType_t xMinimumWindowsBlockTime;
TIMECAPS xTimeCaps;
/* Set the timer resolution to the maximum possible. */
if( timeGetDevCaps( &xTimeCaps, sizeof( xTimeCaps ) ) == MMSYSERR_NOERROR )
{
xMinimumWindowsBlockTime = ( TickType_t ) xTimeCaps.wPeriodMin;
timeBeginPeriod( xTimeCaps.wPeriodMin );
/* Register an exit handler so the timeBeginPeriod() function can be
matched with a timeEndPeriod() when the application exits. */
SetConsoleCtrlHandler( prvEndProcess, TRUE );
}
else
{
xMinimumWindowsBlockTime = ( TickType_t ) 20;
}
/* Just to prevent compiler warnings. */
( void ) lpParameter;
for( ;; )
{
/* Wait until the timer expires and we can access the simulated interrupt
variables. *NOTE* this is not a 'real time' way of generating tick
events as the next wake time should be relative to the previous wake
time, not the time that Sleep() is called. It is done this way to
prevent overruns in this very non real time simulated/emulated
environment. */
if( portTICK_PERIOD_MS < xMinimumWindowsBlockTime )
{
Sleep( xMinimumWindowsBlockTime );
}
else
{
Sleep( portTICK_PERIOD_MS );
}
configASSERT( xPortRunning );
WaitForSingleObject( pvInterruptEventMutex, INFINITE );
/* The timer has expired, generate the simulated tick event. */
ulPendingInterrupts |= ( 1 << portINTERRUPT_TICK );
/* The interrupt is now pending - notify the simulated interrupt
handler thread. */
if( ulCriticalNesting == 0 )
{
SetEvent( pvInterruptEvent );
}
/* Give back the mutex so the simulated interrupt handler unblocks
and can access the interrupt handler variables. */
ReleaseMutex( pvInterruptEventMutex );
}
#ifdef __GNUC__
/* Should never reach here - MingW complains if you leave this line out,
MSVC complains if you put it in. */
return 0;
#endif
}
/*-----------------------------------------------------------*/
static BOOL WINAPI prvEndProcess( DWORD dwCtrlType )
{
TIMECAPS xTimeCaps;
( void ) dwCtrlType;
if( timeGetDevCaps( &xTimeCaps, sizeof( xTimeCaps ) ) == MMSYSERR_NOERROR )
{
/* Match the call to timeBeginPeriod( xTimeCaps.wPeriodMin ) made when
the process started with a timeEndPeriod() as the process exits. */
timeEndPeriod( xTimeCaps.wPeriodMin );
}
return pdFALSE;
}
/*-----------------------------------------------------------*/
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
{
xThreadState *pxThreadState = NULL;
int8_t *pcTopOfStack = ( int8_t * ) pxTopOfStack;
const SIZE_T xStackSize = 1024; /* Set the size to a small number which will get rounded up to the minimum possible. */
/* In this simulated case a stack is not initialised, but instead a thread
is created that will execute the task being created. The thread handles
the context switching itself. The xThreadState object is placed onto
the stack that was created for the task - so the stack buffer is still
used, just not in the conventional way. It will not be used for anything
other than holding this structure. */
pxThreadState = ( xThreadState * ) ( pcTopOfStack - sizeof( xThreadState ) );
/* Create the thread itself. */
pxThreadState->pvThread = CreateThread( NULL, xStackSize, ( LPTHREAD_START_ROUTINE ) pxCode, pvParameters, CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION, NULL );
configASSERT( pxThreadState->pvThread ); /* See comment where TerminateThread() is called. */
SetThreadAffinityMask( pxThreadState->pvThread, 0x01 );
SetThreadPriorityBoost( pxThreadState->pvThread, TRUE );
SetThreadPriority( pxThreadState->pvThread, portTASK_THREAD_PRIORITY );
return ( StackType_t * ) pxThreadState;
}
/*-----------------------------------------------------------*/
BaseType_t xPortStartScheduler( void )
{
void *pvHandle = NULL;
int32_t lSuccess;
xThreadState *pxThreadState = NULL;
SYSTEM_INFO xSystemInfo;
/* This port runs windows threads with extremely high priority. All the
threads execute on the same core - to prevent locking up the host only start
if the host has multiple cores. */
GetSystemInfo( &xSystemInfo );
if( xSystemInfo.dwNumberOfProcessors <= 1 )
{
printf( "This version of the FreeRTOS Windows port can only be used on multi-core hosts.\r\n" );
lSuccess = pdFAIL;
}
else
{
lSuccess = pdPASS;
/* The highest priority class is used to [try to] prevent other Windows
activity interfering with FreeRTOS timing too much. */
if( SetPriorityClass( GetCurrentProcess(), REALTIME_PRIORITY_CLASS ) == 0 )
{
printf( "SetPriorityClass() failed\r\n" );
}
/* Install the interrupt handlers used by the scheduler itself. */
vPortSetInterruptHandler( portINTERRUPT_YIELD, prvProcessYieldInterrupt );
vPortSetInterruptHandler( portINTERRUPT_TICK, prvProcessTickInterrupt );
/* Create the events and mutexes that are used to synchronise all the
threads. */
pvInterruptEventMutex = CreateMutex( NULL, FALSE, NULL );
pvInterruptEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
if( ( pvInterruptEventMutex == NULL ) || ( pvInterruptEvent == NULL ) )
{
lSuccess = pdFAIL;
}
/* Set the priority of this thread such that it is above the priority of
the threads that run tasks. This higher priority is required to ensure
simulated interrupts take priority over tasks. */
pvHandle = GetCurrentThread();
if( pvHandle == NULL )
{
lSuccess = pdFAIL;
}
}
if( lSuccess == pdPASS )
{
if( SetThreadPriority( pvHandle, portSIMULATED_INTERRUPTS_THREAD_PRIORITY ) == 0 )
{
lSuccess = pdFAIL;
}
SetThreadPriorityBoost( pvHandle, TRUE );
SetThreadAffinityMask( pvHandle, 0x01 );
}
if( lSuccess == pdPASS )
{
/* Start the thread that simulates the timer peripheral to generate
tick interrupts. The priority is set below that of the simulated
interrupt handler so the interrupt event mutex is used for the
handshake / overrun protection. */
pvHandle = CreateThread( NULL, 0, prvSimulatedPeripheralTimer, NULL, CREATE_SUSPENDED, NULL );
if( pvHandle != NULL )
{
SetThreadPriority( pvHandle, portSIMULATED_TIMER_THREAD_PRIORITY );
SetThreadPriorityBoost( pvHandle, TRUE );
SetThreadAffinityMask( pvHandle, 0x01 );
ResumeThread( pvHandle );
}
/* Start the highest priority task by obtaining its associated thread
state structure, in which is stored the thread handle. */
pxThreadState = ( xThreadState * ) *( ( size_t * ) pxCurrentTCB );
ulCriticalNesting = portNO_CRITICAL_NESTING;
/* Bump up the priority of the thread that is going to run, in the
hope that this will assist in getting the Windows thread scheduler to
behave as an embedded engineer might expect. */
ResumeThread( pxThreadState->pvThread );
/* Handle all simulated interrupts - including yield requests and
simulated ticks. */
prvProcessSimulatedInterrupts();
}
/* Would not expect to return from prvProcessSimulatedInterrupts(), so should
not get here. */
return 0;
}
/*-----------------------------------------------------------*/
static uint32_t prvProcessYieldInterrupt( void )
{
return pdTRUE;
}
/*-----------------------------------------------------------*/
static uint32_t prvProcessTickInterrupt( void )
{
uint32_t ulSwitchRequired;
/* Process the tick itself. */
configASSERT( xPortRunning );
ulSwitchRequired = ( uint32_t ) xTaskIncrementTick();
return ulSwitchRequired;
}
/*-----------------------------------------------------------*/
static void prvProcessSimulatedInterrupts( void )
{
uint32_t ulSwitchRequired, i;
xThreadState *pxThreadState;
void *pvObjectList[ 2 ];
CONTEXT xContext;
/* Going to block on the mutex that ensured exclusive access to the simulated
interrupt objects, and the event that signals that a simulated interrupt
should be processed. */
pvObjectList[ 0 ] = pvInterruptEventMutex;
pvObjectList[ 1 ] = pvInterruptEvent;
/* Create a pending tick to ensure the first task is started as soon as
this thread pends. */
ulPendingInterrupts |= ( 1 << portINTERRUPT_TICK );
SetEvent( pvInterruptEvent );
xPortRunning = pdTRUE;
for(;;)
{
WaitForMultipleObjects( sizeof( pvObjectList ) / sizeof( void * ), pvObjectList, TRUE, INFINITE );
/* Used to indicate whether the simulated interrupt processing has
necessitated a context switch to another task/thread. */
ulSwitchRequired = pdFALSE;
/* For each interrupt we are interested in processing, each of which is
represented by a bit in the 32bit ulPendingInterrupts variable. */
for( i = 0; i < portMAX_INTERRUPTS; i++ )
{
/* Is the simulated interrupt pending? */
if( ulPendingInterrupts & ( 1UL << i ) )
{
/* Is a handler installed? */
if( ulIsrHandler[ i ] != NULL )
{
/* Run the actual handler. */
if( ulIsrHandler[ i ]() != pdFALSE )
{
ulSwitchRequired |= ( 1 << i );
}
}
/* Clear the interrupt pending bit. */
ulPendingInterrupts &= ~( 1UL << i );
}
}
if( ulSwitchRequired != pdFALSE )
{
void *pvOldCurrentTCB;
pvOldCurrentTCB = pxCurrentTCB;
/* Select the next task to run. */
vTaskSwitchContext();
/* If the task selected to enter the running state is not the task
that is already in the running state. */
if( pvOldCurrentTCB != pxCurrentTCB )
{
/* Suspend the old thread. */
pxThreadState = ( xThreadState *) *( ( size_t * ) pvOldCurrentTCB );
SuspendThread( pxThreadState->pvThread );
/* Ensure the thread is actually suspended by performing a
synchronous operation that can only complete when the thread is
actually suspended. The below code asks for dummy register
data. */
xContext.ContextFlags = CONTEXT_INTEGER;
( void ) GetThreadContext( pxThreadState->pvThread, &xContext );
/* Obtain the state of the task now selected to enter the
Running state. */
pxThreadState = ( xThreadState * ) ( *( size_t *) pxCurrentTCB );
ResumeThread( pxThreadState->pvThread );
}
}
ReleaseMutex( pvInterruptEventMutex );
}
}
/*-----------------------------------------------------------*/
void vPortDeleteThread( void *pvTaskToDelete )
{
xThreadState *pxThreadState;
uint32_t ulErrorCode;
/* Remove compiler warnings if configASSERT() is not defined. */
( void ) ulErrorCode;
/* Find the handle of the thread being deleted. */
pxThreadState = ( xThreadState * ) ( *( size_t *) pvTaskToDelete );
/* Check that the thread is still valid, it might have been closed by
vPortCloseRunningThread() - which will be the case if the task associated
with the thread originally deleted itself rather than being deleted by a
different task. */
if( pxThreadState->pvThread != NULL )
{
WaitForSingleObject( pvInterruptEventMutex, INFINITE );
/* !!! This is not a nice way to terminate a thread, and will eventually
result in resources being depleted if tasks frequently delete other
tasks (rather than deleting themselves) as the task stacks will not be
freed. */
ulErrorCode = TerminateThread( pxThreadState->pvThread, 0 );
configASSERT( ulErrorCode );
ulErrorCode = CloseHandle( pxThreadState->pvThread );
configASSERT( ulErrorCode );
ReleaseMutex( pvInterruptEventMutex );
}
}
/*-----------------------------------------------------------*/
void vPortCloseRunningThread( void *pvTaskToDelete, volatile BaseType_t *pxPendYield )
{
xThreadState *pxThreadState;
void *pvThread;
uint32_t ulErrorCode;
/* Remove compiler warnings if configASSERT() is not defined. */
( void ) ulErrorCode;
/* Find the handle of the thread being deleted. */
pxThreadState = ( xThreadState * ) ( *( size_t *) pvTaskToDelete );
pvThread = pxThreadState->pvThread;
/* Raise the Windows priority of the thread to ensure the FreeRTOS scheduler
does not run and swap it out before it is closed. If that were to happen
the thread would never run again and effectively be a thread handle and
memory leak. */
SetThreadPriority( pvThread, portDELETE_SELF_THREAD_PRIORITY );
/* This function will not return, therefore a yield is set as pending to
ensure a context switch occurs away from this thread on the next tick. */
*pxPendYield = pdTRUE;
/* Mark the thread associated with this task as invalid so
vPortDeleteThread() does not try to terminate it. */
pxThreadState->pvThread = NULL;
/* Close the thread. */
ulErrorCode = CloseHandle( pvThread );
configASSERT( ulErrorCode );
/* This is called from a critical section, which must be exited before the
thread stops. */
taskEXIT_CRITICAL();
ExitThread( 0 );
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
exit( 0 );
}
/*-----------------------------------------------------------*/
void vPortGenerateSimulatedInterrupt( uint32_t ulInterruptNumber )
{
configASSERT( xPortRunning );
if( ( ulInterruptNumber < portMAX_INTERRUPTS ) && ( pvInterruptEventMutex != NULL ) )
{
/* Yield interrupts are processed even when critical nesting is
non-zero. */
WaitForSingleObject( pvInterruptEventMutex, INFINITE );
ulPendingInterrupts |= ( 1 << ulInterruptNumber );
/* The simulated interrupt is now held pending, but don't actually
process it yet if this call is within a critical section. It is
possible for this to be in a critical section as calls to wait for
mutexes are accumulative. */
if( ulCriticalNesting == 0 )
{
SetEvent( pvInterruptEvent );
}
ReleaseMutex( pvInterruptEventMutex );
}
}
/*-----------------------------------------------------------*/
void vPortSetInterruptHandler( uint32_t ulInterruptNumber, uint32_t (*pvHandler)( void ) )
{
if( ulInterruptNumber < portMAX_INTERRUPTS )
{
if( pvInterruptEventMutex != NULL )
{
WaitForSingleObject( pvInterruptEventMutex, INFINITE );
ulIsrHandler[ ulInterruptNumber ] = pvHandler;
ReleaseMutex( pvInterruptEventMutex );
}
else
{
ulIsrHandler[ ulInterruptNumber ] = pvHandler;
}
}
}
/*-----------------------------------------------------------*/
void vPortEnterCritical( void )
{
if( xPortRunning == pdTRUE )
{
/* The interrupt event mutex is held for the entire critical section,
effectively disabling (simulated) interrupts. */
WaitForSingleObject( pvInterruptEventMutex, INFINITE );
ulCriticalNesting++;
}
else
{
ulCriticalNesting++;
}
}
/*-----------------------------------------------------------*/
void vPortExitCritical( void )
{
int32_t lMutexNeedsReleasing;
/* The interrupt event mutex should already be held by this thread as it was
obtained on entry to the critical section. */
lMutexNeedsReleasing = pdTRUE;
if( ulCriticalNesting > portNO_CRITICAL_NESTING )
{
if( ulCriticalNesting == ( portNO_CRITICAL_NESTING + 1 ) )
{
ulCriticalNesting--;
/* Were any interrupts set to pending while interrupts were
(simulated) disabled? */
if( ulPendingInterrupts != 0UL )
{
configASSERT( xPortRunning );
SetEvent( pvInterruptEvent );
/* Mutex will be released now, so does not require releasing
on function exit. */
lMutexNeedsReleasing = pdFALSE;
ReleaseMutex( pvInterruptEventMutex );
}
}
else
{
/* Tick interrupts will still not be processed as the critical
nesting depth will not be zero. */
ulCriticalNesting--;
}
}
if( pvInterruptEventMutex != NULL )
{
if( lMutexNeedsReleasing == pdTRUE )
{
configASSERT( xPortRunning );
ReleaseMutex( pvInterruptEventMutex );
}
}
}
/*-----------------------------------------------------------*/
|