summaryrefslogtreecommitdiff
path: root/gcc/internal-fn.c
diff options
context:
space:
mode:
authorLorry Tar Creator <lorry-tar-importer@lorry>2018-01-25 08:49:33 +0000
committerLorry Tar Creator <lorry-tar-importer@lorry>2018-01-25 08:49:33 +0000
commit8bbc33baa40010c8f5ca1af9b8bfffd67ae654ad (patch)
treec5e2748190eff9453ae08b9117c4c546c48cc539 /gcc/internal-fn.c
parent03ac50856c9fc8c96b7a17239ee40a10397750a7 (diff)
downloadgcc-tarball-8bbc33baa40010c8f5ca1af9b8bfffd67ae654ad.tar.gz
Diffstat (limited to 'gcc/internal-fn.c')
-rw-r--r--gcc/internal-fn.c2793
1 files changed, 2793 insertions, 0 deletions
diff --git a/gcc/internal-fn.c b/gcc/internal-fn.c
new file mode 100644
index 0000000000..e97f0d80a4
--- /dev/null
+++ b/gcc/internal-fn.c
@@ -0,0 +1,2793 @@
+/* Internal functions.
+ Copyright (C) 2011-2017 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "target.h"
+#include "rtl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "predict.h"
+#include "stringpool.h"
+#include "tree-vrp.h"
+#include "tree-ssanames.h"
+#include "expmed.h"
+#include "memmodel.h"
+#include "optabs.h"
+#include "emit-rtl.h"
+#include "diagnostic-core.h"
+#include "fold-const.h"
+#include "internal-fn.h"
+#include "stor-layout.h"
+#include "dojump.h"
+#include "expr.h"
+#include "ubsan.h"
+#include "recog.h"
+#include "builtins.h"
+#include "optabs-tree.h"
+
+/* The names of each internal function, indexed by function number. */
+const char *const internal_fn_name_array[] = {
+#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) #CODE,
+#include "internal-fn.def"
+ "<invalid-fn>"
+};
+
+/* The ECF_* flags of each internal function, indexed by function number. */
+const int internal_fn_flags_array[] = {
+#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) FLAGS,
+#include "internal-fn.def"
+ 0
+};
+
+/* Fnspec of each internal function, indexed by function number. */
+const_tree internal_fn_fnspec_array[IFN_LAST + 1];
+
+void
+init_internal_fns ()
+{
+#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
+ if (FNSPEC) internal_fn_fnspec_array[IFN_##CODE] = \
+ build_string ((int) sizeof (FNSPEC), FNSPEC ? FNSPEC : "");
+#include "internal-fn.def"
+ internal_fn_fnspec_array[IFN_LAST] = 0;
+}
+
+/* Create static initializers for the information returned by
+ direct_internal_fn. */
+#define not_direct { -2, -2, false }
+#define mask_load_direct { -1, 2, false }
+#define load_lanes_direct { -1, -1, false }
+#define mask_store_direct { 3, 2, false }
+#define store_lanes_direct { 0, 0, false }
+#define unary_direct { 0, 0, true }
+#define binary_direct { 0, 0, true }
+
+const direct_internal_fn_info direct_internal_fn_array[IFN_LAST + 1] = {
+#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) not_direct,
+#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) TYPE##_direct,
+#include "internal-fn.def"
+ not_direct
+};
+
+/* ARRAY_TYPE is an array of vector modes. Return the associated insn
+ for load-lanes-style optab OPTAB, or CODE_FOR_nothing if none. */
+
+static enum insn_code
+get_multi_vector_move (tree array_type, convert_optab optab)
+{
+ machine_mode imode;
+ machine_mode vmode;
+
+ gcc_assert (TREE_CODE (array_type) == ARRAY_TYPE);
+ imode = TYPE_MODE (array_type);
+ vmode = TYPE_MODE (TREE_TYPE (array_type));
+
+ return convert_optab_handler (optab, imode, vmode);
+}
+
+/* Expand LOAD_LANES call STMT using optab OPTAB. */
+
+static void
+expand_load_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
+{
+ struct expand_operand ops[2];
+ tree type, lhs, rhs;
+ rtx target, mem;
+
+ lhs = gimple_call_lhs (stmt);
+ rhs = gimple_call_arg (stmt, 0);
+ type = TREE_TYPE (lhs);
+
+ target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ mem = expand_normal (rhs);
+
+ gcc_assert (MEM_P (mem));
+ PUT_MODE (mem, TYPE_MODE (type));
+
+ create_output_operand (&ops[0], target, TYPE_MODE (type));
+ create_fixed_operand (&ops[1], mem);
+ expand_insn (get_multi_vector_move (type, optab), 2, ops);
+}
+
+/* Expand STORE_LANES call STMT using optab OPTAB. */
+
+static void
+expand_store_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
+{
+ struct expand_operand ops[2];
+ tree type, lhs, rhs;
+ rtx target, reg;
+
+ lhs = gimple_call_lhs (stmt);
+ rhs = gimple_call_arg (stmt, 0);
+ type = TREE_TYPE (rhs);
+
+ target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ reg = expand_normal (rhs);
+
+ gcc_assert (MEM_P (target));
+ PUT_MODE (target, TYPE_MODE (type));
+
+ create_fixed_operand (&ops[0], target);
+ create_input_operand (&ops[1], reg, TYPE_MODE (type));
+ expand_insn (get_multi_vector_move (type, optab), 2, ops);
+}
+
+static void
+expand_ANNOTATE (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in omp_device_lower pass. */
+
+static void
+expand_GOMP_USE_SIMT (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in omp_device_lower pass. */
+
+static void
+expand_GOMP_SIMT_ENTER (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* Allocate per-lane storage and begin non-uniform execution region. */
+
+static void
+expand_GOMP_SIMT_ENTER_ALLOC (internal_fn, gcall *stmt)
+{
+ rtx target;
+ tree lhs = gimple_call_lhs (stmt);
+ if (lhs)
+ target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ else
+ target = gen_reg_rtx (Pmode);
+ rtx size = expand_normal (gimple_call_arg (stmt, 0));
+ rtx align = expand_normal (gimple_call_arg (stmt, 1));
+ struct expand_operand ops[3];
+ create_output_operand (&ops[0], target, Pmode);
+ create_input_operand (&ops[1], size, Pmode);
+ create_input_operand (&ops[2], align, Pmode);
+ gcc_assert (targetm.have_omp_simt_enter ());
+ expand_insn (targetm.code_for_omp_simt_enter, 3, ops);
+}
+
+/* Deallocate per-lane storage and leave non-uniform execution region. */
+
+static void
+expand_GOMP_SIMT_EXIT (internal_fn, gcall *stmt)
+{
+ gcc_checking_assert (!gimple_call_lhs (stmt));
+ rtx arg = expand_normal (gimple_call_arg (stmt, 0));
+ struct expand_operand ops[1];
+ create_input_operand (&ops[0], arg, Pmode);
+ gcc_assert (targetm.have_omp_simt_exit ());
+ expand_insn (targetm.code_for_omp_simt_exit, 1, ops);
+}
+
+/* Lane index on SIMT targets: thread index in the warp on NVPTX. On targets
+ without SIMT execution this should be expanded in omp_device_lower pass. */
+
+static void
+expand_GOMP_SIMT_LANE (internal_fn, gcall *stmt)
+{
+ tree lhs = gimple_call_lhs (stmt);
+ if (!lhs)
+ return;
+
+ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ gcc_assert (targetm.have_omp_simt_lane ());
+ emit_insn (targetm.gen_omp_simt_lane (target));
+}
+
+/* This should get expanded in omp_device_lower pass. */
+
+static void
+expand_GOMP_SIMT_VF (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* Lane index of the first SIMT lane that supplies a non-zero argument.
+ This is a SIMT counterpart to GOMP_SIMD_LAST_LANE, used to represent the
+ lane that executed the last iteration for handling OpenMP lastprivate. */
+
+static void
+expand_GOMP_SIMT_LAST_LANE (internal_fn, gcall *stmt)
+{
+ tree lhs = gimple_call_lhs (stmt);
+ if (!lhs)
+ return;
+
+ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ rtx cond = expand_normal (gimple_call_arg (stmt, 0));
+ machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
+ struct expand_operand ops[2];
+ create_output_operand (&ops[0], target, mode);
+ create_input_operand (&ops[1], cond, mode);
+ gcc_assert (targetm.have_omp_simt_last_lane ());
+ expand_insn (targetm.code_for_omp_simt_last_lane, 2, ops);
+}
+
+/* Non-transparent predicate used in SIMT lowering of OpenMP "ordered". */
+
+static void
+expand_GOMP_SIMT_ORDERED_PRED (internal_fn, gcall *stmt)
+{
+ tree lhs = gimple_call_lhs (stmt);
+ if (!lhs)
+ return;
+
+ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ rtx ctr = expand_normal (gimple_call_arg (stmt, 0));
+ machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
+ struct expand_operand ops[2];
+ create_output_operand (&ops[0], target, mode);
+ create_input_operand (&ops[1], ctr, mode);
+ gcc_assert (targetm.have_omp_simt_ordered ());
+ expand_insn (targetm.code_for_omp_simt_ordered, 2, ops);
+}
+
+/* "Or" boolean reduction across SIMT lanes: return non-zero in all lanes if
+ any lane supplies a non-zero argument. */
+
+static void
+expand_GOMP_SIMT_VOTE_ANY (internal_fn, gcall *stmt)
+{
+ tree lhs = gimple_call_lhs (stmt);
+ if (!lhs)
+ return;
+
+ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ rtx cond = expand_normal (gimple_call_arg (stmt, 0));
+ machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
+ struct expand_operand ops[2];
+ create_output_operand (&ops[0], target, mode);
+ create_input_operand (&ops[1], cond, mode);
+ gcc_assert (targetm.have_omp_simt_vote_any ());
+ expand_insn (targetm.code_for_omp_simt_vote_any, 2, ops);
+}
+
+/* Exchange between SIMT lanes with a "butterfly" pattern: source lane index
+ is destination lane index XOR given offset. */
+
+static void
+expand_GOMP_SIMT_XCHG_BFLY (internal_fn, gcall *stmt)
+{
+ tree lhs = gimple_call_lhs (stmt);
+ if (!lhs)
+ return;
+
+ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ rtx src = expand_normal (gimple_call_arg (stmt, 0));
+ rtx idx = expand_normal (gimple_call_arg (stmt, 1));
+ machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
+ struct expand_operand ops[3];
+ create_output_operand (&ops[0], target, mode);
+ create_input_operand (&ops[1], src, mode);
+ create_input_operand (&ops[2], idx, SImode);
+ gcc_assert (targetm.have_omp_simt_xchg_bfly ());
+ expand_insn (targetm.code_for_omp_simt_xchg_bfly, 3, ops);
+}
+
+/* Exchange between SIMT lanes according to given source lane index. */
+
+static void
+expand_GOMP_SIMT_XCHG_IDX (internal_fn, gcall *stmt)
+{
+ tree lhs = gimple_call_lhs (stmt);
+ if (!lhs)
+ return;
+
+ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ rtx src = expand_normal (gimple_call_arg (stmt, 0));
+ rtx idx = expand_normal (gimple_call_arg (stmt, 1));
+ machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
+ struct expand_operand ops[3];
+ create_output_operand (&ops[0], target, mode);
+ create_input_operand (&ops[1], src, mode);
+ create_input_operand (&ops[2], idx, SImode);
+ gcc_assert (targetm.have_omp_simt_xchg_idx ());
+ expand_insn (targetm.code_for_omp_simt_xchg_idx, 3, ops);
+}
+
+/* This should get expanded in adjust_simduid_builtins. */
+
+static void
+expand_GOMP_SIMD_LANE (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in adjust_simduid_builtins. */
+
+static void
+expand_GOMP_SIMD_VF (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in adjust_simduid_builtins. */
+
+static void
+expand_GOMP_SIMD_LAST_LANE (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in adjust_simduid_builtins. */
+
+static void
+expand_GOMP_SIMD_ORDERED_START (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in adjust_simduid_builtins. */
+
+static void
+expand_GOMP_SIMD_ORDERED_END (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in the sanopt pass. */
+
+static void
+expand_UBSAN_NULL (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in the sanopt pass. */
+
+static void
+expand_UBSAN_BOUNDS (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in the sanopt pass. */
+
+static void
+expand_UBSAN_VPTR (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in the sanopt pass. */
+
+static void
+expand_UBSAN_OBJECT_SIZE (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in the sanopt pass. */
+
+static void
+expand_ASAN_CHECK (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in the sanopt pass. */
+
+static void
+expand_ASAN_MARK (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in the sanopt pass. */
+
+static void
+expand_ASAN_POISON (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in the sanopt pass. */
+
+static void
+expand_ASAN_POISON_USE (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in the tsan pass. */
+
+static void
+expand_TSAN_FUNC_EXIT (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This should get expanded in the lower pass. */
+
+static void
+expand_FALLTHROUGH (internal_fn, gcall *call)
+{
+ error_at (gimple_location (call),
+ "invalid use of attribute %<fallthrough%>");
+}
+
+/* Return minimum precision needed to represent all values
+ of ARG in SIGNed integral type. */
+
+static int
+get_min_precision (tree arg, signop sign)
+{
+ int prec = TYPE_PRECISION (TREE_TYPE (arg));
+ int cnt = 0;
+ signop orig_sign = sign;
+ if (TREE_CODE (arg) == INTEGER_CST)
+ {
+ int p;
+ if (TYPE_SIGN (TREE_TYPE (arg)) != sign)
+ {
+ widest_int w = wi::to_widest (arg);
+ w = wi::ext (w, prec, sign);
+ p = wi::min_precision (w, sign);
+ }
+ else
+ p = wi::min_precision (arg, sign);
+ return MIN (p, prec);
+ }
+ while (CONVERT_EXPR_P (arg)
+ && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
+ && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
+ {
+ arg = TREE_OPERAND (arg, 0);
+ if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
+ {
+ if (TYPE_UNSIGNED (TREE_TYPE (arg)))
+ sign = UNSIGNED;
+ else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
+ return prec + (orig_sign != sign);
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ }
+ if (++cnt > 30)
+ return prec + (orig_sign != sign);
+ }
+ if (TREE_CODE (arg) != SSA_NAME)
+ return prec + (orig_sign != sign);
+ wide_int arg_min, arg_max;
+ while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
+ {
+ gimple *g = SSA_NAME_DEF_STMT (arg);
+ if (is_gimple_assign (g)
+ && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
+ {
+ tree t = gimple_assign_rhs1 (g);
+ if (INTEGRAL_TYPE_P (TREE_TYPE (t))
+ && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
+ {
+ arg = t;
+ if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
+ {
+ if (TYPE_UNSIGNED (TREE_TYPE (arg)))
+ sign = UNSIGNED;
+ else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
+ return prec + (orig_sign != sign);
+ prec = TYPE_PRECISION (TREE_TYPE (arg));
+ }
+ if (++cnt > 30)
+ return prec + (orig_sign != sign);
+ continue;
+ }
+ }
+ return prec + (orig_sign != sign);
+ }
+ if (sign == TYPE_SIGN (TREE_TYPE (arg)))
+ {
+ int p1 = wi::min_precision (arg_min, sign);
+ int p2 = wi::min_precision (arg_max, sign);
+ p1 = MAX (p1, p2);
+ prec = MIN (prec, p1);
+ }
+ else if (sign == UNSIGNED && !wi::neg_p (arg_min, SIGNED))
+ {
+ int p = wi::min_precision (arg_max, UNSIGNED);
+ prec = MIN (prec, p);
+ }
+ return prec + (orig_sign != sign);
+}
+
+/* Helper for expand_*_overflow. Set the __imag__ part to true
+ (1 except for signed:1 type, in which case store -1). */
+
+static void
+expand_arith_set_overflow (tree lhs, rtx target)
+{
+ if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs))) == 1
+ && !TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs))))
+ write_complex_part (target, constm1_rtx, true);
+ else
+ write_complex_part (target, const1_rtx, true);
+}
+
+/* Helper for expand_*_overflow. Store RES into the __real__ part
+ of TARGET. If RES has larger MODE than __real__ part of TARGET,
+ set the __imag__ part to 1 if RES doesn't fit into it. Similarly
+ if LHS has smaller precision than its mode. */
+
+static void
+expand_arith_overflow_result_store (tree lhs, rtx target,
+ machine_mode mode, rtx res)
+{
+ machine_mode tgtmode = GET_MODE_INNER (GET_MODE (target));
+ rtx lres = res;
+ if (tgtmode != mode)
+ {
+ rtx_code_label *done_label = gen_label_rtx ();
+ int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
+ lres = convert_modes (tgtmode, mode, res, uns);
+ gcc_assert (GET_MODE_PRECISION (tgtmode) < GET_MODE_PRECISION (mode));
+ do_compare_rtx_and_jump (res, convert_modes (mode, tgtmode, lres, uns),
+ EQ, true, mode, NULL_RTX, NULL, done_label,
+ PROB_VERY_LIKELY);
+ expand_arith_set_overflow (lhs, target);
+ emit_label (done_label);
+ }
+ int prec = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs)));
+ int tgtprec = GET_MODE_PRECISION (tgtmode);
+ if (prec < tgtprec)
+ {
+ rtx_code_label *done_label = gen_label_rtx ();
+ int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
+ res = lres;
+ if (uns)
+ {
+ rtx mask
+ = immed_wide_int_const (wi::shifted_mask (0, prec, false, tgtprec),
+ tgtmode);
+ lres = expand_simple_binop (tgtmode, AND, res, mask, NULL_RTX,
+ true, OPTAB_LIB_WIDEN);
+ }
+ else
+ {
+ lres = expand_shift (LSHIFT_EXPR, tgtmode, res, tgtprec - prec,
+ NULL_RTX, 1);
+ lres = expand_shift (RSHIFT_EXPR, tgtmode, lres, tgtprec - prec,
+ NULL_RTX, 0);
+ }
+ do_compare_rtx_and_jump (res, lres,
+ EQ, true, tgtmode, NULL_RTX, NULL, done_label,
+ PROB_VERY_LIKELY);
+ expand_arith_set_overflow (lhs, target);
+ emit_label (done_label);
+ }
+ write_complex_part (target, lres, false);
+}
+
+/* Helper for expand_*_overflow. Store RES into TARGET. */
+
+static void
+expand_ubsan_result_store (rtx target, rtx res)
+{
+ if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
+ /* If this is a scalar in a register that is stored in a wider mode
+ than the declared mode, compute the result into its declared mode
+ and then convert to the wider mode. Our value is the computed
+ expression. */
+ convert_move (SUBREG_REG (target), res, SUBREG_PROMOTED_SIGN (target));
+ else
+ emit_move_insn (target, res);
+}
+
+/* Add sub/add overflow checking to the statement STMT.
+ CODE says whether the operation is +, or -. */
+
+static void
+expand_addsub_overflow (location_t loc, tree_code code, tree lhs,
+ tree arg0, tree arg1, bool unsr_p, bool uns0_p,
+ bool uns1_p, bool is_ubsan, tree *datap)
+{
+ rtx res, target = NULL_RTX;
+ tree fn;
+ rtx_code_label *done_label = gen_label_rtx ();
+ rtx_code_label *do_error = gen_label_rtx ();
+ do_pending_stack_adjust ();
+ rtx op0 = expand_normal (arg0);
+ rtx op1 = expand_normal (arg1);
+ machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
+ int prec = GET_MODE_PRECISION (mode);
+ rtx sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
+ bool do_xor = false;
+
+ if (is_ubsan)
+ gcc_assert (!unsr_p && !uns0_p && !uns1_p);
+
+ if (lhs)
+ {
+ target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ if (!is_ubsan)
+ write_complex_part (target, const0_rtx, true);
+ }
+
+ /* We assume both operands and result have the same precision
+ here (GET_MODE_BITSIZE (mode)), S stands for signed type
+ with that precision, U for unsigned type with that precision,
+ sgn for unsigned most significant bit in that precision.
+ s1 is signed first operand, u1 is unsigned first operand,
+ s2 is signed second operand, u2 is unsigned second operand,
+ sr is signed result, ur is unsigned result and the following
+ rules say how to compute result (which is always result of
+ the operands as if both were unsigned, cast to the right
+ signedness) and how to compute whether operation overflowed.
+
+ s1 + s2 -> sr
+ res = (S) ((U) s1 + (U) s2)
+ ovf = s2 < 0 ? res > s1 : res < s1 (or jump on overflow)
+ s1 - s2 -> sr
+ res = (S) ((U) s1 - (U) s2)
+ ovf = s2 < 0 ? res < s1 : res > s2 (or jump on overflow)
+ u1 + u2 -> ur
+ res = u1 + u2
+ ovf = res < u1 (or jump on carry, but RTL opts will handle it)
+ u1 - u2 -> ur
+ res = u1 - u2
+ ovf = res > u1 (or jump on carry, but RTL opts will handle it)
+ s1 + u2 -> sr
+ res = (S) ((U) s1 + u2)
+ ovf = ((U) res ^ sgn) < u2
+ s1 + u2 -> ur
+ t1 = (S) (u2 ^ sgn)
+ t2 = s1 + t1
+ res = (U) t2 ^ sgn
+ ovf = t1 < 0 ? t2 > s1 : t2 < s1 (or jump on overflow)
+ s1 - u2 -> sr
+ res = (S) ((U) s1 - u2)
+ ovf = u2 > ((U) s1 ^ sgn)
+ s1 - u2 -> ur
+ res = (U) s1 - u2
+ ovf = s1 < 0 || u2 > (U) s1
+ u1 - s2 -> sr
+ res = u1 - (U) s2
+ ovf = u1 >= ((U) s2 ^ sgn)
+ u1 - s2 -> ur
+ t1 = u1 ^ sgn
+ t2 = t1 - (U) s2
+ res = t2 ^ sgn
+ ovf = s2 < 0 ? (S) t2 < (S) t1 : (S) t2 > (S) t1 (or jump on overflow)
+ s1 + s2 -> ur
+ res = (U) s1 + (U) s2
+ ovf = s2 < 0 ? (s1 | (S) res) < 0) : (s1 & (S) res) < 0)
+ u1 + u2 -> sr
+ res = (S) (u1 + u2)
+ ovf = (U) res < u2 || res < 0
+ u1 - u2 -> sr
+ res = (S) (u1 - u2)
+ ovf = u1 >= u2 ? res < 0 : res >= 0
+ s1 - s2 -> ur
+ res = (U) s1 - (U) s2
+ ovf = s2 >= 0 ? ((s1 | (S) res) < 0) : ((s1 & (S) res) < 0) */
+
+ if (code == PLUS_EXPR && uns0_p && !uns1_p)
+ {
+ /* PLUS_EXPR is commutative, if operand signedness differs,
+ canonicalize to the first operand being signed and second
+ unsigned to simplify following code. */
+ std::swap (op0, op1);
+ std::swap (arg0, arg1);
+ uns0_p = false;
+ uns1_p = true;
+ }
+
+ /* u1 +- u2 -> ur */
+ if (uns0_p && uns1_p && unsr_p)
+ {
+ insn_code icode = optab_handler (code == PLUS_EXPR ? uaddv4_optab
+ : usubv4_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[4];
+ rtx_insn *last = get_last_insn ();
+
+ res = gen_reg_rtx (mode);
+ create_output_operand (&ops[0], res, mode);
+ create_input_operand (&ops[1], op0, mode);
+ create_input_operand (&ops[2], op1, mode);
+ create_fixed_operand (&ops[3], do_error);
+ if (maybe_expand_insn (icode, 4, ops))
+ {
+ last = get_last_insn ();
+ if (profile_status_for_fn (cfun) != PROFILE_ABSENT
+ && JUMP_P (last)
+ && any_condjump_p (last)
+ && !find_reg_note (last, REG_BR_PROB, 0))
+ add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
+ emit_jump (done_label);
+ goto do_error_label;
+ }
+
+ delete_insns_since (last);
+ }
+
+ /* Compute the operation. On RTL level, the addition is always
+ unsigned. */
+ res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
+ op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
+ rtx tem = op0;
+ /* For PLUS_EXPR, the operation is commutative, so we can pick
+ operand to compare against. For prec <= BITS_PER_WORD, I think
+ preferring REG operand is better over CONST_INT, because
+ the CONST_INT might enlarge the instruction or CSE would need
+ to figure out we'd already loaded it into a register before.
+ For prec > BITS_PER_WORD, I think CONST_INT might be more beneficial,
+ as then the multi-word comparison can be perhaps simplified. */
+ if (code == PLUS_EXPR
+ && (prec <= BITS_PER_WORD
+ ? (CONST_SCALAR_INT_P (op0) && REG_P (op1))
+ : CONST_SCALAR_INT_P (op1)))
+ tem = op1;
+ do_compare_rtx_and_jump (res, tem, code == PLUS_EXPR ? GEU : LEU,
+ true, mode, NULL_RTX, NULL, done_label,
+ PROB_VERY_LIKELY);
+ goto do_error_label;
+ }
+
+ /* s1 +- u2 -> sr */
+ if (!uns0_p && uns1_p && !unsr_p)
+ {
+ /* Compute the operation. On RTL level, the addition is always
+ unsigned. */
+ res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
+ op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
+ rtx tem = expand_binop (mode, add_optab,
+ code == PLUS_EXPR ? res : op0, sgn,
+ NULL_RTX, false, OPTAB_LIB_WIDEN);
+ do_compare_rtx_and_jump (tem, op1, GEU, true, mode, NULL_RTX, NULL,
+ done_label, PROB_VERY_LIKELY);
+ goto do_error_label;
+ }
+
+ /* s1 + u2 -> ur */
+ if (code == PLUS_EXPR && !uns0_p && uns1_p && unsr_p)
+ {
+ op1 = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ /* As we've changed op1, we have to avoid using the value range
+ for the original argument. */
+ arg1 = error_mark_node;
+ do_xor = true;
+ goto do_signed;
+ }
+
+ /* u1 - s2 -> ur */
+ if (code == MINUS_EXPR && uns0_p && !uns1_p && unsr_p)
+ {
+ op0 = expand_binop (mode, add_optab, op0, sgn, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ /* As we've changed op0, we have to avoid using the value range
+ for the original argument. */
+ arg0 = error_mark_node;
+ do_xor = true;
+ goto do_signed;
+ }
+
+ /* s1 - u2 -> ur */
+ if (code == MINUS_EXPR && !uns0_p && uns1_p && unsr_p)
+ {
+ /* Compute the operation. On RTL level, the addition is always
+ unsigned. */
+ res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ int pos_neg = get_range_pos_neg (arg0);
+ if (pos_neg == 2)
+ /* If ARG0 is known to be always negative, this is always overflow. */
+ emit_jump (do_error);
+ else if (pos_neg == 3)
+ /* If ARG0 is not known to be always positive, check at runtime. */
+ do_compare_rtx_and_jump (op0, const0_rtx, LT, false, mode, NULL_RTX,
+ NULL, do_error, PROB_VERY_UNLIKELY);
+ do_compare_rtx_and_jump (op1, op0, LEU, true, mode, NULL_RTX, NULL,
+ done_label, PROB_VERY_LIKELY);
+ goto do_error_label;
+ }
+
+ /* u1 - s2 -> sr */
+ if (code == MINUS_EXPR && uns0_p && !uns1_p && !unsr_p)
+ {
+ /* Compute the operation. On RTL level, the addition is always
+ unsigned. */
+ res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ rtx tem = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ do_compare_rtx_and_jump (op0, tem, LTU, true, mode, NULL_RTX, NULL,
+ done_label, PROB_VERY_LIKELY);
+ goto do_error_label;
+ }
+
+ /* u1 + u2 -> sr */
+ if (code == PLUS_EXPR && uns0_p && uns1_p && !unsr_p)
+ {
+ /* Compute the operation. On RTL level, the addition is always
+ unsigned. */
+ res = expand_binop (mode, add_optab, op0, op1, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
+ NULL, do_error, PROB_VERY_UNLIKELY);
+ rtx tem = op1;
+ /* The operation is commutative, so we can pick operand to compare
+ against. For prec <= BITS_PER_WORD, I think preferring REG operand
+ is better over CONST_INT, because the CONST_INT might enlarge the
+ instruction or CSE would need to figure out we'd already loaded it
+ into a register before. For prec > BITS_PER_WORD, I think CONST_INT
+ might be more beneficial, as then the multi-word comparison can be
+ perhaps simplified. */
+ if (prec <= BITS_PER_WORD
+ ? (CONST_SCALAR_INT_P (op1) && REG_P (op0))
+ : CONST_SCALAR_INT_P (op0))
+ tem = op0;
+ do_compare_rtx_and_jump (res, tem, GEU, true, mode, NULL_RTX, NULL,
+ done_label, PROB_VERY_LIKELY);
+ goto do_error_label;
+ }
+
+ /* s1 +- s2 -> ur */
+ if (!uns0_p && !uns1_p && unsr_p)
+ {
+ /* Compute the operation. On RTL level, the addition is always
+ unsigned. */
+ res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
+ op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
+ int pos_neg = get_range_pos_neg (arg1);
+ if (code == PLUS_EXPR)
+ {
+ int pos_neg0 = get_range_pos_neg (arg0);
+ if (pos_neg0 != 3 && pos_neg == 3)
+ {
+ std::swap (op0, op1);
+ pos_neg = pos_neg0;
+ }
+ }
+ rtx tem;
+ if (pos_neg != 3)
+ {
+ tem = expand_binop (mode, ((pos_neg == 1) ^ (code == MINUS_EXPR))
+ ? and_optab : ior_optab,
+ op0, res, NULL_RTX, false, OPTAB_LIB_WIDEN);
+ do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL,
+ NULL, done_label, PROB_VERY_LIKELY);
+ }
+ else
+ {
+ rtx_code_label *do_ior_label = gen_label_rtx ();
+ do_compare_rtx_and_jump (op1, const0_rtx,
+ code == MINUS_EXPR ? GE : LT, false, mode,
+ NULL_RTX, NULL, do_ior_label,
+ PROB_EVEN);
+ tem = expand_binop (mode, and_optab, op0, res, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
+ NULL, done_label, PROB_VERY_LIKELY);
+ emit_jump (do_error);
+ emit_label (do_ior_label);
+ tem = expand_binop (mode, ior_optab, op0, res, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
+ NULL, done_label, PROB_VERY_LIKELY);
+ }
+ goto do_error_label;
+ }
+
+ /* u1 - u2 -> sr */
+ if (code == MINUS_EXPR && uns0_p && uns1_p && !unsr_p)
+ {
+ /* Compute the operation. On RTL level, the addition is always
+ unsigned. */
+ res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ rtx_code_label *op0_geu_op1 = gen_label_rtx ();
+ do_compare_rtx_and_jump (op0, op1, GEU, true, mode, NULL_RTX, NULL,
+ op0_geu_op1, PROB_EVEN);
+ do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
+ NULL, done_label, PROB_VERY_LIKELY);
+ emit_jump (do_error);
+ emit_label (op0_geu_op1);
+ do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
+ NULL, done_label, PROB_VERY_LIKELY);
+ goto do_error_label;
+ }
+
+ gcc_assert (!uns0_p && !uns1_p && !unsr_p);
+
+ /* s1 +- s2 -> sr */
+ do_signed:
+ {
+ insn_code icode = optab_handler (code == PLUS_EXPR ? addv4_optab
+ : subv4_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[4];
+ rtx_insn *last = get_last_insn ();
+
+ res = gen_reg_rtx (mode);
+ create_output_operand (&ops[0], res, mode);
+ create_input_operand (&ops[1], op0, mode);
+ create_input_operand (&ops[2], op1, mode);
+ create_fixed_operand (&ops[3], do_error);
+ if (maybe_expand_insn (icode, 4, ops))
+ {
+ last = get_last_insn ();
+ if (profile_status_for_fn (cfun) != PROFILE_ABSENT
+ && JUMP_P (last)
+ && any_condjump_p (last)
+ && !find_reg_note (last, REG_BR_PROB, 0))
+ add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
+ emit_jump (done_label);
+ goto do_error_label;
+ }
+
+ delete_insns_since (last);
+ }
+
+ /* Compute the operation. On RTL level, the addition is always
+ unsigned. */
+ res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
+ op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
+
+ /* If we can prove that one of the arguments (for MINUS_EXPR only
+ the second operand, as subtraction is not commutative) is always
+ non-negative or always negative, we can do just one comparison
+ and conditional jump. */
+ int pos_neg = get_range_pos_neg (arg1);
+ if (code == PLUS_EXPR)
+ {
+ int pos_neg0 = get_range_pos_neg (arg0);
+ if (pos_neg0 != 3 && pos_neg == 3)
+ {
+ std::swap (op0, op1);
+ pos_neg = pos_neg0;
+ }
+ }
+
+ /* Addition overflows if and only if the two operands have the same sign,
+ and the result has the opposite sign. Subtraction overflows if and
+ only if the two operands have opposite sign, and the subtrahend has
+ the same sign as the result. Here 0 is counted as positive. */
+ if (pos_neg == 3)
+ {
+ /* Compute op0 ^ op1 (operands have opposite sign). */
+ rtx op_xor = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+
+ /* Compute res ^ op1 (result and 2nd operand have opposite sign). */
+ rtx res_xor = expand_binop (mode, xor_optab, res, op1, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+
+ rtx tem;
+ if (code == PLUS_EXPR)
+ {
+ /* Compute (res ^ op1) & ~(op0 ^ op1). */
+ tem = expand_unop (mode, one_cmpl_optab, op_xor, NULL_RTX, false);
+ tem = expand_binop (mode, and_optab, res_xor, tem, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ }
+ else
+ {
+ /* Compute (op0 ^ op1) & ~(res ^ op1). */
+ tem = expand_unop (mode, one_cmpl_optab, res_xor, NULL_RTX, false);
+ tem = expand_binop (mode, and_optab, op_xor, tem, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ }
+
+ /* No overflow if the result has bit sign cleared. */
+ do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
+ NULL, done_label, PROB_VERY_LIKELY);
+ }
+
+ /* Compare the result of the operation with the first operand.
+ No overflow for addition if second operand is positive and result
+ is larger or second operand is negative and result is smaller.
+ Likewise for subtraction with sign of second operand flipped. */
+ else
+ do_compare_rtx_and_jump (res, op0,
+ (pos_neg == 1) ^ (code == MINUS_EXPR) ? GE : LE,
+ false, mode, NULL_RTX, NULL, done_label,
+ PROB_VERY_LIKELY);
+ }
+
+ do_error_label:
+ emit_label (do_error);
+ if (is_ubsan)
+ {
+ /* Expand the ubsan builtin call. */
+ push_temp_slots ();
+ fn = ubsan_build_overflow_builtin (code, loc, TREE_TYPE (arg0),
+ arg0, arg1, datap);
+ expand_normal (fn);
+ pop_temp_slots ();
+ do_pending_stack_adjust ();
+ }
+ else if (lhs)
+ expand_arith_set_overflow (lhs, target);
+
+ /* We're done. */
+ emit_label (done_label);
+
+ if (lhs)
+ {
+ if (is_ubsan)
+ expand_ubsan_result_store (target, res);
+ else
+ {
+ if (do_xor)
+ res = expand_binop (mode, add_optab, res, sgn, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+
+ expand_arith_overflow_result_store (lhs, target, mode, res);
+ }
+ }
+}
+
+/* Add negate overflow checking to the statement STMT. */
+
+static void
+expand_neg_overflow (location_t loc, tree lhs, tree arg1, bool is_ubsan,
+ tree *datap)
+{
+ rtx res, op1;
+ tree fn;
+ rtx_code_label *done_label, *do_error;
+ rtx target = NULL_RTX;
+
+ done_label = gen_label_rtx ();
+ do_error = gen_label_rtx ();
+
+ do_pending_stack_adjust ();
+ op1 = expand_normal (arg1);
+
+ machine_mode mode = TYPE_MODE (TREE_TYPE (arg1));
+ if (lhs)
+ {
+ target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ if (!is_ubsan)
+ write_complex_part (target, const0_rtx, true);
+ }
+
+ enum insn_code icode = optab_handler (negv3_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[3];
+ rtx_insn *last = get_last_insn ();
+
+ res = gen_reg_rtx (mode);
+ create_output_operand (&ops[0], res, mode);
+ create_input_operand (&ops[1], op1, mode);
+ create_fixed_operand (&ops[2], do_error);
+ if (maybe_expand_insn (icode, 3, ops))
+ {
+ last = get_last_insn ();
+ if (profile_status_for_fn (cfun) != PROFILE_ABSENT
+ && JUMP_P (last)
+ && any_condjump_p (last)
+ && !find_reg_note (last, REG_BR_PROB, 0))
+ add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
+ emit_jump (done_label);
+ }
+ else
+ {
+ delete_insns_since (last);
+ icode = CODE_FOR_nothing;
+ }
+ }
+
+ if (icode == CODE_FOR_nothing)
+ {
+ /* Compute the operation. On RTL level, the addition is always
+ unsigned. */
+ res = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
+
+ /* Compare the operand with the most negative value. */
+ rtx minv = expand_normal (TYPE_MIN_VALUE (TREE_TYPE (arg1)));
+ do_compare_rtx_and_jump (op1, minv, NE, true, mode, NULL_RTX, NULL,
+ done_label, PROB_VERY_LIKELY);
+ }
+
+ emit_label (do_error);
+ if (is_ubsan)
+ {
+ /* Expand the ubsan builtin call. */
+ push_temp_slots ();
+ fn = ubsan_build_overflow_builtin (NEGATE_EXPR, loc, TREE_TYPE (arg1),
+ arg1, NULL_TREE, datap);
+ expand_normal (fn);
+ pop_temp_slots ();
+ do_pending_stack_adjust ();
+ }
+ else if (lhs)
+ expand_arith_set_overflow (lhs, target);
+
+ /* We're done. */
+ emit_label (done_label);
+
+ if (lhs)
+ {
+ if (is_ubsan)
+ expand_ubsan_result_store (target, res);
+ else
+ expand_arith_overflow_result_store (lhs, target, mode, res);
+ }
+}
+
+/* Add mul overflow checking to the statement STMT. */
+
+static void
+expand_mul_overflow (location_t loc, tree lhs, tree arg0, tree arg1,
+ bool unsr_p, bool uns0_p, bool uns1_p, bool is_ubsan,
+ tree *datap)
+{
+ rtx res, op0, op1;
+ tree fn, type;
+ rtx_code_label *done_label, *do_error;
+ rtx target = NULL_RTX;
+ signop sign;
+ enum insn_code icode;
+
+ done_label = gen_label_rtx ();
+ do_error = gen_label_rtx ();
+
+ do_pending_stack_adjust ();
+ op0 = expand_normal (arg0);
+ op1 = expand_normal (arg1);
+
+ machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
+ bool uns = unsr_p;
+ if (lhs)
+ {
+ target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ if (!is_ubsan)
+ write_complex_part (target, const0_rtx, true);
+ }
+
+ if (is_ubsan)
+ gcc_assert (!unsr_p && !uns0_p && !uns1_p);
+
+ /* We assume both operands and result have the same precision
+ here (GET_MODE_BITSIZE (mode)), S stands for signed type
+ with that precision, U for unsigned type with that precision,
+ sgn for unsigned most significant bit in that precision.
+ s1 is signed first operand, u1 is unsigned first operand,
+ s2 is signed second operand, u2 is unsigned second operand,
+ sr is signed result, ur is unsigned result and the following
+ rules say how to compute result (which is always result of
+ the operands as if both were unsigned, cast to the right
+ signedness) and how to compute whether operation overflowed.
+ main_ovf (false) stands for jump on signed multiplication
+ overflow or the main algorithm with uns == false.
+ main_ovf (true) stands for jump on unsigned multiplication
+ overflow or the main algorithm with uns == true.
+
+ s1 * s2 -> sr
+ res = (S) ((U) s1 * (U) s2)
+ ovf = main_ovf (false)
+ u1 * u2 -> ur
+ res = u1 * u2
+ ovf = main_ovf (true)
+ s1 * u2 -> ur
+ res = (U) s1 * u2
+ ovf = (s1 < 0 && u2) || main_ovf (true)
+ u1 * u2 -> sr
+ res = (S) (u1 * u2)
+ ovf = res < 0 || main_ovf (true)
+ s1 * u2 -> sr
+ res = (S) ((U) s1 * u2)
+ ovf = (S) u2 >= 0 ? main_ovf (false)
+ : (s1 != 0 && (s1 != -1 || u2 != (U) res))
+ s1 * s2 -> ur
+ t1 = (s1 & s2) < 0 ? (-(U) s1) : ((U) s1)
+ t2 = (s1 & s2) < 0 ? (-(U) s2) : ((U) s2)
+ res = t1 * t2
+ ovf = (s1 ^ s2) < 0 ? (s1 && s2) : main_ovf (true) */
+
+ if (uns0_p && !uns1_p)
+ {
+ /* Multiplication is commutative, if operand signedness differs,
+ canonicalize to the first operand being signed and second
+ unsigned to simplify following code. */
+ std::swap (op0, op1);
+ std::swap (arg0, arg1);
+ uns0_p = false;
+ uns1_p = true;
+ }
+
+ int pos_neg0 = get_range_pos_neg (arg0);
+ int pos_neg1 = get_range_pos_neg (arg1);
+
+ /* s1 * u2 -> ur */
+ if (!uns0_p && uns1_p && unsr_p)
+ {
+ switch (pos_neg0)
+ {
+ case 1:
+ /* If s1 is non-negative, just perform normal u1 * u2 -> ur. */
+ goto do_main;
+ case 2:
+ /* If s1 is negative, avoid the main code, just multiply and
+ signal overflow if op1 is not 0. */
+ struct separate_ops ops;
+ ops.code = MULT_EXPR;
+ ops.type = TREE_TYPE (arg1);
+ ops.op0 = make_tree (ops.type, op0);
+ ops.op1 = make_tree (ops.type, op1);
+ ops.op2 = NULL_TREE;
+ ops.location = loc;
+ res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
+ do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
+ NULL, done_label, PROB_VERY_LIKELY);
+ goto do_error_label;
+ case 3:
+ rtx_code_label *do_main_label;
+ do_main_label = gen_label_rtx ();
+ do_compare_rtx_and_jump (op0, const0_rtx, GE, false, mode, NULL_RTX,
+ NULL, do_main_label, PROB_VERY_LIKELY);
+ do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
+ NULL, do_main_label, PROB_VERY_LIKELY);
+ expand_arith_set_overflow (lhs, target);
+ emit_label (do_main_label);
+ goto do_main;
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* u1 * u2 -> sr */
+ if (uns0_p && uns1_p && !unsr_p)
+ {
+ uns = true;
+ /* Rest of handling of this case after res is computed. */
+ goto do_main;
+ }
+
+ /* s1 * u2 -> sr */
+ if (!uns0_p && uns1_p && !unsr_p)
+ {
+ switch (pos_neg1)
+ {
+ case 1:
+ goto do_main;
+ case 2:
+ /* If (S) u2 is negative (i.e. u2 is larger than maximum of S,
+ avoid the main code, just multiply and signal overflow
+ unless 0 * u2 or -1 * ((U) Smin). */
+ struct separate_ops ops;
+ ops.code = MULT_EXPR;
+ ops.type = TREE_TYPE (arg1);
+ ops.op0 = make_tree (ops.type, op0);
+ ops.op1 = make_tree (ops.type, op1);
+ ops.op2 = NULL_TREE;
+ ops.location = loc;
+ res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
+ do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
+ NULL, done_label, PROB_VERY_LIKELY);
+ do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
+ NULL, do_error, PROB_VERY_UNLIKELY);
+ int prec;
+ prec = GET_MODE_PRECISION (mode);
+ rtx sgn;
+ sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
+ do_compare_rtx_and_jump (op1, sgn, EQ, true, mode, NULL_RTX,
+ NULL, done_label, PROB_VERY_LIKELY);
+ goto do_error_label;
+ case 3:
+ /* Rest of handling of this case after res is computed. */
+ goto do_main;
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* s1 * s2 -> ur */
+ if (!uns0_p && !uns1_p && unsr_p)
+ {
+ rtx tem, tem2;
+ switch (pos_neg0 | pos_neg1)
+ {
+ case 1: /* Both operands known to be non-negative. */
+ goto do_main;
+ case 2: /* Both operands known to be negative. */
+ op0 = expand_unop (mode, neg_optab, op0, NULL_RTX, false);
+ op1 = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
+ /* Avoid looking at arg0/arg1 ranges, as we've changed
+ the arguments. */
+ arg0 = error_mark_node;
+ arg1 = error_mark_node;
+ goto do_main;
+ case 3:
+ if ((pos_neg0 ^ pos_neg1) == 3)
+ {
+ /* If one operand is known to be negative and the other
+ non-negative, this overflows always, unless the non-negative
+ one is 0. Just do normal multiply and set overflow
+ unless one of the operands is 0. */
+ struct separate_ops ops;
+ ops.code = MULT_EXPR;
+ ops.type
+ = build_nonstandard_integer_type (GET_MODE_PRECISION (mode),
+ 1);
+ ops.op0 = make_tree (ops.type, op0);
+ ops.op1 = make_tree (ops.type, op1);
+ ops.op2 = NULL_TREE;
+ ops.location = loc;
+ res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
+ tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ do_compare_rtx_and_jump (tem, const0_rtx, EQ, true, mode,
+ NULL_RTX, NULL, done_label,
+ PROB_VERY_LIKELY);
+ goto do_error_label;
+ }
+ /* The general case, do all the needed comparisons at runtime. */
+ rtx_code_label *do_main_label, *after_negate_label;
+ rtx rop0, rop1;
+ rop0 = gen_reg_rtx (mode);
+ rop1 = gen_reg_rtx (mode);
+ emit_move_insn (rop0, op0);
+ emit_move_insn (rop1, op1);
+ op0 = rop0;
+ op1 = rop1;
+ do_main_label = gen_label_rtx ();
+ after_negate_label = gen_label_rtx ();
+ tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
+ NULL, after_negate_label, PROB_VERY_LIKELY);
+ /* Both arguments negative here, negate them and continue with
+ normal unsigned overflow checking multiplication. */
+ emit_move_insn (op0, expand_unop (mode, neg_optab, op0,
+ NULL_RTX, false));
+ emit_move_insn (op1, expand_unop (mode, neg_optab, op1,
+ NULL_RTX, false));
+ /* Avoid looking at arg0/arg1 ranges, as we might have changed
+ the arguments. */
+ arg0 = error_mark_node;
+ arg1 = error_mark_node;
+ emit_jump (do_main_label);
+ emit_label (after_negate_label);
+ tem2 = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
+ OPTAB_LIB_WIDEN);
+ do_compare_rtx_and_jump (tem2, const0_rtx, GE, false, mode, NULL_RTX,
+ NULL, do_main_label, PROB_VERY_LIKELY);
+ /* One argument is negative here, the other positive. This
+ overflows always, unless one of the arguments is 0. But
+ if e.g. s2 is 0, (U) s1 * 0 doesn't overflow, whatever s1
+ is, thus we can keep do_main code oring in overflow as is. */
+ do_compare_rtx_and_jump (tem, const0_rtx, EQ, true, mode, NULL_RTX,
+ NULL, do_main_label, PROB_VERY_LIKELY);
+ expand_arith_set_overflow (lhs, target);
+ emit_label (do_main_label);
+ goto do_main;
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ do_main:
+ type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), uns);
+ sign = uns ? UNSIGNED : SIGNED;
+ icode = optab_handler (uns ? umulv4_optab : mulv4_optab, mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[4];
+ rtx_insn *last = get_last_insn ();
+
+ res = gen_reg_rtx (mode);
+ create_output_operand (&ops[0], res, mode);
+ create_input_operand (&ops[1], op0, mode);
+ create_input_operand (&ops[2], op1, mode);
+ create_fixed_operand (&ops[3], do_error);
+ if (maybe_expand_insn (icode, 4, ops))
+ {
+ last = get_last_insn ();
+ if (profile_status_for_fn (cfun) != PROFILE_ABSENT
+ && JUMP_P (last)
+ && any_condjump_p (last)
+ && !find_reg_note (last, REG_BR_PROB, 0))
+ add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
+ emit_jump (done_label);
+ }
+ else
+ {
+ delete_insns_since (last);
+ icode = CODE_FOR_nothing;
+ }
+ }
+
+ if (icode == CODE_FOR_nothing)
+ {
+ struct separate_ops ops;
+ int prec = GET_MODE_PRECISION (mode);
+ machine_mode hmode = mode_for_size (prec / 2, MODE_INT, 1);
+ ops.op0 = make_tree (type, op0);
+ ops.op1 = make_tree (type, op1);
+ ops.op2 = NULL_TREE;
+ ops.location = loc;
+ if (GET_MODE_2XWIDER_MODE (mode) != VOIDmode
+ && targetm.scalar_mode_supported_p (GET_MODE_2XWIDER_MODE (mode)))
+ {
+ machine_mode wmode = GET_MODE_2XWIDER_MODE (mode);
+ ops.code = WIDEN_MULT_EXPR;
+ ops.type
+ = build_nonstandard_integer_type (GET_MODE_PRECISION (wmode), uns);
+
+ res = expand_expr_real_2 (&ops, NULL_RTX, wmode, EXPAND_NORMAL);
+ rtx hipart = expand_shift (RSHIFT_EXPR, wmode, res, prec,
+ NULL_RTX, uns);
+ hipart = convert_modes (mode, wmode, hipart, uns);
+ res = convert_modes (mode, wmode, res, uns);
+ if (uns)
+ /* For the unsigned multiplication, there was overflow if
+ HIPART is non-zero. */
+ do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode,
+ NULL_RTX, NULL, done_label,
+ PROB_VERY_LIKELY);
+ else
+ {
+ rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1,
+ NULL_RTX, 0);
+ /* RES is low half of the double width result, HIPART
+ the high half. There was overflow if
+ HIPART is different from RES < 0 ? -1 : 0. */
+ do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode,
+ NULL_RTX, NULL, done_label,
+ PROB_VERY_LIKELY);
+ }
+ }
+ else if (hmode != BLKmode && 2 * GET_MODE_PRECISION (hmode) == prec)
+ {
+ rtx_code_label *large_op0 = gen_label_rtx ();
+ rtx_code_label *small_op0_large_op1 = gen_label_rtx ();
+ rtx_code_label *one_small_one_large = gen_label_rtx ();
+ rtx_code_label *both_ops_large = gen_label_rtx ();
+ rtx_code_label *after_hipart_neg = uns ? NULL : gen_label_rtx ();
+ rtx_code_label *after_lopart_neg = uns ? NULL : gen_label_rtx ();
+ rtx_code_label *do_overflow = gen_label_rtx ();
+ rtx_code_label *hipart_different = uns ? NULL : gen_label_rtx ();
+
+ unsigned int hprec = GET_MODE_PRECISION (hmode);
+ rtx hipart0 = expand_shift (RSHIFT_EXPR, mode, op0, hprec,
+ NULL_RTX, uns);
+ hipart0 = convert_modes (hmode, mode, hipart0, uns);
+ rtx lopart0 = convert_modes (hmode, mode, op0, uns);
+ rtx signbit0 = const0_rtx;
+ if (!uns)
+ signbit0 = expand_shift (RSHIFT_EXPR, hmode, lopart0, hprec - 1,
+ NULL_RTX, 0);
+ rtx hipart1 = expand_shift (RSHIFT_EXPR, mode, op1, hprec,
+ NULL_RTX, uns);
+ hipart1 = convert_modes (hmode, mode, hipart1, uns);
+ rtx lopart1 = convert_modes (hmode, mode, op1, uns);
+ rtx signbit1 = const0_rtx;
+ if (!uns)
+ signbit1 = expand_shift (RSHIFT_EXPR, hmode, lopart1, hprec - 1,
+ NULL_RTX, 0);
+
+ res = gen_reg_rtx (mode);
+
+ /* True if op0 resp. op1 are known to be in the range of
+ halfstype. */
+ bool op0_small_p = false;
+ bool op1_small_p = false;
+ /* True if op0 resp. op1 are known to have all zeros or all ones
+ in the upper half of bits, but are not known to be
+ op{0,1}_small_p. */
+ bool op0_medium_p = false;
+ bool op1_medium_p = false;
+ /* -1 if op{0,1} is known to be negative, 0 if it is known to be
+ nonnegative, 1 if unknown. */
+ int op0_sign = 1;
+ int op1_sign = 1;
+
+ if (pos_neg0 == 1)
+ op0_sign = 0;
+ else if (pos_neg0 == 2)
+ op0_sign = -1;
+ if (pos_neg1 == 1)
+ op1_sign = 0;
+ else if (pos_neg1 == 2)
+ op1_sign = -1;
+
+ unsigned int mprec0 = prec;
+ if (arg0 != error_mark_node)
+ mprec0 = get_min_precision (arg0, sign);
+ if (mprec0 <= hprec)
+ op0_small_p = true;
+ else if (!uns && mprec0 <= hprec + 1)
+ op0_medium_p = true;
+ unsigned int mprec1 = prec;
+ if (arg1 != error_mark_node)
+ mprec1 = get_min_precision (arg1, sign);
+ if (mprec1 <= hprec)
+ op1_small_p = true;
+ else if (!uns && mprec1 <= hprec + 1)
+ op1_medium_p = true;
+
+ int smaller_sign = 1;
+ int larger_sign = 1;
+ if (op0_small_p)
+ {
+ smaller_sign = op0_sign;
+ larger_sign = op1_sign;
+ }
+ else if (op1_small_p)
+ {
+ smaller_sign = op1_sign;
+ larger_sign = op0_sign;
+ }
+ else if (op0_sign == op1_sign)
+ {
+ smaller_sign = op0_sign;
+ larger_sign = op0_sign;
+ }
+
+ if (!op0_small_p)
+ do_compare_rtx_and_jump (signbit0, hipart0, NE, true, hmode,
+ NULL_RTX, NULL, large_op0,
+ PROB_UNLIKELY);
+
+ if (!op1_small_p)
+ do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
+ NULL_RTX, NULL, small_op0_large_op1,
+ PROB_UNLIKELY);
+
+ /* If both op0 and op1 are sign (!uns) or zero (uns) extended from
+ hmode to mode, the multiplication will never overflow. We can
+ do just one hmode x hmode => mode widening multiplication. */
+ rtx lopart0s = lopart0, lopart1s = lopart1;
+ if (GET_CODE (lopart0) == SUBREG)
+ {
+ lopart0s = shallow_copy_rtx (lopart0);
+ SUBREG_PROMOTED_VAR_P (lopart0s) = 1;
+ SUBREG_PROMOTED_SET (lopart0s, uns ? SRP_UNSIGNED : SRP_SIGNED);
+ }
+ if (GET_CODE (lopart1) == SUBREG)
+ {
+ lopart1s = shallow_copy_rtx (lopart1);
+ SUBREG_PROMOTED_VAR_P (lopart1s) = 1;
+ SUBREG_PROMOTED_SET (lopart1s, uns ? SRP_UNSIGNED : SRP_SIGNED);
+ }
+ tree halfstype = build_nonstandard_integer_type (hprec, uns);
+ ops.op0 = make_tree (halfstype, lopart0s);
+ ops.op1 = make_tree (halfstype, lopart1s);
+ ops.code = WIDEN_MULT_EXPR;
+ ops.type = type;
+ rtx thisres
+ = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
+ emit_move_insn (res, thisres);
+ emit_jump (done_label);
+
+ emit_label (small_op0_large_op1);
+
+ /* If op0 is sign (!uns) or zero (uns) extended from hmode to mode,
+ but op1 is not, just swap the arguments and handle it as op1
+ sign/zero extended, op0 not. */
+ rtx larger = gen_reg_rtx (mode);
+ rtx hipart = gen_reg_rtx (hmode);
+ rtx lopart = gen_reg_rtx (hmode);
+ emit_move_insn (larger, op1);
+ emit_move_insn (hipart, hipart1);
+ emit_move_insn (lopart, lopart0);
+ emit_jump (one_small_one_large);
+
+ emit_label (large_op0);
+
+ if (!op1_small_p)
+ do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
+ NULL_RTX, NULL, both_ops_large,
+ PROB_UNLIKELY);
+
+ /* If op1 is sign (!uns) or zero (uns) extended from hmode to mode,
+ but op0 is not, prepare larger, hipart and lopart pseudos and
+ handle it together with small_op0_large_op1. */
+ emit_move_insn (larger, op0);
+ emit_move_insn (hipart, hipart0);
+ emit_move_insn (lopart, lopart1);
+
+ emit_label (one_small_one_large);
+
+ /* lopart is the low part of the operand that is sign extended
+ to mode, larger is the other operand, hipart is the
+ high part of larger and lopart0 and lopart1 are the low parts
+ of both operands.
+ We perform lopart0 * lopart1 and lopart * hipart widening
+ multiplications. */
+ tree halfutype = build_nonstandard_integer_type (hprec, 1);
+ ops.op0 = make_tree (halfutype, lopart0);
+ ops.op1 = make_tree (halfutype, lopart1);
+ rtx lo0xlo1
+ = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
+
+ ops.op0 = make_tree (halfutype, lopart);
+ ops.op1 = make_tree (halfutype, hipart);
+ rtx loxhi = gen_reg_rtx (mode);
+ rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
+ emit_move_insn (loxhi, tem);
+
+ if (!uns)
+ {
+ /* if (hipart < 0) loxhi -= lopart << (bitsize / 2); */
+ if (larger_sign == 0)
+ emit_jump (after_hipart_neg);
+ else if (larger_sign != -1)
+ do_compare_rtx_and_jump (hipart, const0_rtx, GE, false, hmode,
+ NULL_RTX, NULL, after_hipart_neg,
+ PROB_EVEN);
+
+ tem = convert_modes (mode, hmode, lopart, 1);
+ tem = expand_shift (LSHIFT_EXPR, mode, tem, hprec, NULL_RTX, 1);
+ tem = expand_simple_binop (mode, MINUS, loxhi, tem, NULL_RTX,
+ 1, OPTAB_DIRECT);
+ emit_move_insn (loxhi, tem);
+
+ emit_label (after_hipart_neg);
+
+ /* if (lopart < 0) loxhi -= larger; */
+ if (smaller_sign == 0)
+ emit_jump (after_lopart_neg);
+ else if (smaller_sign != -1)
+ do_compare_rtx_and_jump (lopart, const0_rtx, GE, false, hmode,
+ NULL_RTX, NULL, after_lopart_neg,
+ PROB_EVEN);
+
+ tem = expand_simple_binop (mode, MINUS, loxhi, larger, NULL_RTX,
+ 1, OPTAB_DIRECT);
+ emit_move_insn (loxhi, tem);
+
+ emit_label (after_lopart_neg);
+ }
+
+ /* loxhi += (uns) lo0xlo1 >> (bitsize / 2); */
+ tem = expand_shift (RSHIFT_EXPR, mode, lo0xlo1, hprec, NULL_RTX, 1);
+ tem = expand_simple_binop (mode, PLUS, loxhi, tem, NULL_RTX,
+ 1, OPTAB_DIRECT);
+ emit_move_insn (loxhi, tem);
+
+ /* if (loxhi >> (bitsize / 2)
+ == (hmode) loxhi >> (bitsize / 2 - 1)) (if !uns)
+ if (loxhi >> (bitsize / 2) == 0 (if uns). */
+ rtx hipartloxhi = expand_shift (RSHIFT_EXPR, mode, loxhi, hprec,
+ NULL_RTX, 0);
+ hipartloxhi = convert_modes (hmode, mode, hipartloxhi, 0);
+ rtx signbitloxhi = const0_rtx;
+ if (!uns)
+ signbitloxhi = expand_shift (RSHIFT_EXPR, hmode,
+ convert_modes (hmode, mode,
+ loxhi, 0),
+ hprec - 1, NULL_RTX, 0);
+
+ do_compare_rtx_and_jump (signbitloxhi, hipartloxhi, NE, true, hmode,
+ NULL_RTX, NULL, do_overflow,
+ PROB_VERY_UNLIKELY);
+
+ /* res = (loxhi << (bitsize / 2)) | (hmode) lo0xlo1; */
+ rtx loxhishifted = expand_shift (LSHIFT_EXPR, mode, loxhi, hprec,
+ NULL_RTX, 1);
+ tem = convert_modes (mode, hmode,
+ convert_modes (hmode, mode, lo0xlo1, 1), 1);
+
+ tem = expand_simple_binop (mode, IOR, loxhishifted, tem, res,
+ 1, OPTAB_DIRECT);
+ if (tem != res)
+ emit_move_insn (res, tem);
+ emit_jump (done_label);
+
+ emit_label (both_ops_large);
+
+ /* If both operands are large (not sign (!uns) or zero (uns)
+ extended from hmode), then perform the full multiplication
+ which will be the result of the operation.
+ The only cases which don't overflow are for signed multiplication
+ some cases where both hipart0 and highpart1 are 0 or -1.
+ For unsigned multiplication when high parts are both non-zero
+ this overflows always. */
+ ops.code = MULT_EXPR;
+ ops.op0 = make_tree (type, op0);
+ ops.op1 = make_tree (type, op1);
+ tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
+ emit_move_insn (res, tem);
+
+ if (!uns)
+ {
+ if (!op0_medium_p)
+ {
+ tem = expand_simple_binop (hmode, PLUS, hipart0, const1_rtx,
+ NULL_RTX, 1, OPTAB_DIRECT);
+ do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
+ NULL_RTX, NULL, do_error,
+ PROB_VERY_UNLIKELY);
+ }
+
+ if (!op1_medium_p)
+ {
+ tem = expand_simple_binop (hmode, PLUS, hipart1, const1_rtx,
+ NULL_RTX, 1, OPTAB_DIRECT);
+ do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
+ NULL_RTX, NULL, do_error,
+ PROB_VERY_UNLIKELY);
+ }
+
+ /* At this point hipart{0,1} are both in [-1, 0]. If they are
+ the same, overflow happened if res is non-positive, if they
+ are different, overflow happened if res is positive. */
+ if (op0_sign != 1 && op1_sign != 1 && op0_sign != op1_sign)
+ emit_jump (hipart_different);
+ else if (op0_sign == 1 || op1_sign == 1)
+ do_compare_rtx_and_jump (hipart0, hipart1, NE, true, hmode,
+ NULL_RTX, NULL, hipart_different,
+ PROB_EVEN);
+
+ do_compare_rtx_and_jump (res, const0_rtx, LE, false, mode,
+ NULL_RTX, NULL, do_error,
+ PROB_VERY_UNLIKELY);
+ emit_jump (done_label);
+
+ emit_label (hipart_different);
+
+ do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode,
+ NULL_RTX, NULL, do_error,
+ PROB_VERY_UNLIKELY);
+ emit_jump (done_label);
+ }
+
+ emit_label (do_overflow);
+
+ /* Overflow, do full multiplication and fallthru into do_error. */
+ ops.op0 = make_tree (type, op0);
+ ops.op1 = make_tree (type, op1);
+ tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
+ emit_move_insn (res, tem);
+ }
+ else
+ {
+ gcc_assert (!is_ubsan);
+ ops.code = MULT_EXPR;
+ ops.type = type;
+ res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
+ emit_jump (done_label);
+ }
+ }
+
+ do_error_label:
+ emit_label (do_error);
+ if (is_ubsan)
+ {
+ /* Expand the ubsan builtin call. */
+ push_temp_slots ();
+ fn = ubsan_build_overflow_builtin (MULT_EXPR, loc, TREE_TYPE (arg0),
+ arg0, arg1, datap);
+ expand_normal (fn);
+ pop_temp_slots ();
+ do_pending_stack_adjust ();
+ }
+ else if (lhs)
+ expand_arith_set_overflow (lhs, target);
+
+ /* We're done. */
+ emit_label (done_label);
+
+ /* u1 * u2 -> sr */
+ if (uns0_p && uns1_p && !unsr_p)
+ {
+ rtx_code_label *all_done_label = gen_label_rtx ();
+ do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
+ NULL, all_done_label, PROB_VERY_LIKELY);
+ expand_arith_set_overflow (lhs, target);
+ emit_label (all_done_label);
+ }
+
+ /* s1 * u2 -> sr */
+ if (!uns0_p && uns1_p && !unsr_p && pos_neg1 == 3)
+ {
+ rtx_code_label *all_done_label = gen_label_rtx ();
+ rtx_code_label *set_noovf = gen_label_rtx ();
+ do_compare_rtx_and_jump (op1, const0_rtx, GE, false, mode, NULL_RTX,
+ NULL, all_done_label, PROB_VERY_LIKELY);
+ expand_arith_set_overflow (lhs, target);
+ do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
+ NULL, set_noovf, PROB_VERY_LIKELY);
+ do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
+ NULL, all_done_label, PROB_VERY_UNLIKELY);
+ do_compare_rtx_and_jump (op1, res, NE, true, mode, NULL_RTX, NULL,
+ all_done_label, PROB_VERY_UNLIKELY);
+ emit_label (set_noovf);
+ write_complex_part (target, const0_rtx, true);
+ emit_label (all_done_label);
+ }
+
+ if (lhs)
+ {
+ if (is_ubsan)
+ expand_ubsan_result_store (target, res);
+ else
+ expand_arith_overflow_result_store (lhs, target, mode, res);
+ }
+}
+
+/* Expand UBSAN_CHECK_* internal function if it has vector operands. */
+
+static void
+expand_vector_ubsan_overflow (location_t loc, enum tree_code code, tree lhs,
+ tree arg0, tree arg1)
+{
+ int cnt = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
+ rtx_code_label *loop_lab = NULL;
+ rtx cntvar = NULL_RTX;
+ tree cntv = NULL_TREE;
+ tree eltype = TREE_TYPE (TREE_TYPE (arg0));
+ tree sz = TYPE_SIZE (eltype);
+ tree data = NULL_TREE;
+ tree resv = NULL_TREE;
+ rtx lhsr = NULL_RTX;
+ rtx resvr = NULL_RTX;
+
+ if (lhs)
+ {
+ optab op;
+ lhsr = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ if (!VECTOR_MODE_P (GET_MODE (lhsr))
+ || (op = optab_for_tree_code (code, TREE_TYPE (arg0),
+ optab_default)) == unknown_optab
+ || (optab_handler (op, TYPE_MODE (TREE_TYPE (arg0)))
+ == CODE_FOR_nothing))
+ {
+ if (MEM_P (lhsr))
+ resv = make_tree (TREE_TYPE (lhs), lhsr);
+ else
+ {
+ resvr = assign_temp (TREE_TYPE (lhs), 1, 1);
+ resv = make_tree (TREE_TYPE (lhs), resvr);
+ }
+ }
+ }
+ if (cnt > 4)
+ {
+ do_pending_stack_adjust ();
+ loop_lab = gen_label_rtx ();
+ cntvar = gen_reg_rtx (TYPE_MODE (sizetype));
+ cntv = make_tree (sizetype, cntvar);
+ emit_move_insn (cntvar, const0_rtx);
+ emit_label (loop_lab);
+ }
+ if (TREE_CODE (arg0) != VECTOR_CST)
+ {
+ rtx arg0r = expand_normal (arg0);
+ arg0 = make_tree (TREE_TYPE (arg0), arg0r);
+ }
+ if (TREE_CODE (arg1) != VECTOR_CST)
+ {
+ rtx arg1r = expand_normal (arg1);
+ arg1 = make_tree (TREE_TYPE (arg1), arg1r);
+ }
+ for (int i = 0; i < (cnt > 4 ? 1 : cnt); i++)
+ {
+ tree op0, op1, res = NULL_TREE;
+ if (cnt > 4)
+ {
+ tree atype = build_array_type_nelts (eltype, cnt);
+ op0 = uniform_vector_p (arg0);
+ if (op0 == NULL_TREE)
+ {
+ op0 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg0);
+ op0 = build4_loc (loc, ARRAY_REF, eltype, op0, cntv,
+ NULL_TREE, NULL_TREE);
+ }
+ op1 = uniform_vector_p (arg1);
+ if (op1 == NULL_TREE)
+ {
+ op1 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg1);
+ op1 = build4_loc (loc, ARRAY_REF, eltype, op1, cntv,
+ NULL_TREE, NULL_TREE);
+ }
+ if (resv)
+ {
+ res = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, resv);
+ res = build4_loc (loc, ARRAY_REF, eltype, res, cntv,
+ NULL_TREE, NULL_TREE);
+ }
+ }
+ else
+ {
+ tree bitpos = bitsize_int (tree_to_uhwi (sz) * i);
+ op0 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg0, sz, bitpos);
+ op1 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg1, sz, bitpos);
+ if (resv)
+ res = fold_build3_loc (loc, BIT_FIELD_REF, eltype, resv, sz,
+ bitpos);
+ }
+ switch (code)
+ {
+ case PLUS_EXPR:
+ expand_addsub_overflow (loc, PLUS_EXPR, res, op0, op1,
+ false, false, false, true, &data);
+ break;
+ case MINUS_EXPR:
+ if (cnt > 4 ? integer_zerop (arg0) : integer_zerop (op0))
+ expand_neg_overflow (loc, res, op1, true, &data);
+ else
+ expand_addsub_overflow (loc, MINUS_EXPR, res, op0, op1,
+ false, false, false, true, &data);
+ break;
+ case MULT_EXPR:
+ expand_mul_overflow (loc, res, op0, op1, false, false, false,
+ true, &data);
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ }
+ if (cnt > 4)
+ {
+ struct separate_ops ops;
+ ops.code = PLUS_EXPR;
+ ops.type = TREE_TYPE (cntv);
+ ops.op0 = cntv;
+ ops.op1 = build_int_cst (TREE_TYPE (cntv), 1);
+ ops.op2 = NULL_TREE;
+ ops.location = loc;
+ rtx ret = expand_expr_real_2 (&ops, cntvar, TYPE_MODE (sizetype),
+ EXPAND_NORMAL);
+ if (ret != cntvar)
+ emit_move_insn (cntvar, ret);
+ do_compare_rtx_and_jump (cntvar, GEN_INT (cnt), NE, false,
+ TYPE_MODE (sizetype), NULL_RTX, NULL, loop_lab,
+ PROB_VERY_LIKELY);
+ }
+ if (lhs && resv == NULL_TREE)
+ {
+ struct separate_ops ops;
+ ops.code = code;
+ ops.type = TREE_TYPE (arg0);
+ ops.op0 = arg0;
+ ops.op1 = arg1;
+ ops.op2 = NULL_TREE;
+ ops.location = loc;
+ rtx ret = expand_expr_real_2 (&ops, lhsr, TYPE_MODE (TREE_TYPE (arg0)),
+ EXPAND_NORMAL);
+ if (ret != lhsr)
+ emit_move_insn (lhsr, ret);
+ }
+ else if (resvr)
+ emit_move_insn (lhsr, resvr);
+}
+
+/* Expand UBSAN_CHECK_ADD call STMT. */
+
+static void
+expand_UBSAN_CHECK_ADD (internal_fn, gcall *stmt)
+{
+ location_t loc = gimple_location (stmt);
+ tree lhs = gimple_call_lhs (stmt);
+ tree arg0 = gimple_call_arg (stmt, 0);
+ tree arg1 = gimple_call_arg (stmt, 1);
+ if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
+ expand_vector_ubsan_overflow (loc, PLUS_EXPR, lhs, arg0, arg1);
+ else
+ expand_addsub_overflow (loc, PLUS_EXPR, lhs, arg0, arg1,
+ false, false, false, true, NULL);
+}
+
+/* Expand UBSAN_CHECK_SUB call STMT. */
+
+static void
+expand_UBSAN_CHECK_SUB (internal_fn, gcall *stmt)
+{
+ location_t loc = gimple_location (stmt);
+ tree lhs = gimple_call_lhs (stmt);
+ tree arg0 = gimple_call_arg (stmt, 0);
+ tree arg1 = gimple_call_arg (stmt, 1);
+ if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
+ expand_vector_ubsan_overflow (loc, MINUS_EXPR, lhs, arg0, arg1);
+ else if (integer_zerop (arg0))
+ expand_neg_overflow (loc, lhs, arg1, true, NULL);
+ else
+ expand_addsub_overflow (loc, MINUS_EXPR, lhs, arg0, arg1,
+ false, false, false, true, NULL);
+}
+
+/* Expand UBSAN_CHECK_MUL call STMT. */
+
+static void
+expand_UBSAN_CHECK_MUL (internal_fn, gcall *stmt)
+{
+ location_t loc = gimple_location (stmt);
+ tree lhs = gimple_call_lhs (stmt);
+ tree arg0 = gimple_call_arg (stmt, 0);
+ tree arg1 = gimple_call_arg (stmt, 1);
+ if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
+ expand_vector_ubsan_overflow (loc, MULT_EXPR, lhs, arg0, arg1);
+ else
+ expand_mul_overflow (loc, lhs, arg0, arg1, false, false, false, true,
+ NULL);
+}
+
+/* Helper function for {ADD,SUB,MUL}_OVERFLOW call stmt expansion. */
+
+static void
+expand_arith_overflow (enum tree_code code, gimple *stmt)
+{
+ tree lhs = gimple_call_lhs (stmt);
+ if (lhs == NULL_TREE)
+ return;
+ tree arg0 = gimple_call_arg (stmt, 0);
+ tree arg1 = gimple_call_arg (stmt, 1);
+ tree type = TREE_TYPE (TREE_TYPE (lhs));
+ int uns0_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
+ int uns1_p = TYPE_UNSIGNED (TREE_TYPE (arg1));
+ int unsr_p = TYPE_UNSIGNED (type);
+ int prec0 = TYPE_PRECISION (TREE_TYPE (arg0));
+ int prec1 = TYPE_PRECISION (TREE_TYPE (arg1));
+ int precres = TYPE_PRECISION (type);
+ location_t loc = gimple_location (stmt);
+ if (!uns0_p && get_range_pos_neg (arg0) == 1)
+ uns0_p = true;
+ if (!uns1_p && get_range_pos_neg (arg1) == 1)
+ uns1_p = true;
+ int pr = get_min_precision (arg0, uns0_p ? UNSIGNED : SIGNED);
+ prec0 = MIN (prec0, pr);
+ pr = get_min_precision (arg1, uns1_p ? UNSIGNED : SIGNED);
+ prec1 = MIN (prec1, pr);
+
+ /* If uns0_p && uns1_p, precop is minimum needed precision
+ of unsigned type to hold the exact result, otherwise
+ precop is minimum needed precision of signed type to
+ hold the exact result. */
+ int precop;
+ if (code == MULT_EXPR)
+ precop = prec0 + prec1 + (uns0_p != uns1_p);
+ else
+ {
+ if (uns0_p == uns1_p)
+ precop = MAX (prec0, prec1) + 1;
+ else if (uns0_p)
+ precop = MAX (prec0 + 1, prec1) + 1;
+ else
+ precop = MAX (prec0, prec1 + 1) + 1;
+ }
+ int orig_precres = precres;
+
+ do
+ {
+ if ((uns0_p && uns1_p)
+ ? ((precop + !unsr_p) <= precres
+ /* u1 - u2 -> ur can overflow, no matter what precision
+ the result has. */
+ && (code != MINUS_EXPR || !unsr_p))
+ : (!unsr_p && precop <= precres))
+ {
+ /* The infinity precision result will always fit into result. */
+ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ write_complex_part (target, const0_rtx, true);
+ enum machine_mode mode = TYPE_MODE (type);
+ struct separate_ops ops;
+ ops.code = code;
+ ops.type = type;
+ ops.op0 = fold_convert_loc (loc, type, arg0);
+ ops.op1 = fold_convert_loc (loc, type, arg1);
+ ops.op2 = NULL_TREE;
+ ops.location = loc;
+ rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
+ expand_arith_overflow_result_store (lhs, target, mode, tem);
+ return;
+ }
+
+ /* For operations with low precision, if target doesn't have them, start
+ with precres widening right away, otherwise do it only if the most
+ simple cases can't be used. */
+ const int min_precision = targetm.min_arithmetic_precision ();
+ if (orig_precres == precres && precres < min_precision)
+ ;
+ else if ((uns0_p && uns1_p && unsr_p && prec0 <= precres
+ && prec1 <= precres)
+ || ((!uns0_p || !uns1_p) && !unsr_p
+ && prec0 + uns0_p <= precres
+ && prec1 + uns1_p <= precres))
+ {
+ arg0 = fold_convert_loc (loc, type, arg0);
+ arg1 = fold_convert_loc (loc, type, arg1);
+ switch (code)
+ {
+ case MINUS_EXPR:
+ if (integer_zerop (arg0) && !unsr_p)
+ {
+ expand_neg_overflow (loc, lhs, arg1, false, NULL);
+ return;
+ }
+ /* FALLTHRU */
+ case PLUS_EXPR:
+ expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
+ unsr_p, unsr_p, false, NULL);
+ return;
+ case MULT_EXPR:
+ expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
+ unsr_p, unsr_p, false, NULL);
+ return;
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* For sub-word operations, retry with a wider type first. */
+ if (orig_precres == precres && precop <= BITS_PER_WORD)
+ {
+ int p = MAX (min_precision, precop);
+ enum machine_mode m = smallest_mode_for_size (p, MODE_INT);
+ tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
+ uns0_p && uns1_p
+ && unsr_p);
+ p = TYPE_PRECISION (optype);
+ if (p > precres)
+ {
+ precres = p;
+ unsr_p = TYPE_UNSIGNED (optype);
+ type = optype;
+ continue;
+ }
+ }
+
+ if (prec0 <= precres && prec1 <= precres)
+ {
+ tree types[2];
+ if (unsr_p)
+ {
+ types[0] = build_nonstandard_integer_type (precres, 0);
+ types[1] = type;
+ }
+ else
+ {
+ types[0] = type;
+ types[1] = build_nonstandard_integer_type (precres, 1);
+ }
+ arg0 = fold_convert_loc (loc, types[uns0_p], arg0);
+ arg1 = fold_convert_loc (loc, types[uns1_p], arg1);
+ if (code != MULT_EXPR)
+ expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
+ uns0_p, uns1_p, false, NULL);
+ else
+ expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
+ uns0_p, uns1_p, false, NULL);
+ return;
+ }
+
+ /* Retry with a wider type. */
+ if (orig_precres == precres)
+ {
+ int p = MAX (prec0, prec1);
+ enum machine_mode m = smallest_mode_for_size (p, MODE_INT);
+ tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
+ uns0_p && uns1_p
+ && unsr_p);
+ p = TYPE_PRECISION (optype);
+ if (p > precres)
+ {
+ precres = p;
+ unsr_p = TYPE_UNSIGNED (optype);
+ type = optype;
+ continue;
+ }
+ }
+
+ gcc_unreachable ();
+ }
+ while (1);
+}
+
+/* Expand ADD_OVERFLOW STMT. */
+
+static void
+expand_ADD_OVERFLOW (internal_fn, gcall *stmt)
+{
+ expand_arith_overflow (PLUS_EXPR, stmt);
+}
+
+/* Expand SUB_OVERFLOW STMT. */
+
+static void
+expand_SUB_OVERFLOW (internal_fn, gcall *stmt)
+{
+ expand_arith_overflow (MINUS_EXPR, stmt);
+}
+
+/* Expand MUL_OVERFLOW STMT. */
+
+static void
+expand_MUL_OVERFLOW (internal_fn, gcall *stmt)
+{
+ expand_arith_overflow (MULT_EXPR, stmt);
+}
+
+/* This should get folded in tree-vectorizer.c. */
+
+static void
+expand_LOOP_VECTORIZED (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* Expand MASK_LOAD call STMT using optab OPTAB. */
+
+static void
+expand_mask_load_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
+{
+ struct expand_operand ops[3];
+ tree type, lhs, rhs, maskt, ptr;
+ rtx mem, target, mask;
+ unsigned align;
+
+ maskt = gimple_call_arg (stmt, 2);
+ lhs = gimple_call_lhs (stmt);
+ if (lhs == NULL_TREE)
+ return;
+ type = TREE_TYPE (lhs);
+ ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
+ align = tree_to_shwi (gimple_call_arg (stmt, 1));
+ if (TYPE_ALIGN (type) != align)
+ type = build_aligned_type (type, align);
+ rhs = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0), ptr);
+
+ mem = expand_expr (rhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ gcc_assert (MEM_P (mem));
+ mask = expand_normal (maskt);
+ target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ create_output_operand (&ops[0], target, TYPE_MODE (type));
+ create_fixed_operand (&ops[1], mem);
+ create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
+ expand_insn (convert_optab_handler (optab, TYPE_MODE (type),
+ TYPE_MODE (TREE_TYPE (maskt))),
+ 3, ops);
+}
+
+/* Expand MASK_STORE call STMT using optab OPTAB. */
+
+static void
+expand_mask_store_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
+{
+ struct expand_operand ops[3];
+ tree type, lhs, rhs, maskt, ptr;
+ rtx mem, reg, mask;
+ unsigned align;
+
+ maskt = gimple_call_arg (stmt, 2);
+ rhs = gimple_call_arg (stmt, 3);
+ type = TREE_TYPE (rhs);
+ ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
+ align = tree_to_shwi (gimple_call_arg (stmt, 1));
+ if (TYPE_ALIGN (type) != align)
+ type = build_aligned_type (type, align);
+ lhs = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0), ptr);
+
+ mem = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ gcc_assert (MEM_P (mem));
+ mask = expand_normal (maskt);
+ reg = expand_normal (rhs);
+ create_fixed_operand (&ops[0], mem);
+ create_input_operand (&ops[1], reg, TYPE_MODE (type));
+ create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
+ expand_insn (convert_optab_handler (optab, TYPE_MODE (type),
+ TYPE_MODE (TREE_TYPE (maskt))),
+ 3, ops);
+}
+
+static void
+expand_ABNORMAL_DISPATCHER (internal_fn, gcall *)
+{
+}
+
+static void
+expand_BUILTIN_EXPECT (internal_fn, gcall *stmt)
+{
+ /* When guessing was done, the hints should be already stripped away. */
+ gcc_assert (!flag_guess_branch_prob || optimize == 0 || seen_error ());
+
+ rtx target;
+ tree lhs = gimple_call_lhs (stmt);
+ if (lhs)
+ target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ else
+ target = const0_rtx;
+ rtx val = expand_expr (gimple_call_arg (stmt, 0), target, VOIDmode, EXPAND_NORMAL);
+ if (lhs && val != target)
+ emit_move_insn (target, val);
+}
+
+/* IFN_VA_ARG is supposed to be expanded at pass_stdarg. So this dummy function
+ should never be called. */
+
+static void
+expand_VA_ARG (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* Expand the IFN_UNIQUE function according to its first argument. */
+
+static void
+expand_UNIQUE (internal_fn, gcall *stmt)
+{
+ rtx pattern = NULL_RTX;
+ enum ifn_unique_kind kind
+ = (enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (stmt, 0));
+
+ switch (kind)
+ {
+ default:
+ gcc_unreachable ();
+
+ case IFN_UNIQUE_UNSPEC:
+ if (targetm.have_unique ())
+ pattern = targetm.gen_unique ();
+ break;
+
+ case IFN_UNIQUE_OACC_FORK:
+ case IFN_UNIQUE_OACC_JOIN:
+ if (targetm.have_oacc_fork () && targetm.have_oacc_join ())
+ {
+ tree lhs = gimple_call_lhs (stmt);
+ rtx target = const0_rtx;
+
+ if (lhs)
+ target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+
+ rtx data_dep = expand_normal (gimple_call_arg (stmt, 1));
+ rtx axis = expand_normal (gimple_call_arg (stmt, 2));
+
+ if (kind == IFN_UNIQUE_OACC_FORK)
+ pattern = targetm.gen_oacc_fork (target, data_dep, axis);
+ else
+ pattern = targetm.gen_oacc_join (target, data_dep, axis);
+ }
+ else
+ gcc_unreachable ();
+ break;
+ }
+
+ if (pattern)
+ emit_insn (pattern);
+}
+
+/* The size of an OpenACC compute dimension. */
+
+static void
+expand_GOACC_DIM_SIZE (internal_fn, gcall *stmt)
+{
+ tree lhs = gimple_call_lhs (stmt);
+
+ if (!lhs)
+ return;
+
+ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ if (targetm.have_oacc_dim_size ())
+ {
+ rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
+ VOIDmode, EXPAND_NORMAL);
+ emit_insn (targetm.gen_oacc_dim_size (target, dim));
+ }
+ else
+ emit_move_insn (target, GEN_INT (1));
+}
+
+/* The position of an OpenACC execution engine along one compute axis. */
+
+static void
+expand_GOACC_DIM_POS (internal_fn, gcall *stmt)
+{
+ tree lhs = gimple_call_lhs (stmt);
+
+ if (!lhs)
+ return;
+
+ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ if (targetm.have_oacc_dim_pos ())
+ {
+ rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
+ VOIDmode, EXPAND_NORMAL);
+ emit_insn (targetm.gen_oacc_dim_pos (target, dim));
+ }
+ else
+ emit_move_insn (target, const0_rtx);
+}
+
+/* This is expanded by oacc_device_lower pass. */
+
+static void
+expand_GOACC_LOOP (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This is expanded by oacc_device_lower pass. */
+
+static void
+expand_GOACC_REDUCTION (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* This is expanded by oacc_device_lower pass. */
+
+static void
+expand_GOACC_TILE (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}
+
+/* Set errno to EDOM. */
+
+static void
+expand_SET_EDOM (internal_fn, gcall *)
+{
+#ifdef TARGET_EDOM
+#ifdef GEN_ERRNO_RTX
+ rtx errno_rtx = GEN_ERRNO_RTX;
+#else
+ rtx errno_rtx = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
+#endif
+ emit_move_insn (errno_rtx,
+ gen_int_mode (TARGET_EDOM, GET_MODE (errno_rtx)));
+#else
+ gcc_unreachable ();
+#endif
+}
+
+/* Expand atomic bit test and set. */
+
+static void
+expand_ATOMIC_BIT_TEST_AND_SET (internal_fn, gcall *call)
+{
+ expand_ifn_atomic_bit_test_and (call);
+}
+
+/* Expand atomic bit test and complement. */
+
+static void
+expand_ATOMIC_BIT_TEST_AND_COMPLEMENT (internal_fn, gcall *call)
+{
+ expand_ifn_atomic_bit_test_and (call);
+}
+
+/* Expand atomic bit test and reset. */
+
+static void
+expand_ATOMIC_BIT_TEST_AND_RESET (internal_fn, gcall *call)
+{
+ expand_ifn_atomic_bit_test_and (call);
+}
+
+/* Expand atomic bit test and set. */
+
+static void
+expand_ATOMIC_COMPARE_EXCHANGE (internal_fn, gcall *call)
+{
+ expand_ifn_atomic_compare_exchange (call);
+}
+
+/* Expand LAUNDER to assignment, lhs = arg0. */
+
+static void
+expand_LAUNDER (internal_fn, gcall *call)
+{
+ tree lhs = gimple_call_lhs (call);
+
+ if (!lhs)
+ return;
+
+ expand_assignment (lhs, gimple_call_arg (call, 0), false);
+}
+
+/* Expand DIVMOD() using:
+ a) optab handler for udivmod/sdivmod if it is available.
+ b) If optab_handler doesn't exist, generate call to
+ target-specific divmod libfunc. */
+
+static void
+expand_DIVMOD (internal_fn, gcall *call_stmt)
+{
+ tree lhs = gimple_call_lhs (call_stmt);
+ tree arg0 = gimple_call_arg (call_stmt, 0);
+ tree arg1 = gimple_call_arg (call_stmt, 1);
+
+ gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
+ tree type = TREE_TYPE (TREE_TYPE (lhs));
+ machine_mode mode = TYPE_MODE (type);
+ bool unsignedp = TYPE_UNSIGNED (type);
+ optab tab = (unsignedp) ? udivmod_optab : sdivmod_optab;
+
+ rtx op0 = expand_normal (arg0);
+ rtx op1 = expand_normal (arg1);
+ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+
+ rtx quotient, remainder, libfunc;
+
+ /* Check if optab_handler exists for divmod_optab for given mode. */
+ if (optab_handler (tab, mode) != CODE_FOR_nothing)
+ {
+ quotient = gen_reg_rtx (mode);
+ remainder = gen_reg_rtx (mode);
+ expand_twoval_binop (tab, op0, op1, quotient, remainder, unsignedp);
+ }
+
+ /* Generate call to divmod libfunc if it exists. */
+ else if ((libfunc = optab_libfunc (tab, mode)) != NULL_RTX)
+ targetm.expand_divmod_libfunc (libfunc, mode, op0, op1,
+ &quotient, &remainder);
+
+ else
+ gcc_unreachable ();
+
+ /* Wrap the return value (quotient, remainder) within COMPLEX_EXPR. */
+ expand_expr (build2 (COMPLEX_EXPR, TREE_TYPE (lhs),
+ make_tree (TREE_TYPE (arg0), quotient),
+ make_tree (TREE_TYPE (arg1), remainder)),
+ target, VOIDmode, EXPAND_NORMAL);
+}
+
+/* Expand a call to FN using the operands in STMT. FN has a single
+ output operand and NARGS input operands. */
+
+static void
+expand_direct_optab_fn (internal_fn fn, gcall *stmt, direct_optab optab,
+ unsigned int nargs)
+{
+ expand_operand *ops = XALLOCAVEC (expand_operand, nargs + 1);
+
+ tree_pair types = direct_internal_fn_types (fn, stmt);
+ insn_code icode = direct_optab_handler (optab, TYPE_MODE (types.first));
+
+ tree lhs = gimple_call_lhs (stmt);
+ tree lhs_type = TREE_TYPE (lhs);
+ rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ create_output_operand (&ops[0], lhs_rtx, insn_data[icode].operand[0].mode);
+
+ for (unsigned int i = 0; i < nargs; ++i)
+ {
+ tree rhs = gimple_call_arg (stmt, i);
+ tree rhs_type = TREE_TYPE (rhs);
+ rtx rhs_rtx = expand_normal (rhs);
+ if (INTEGRAL_TYPE_P (rhs_type))
+ create_convert_operand_from (&ops[i + 1], rhs_rtx,
+ TYPE_MODE (rhs_type),
+ TYPE_UNSIGNED (rhs_type));
+ else
+ create_input_operand (&ops[i + 1], rhs_rtx, TYPE_MODE (rhs_type));
+ }
+
+ expand_insn (icode, nargs + 1, ops);
+ if (!rtx_equal_p (lhs_rtx, ops[0].value))
+ {
+ /* If the return value has an integral type, convert the instruction
+ result to that type. This is useful for things that return an
+ int regardless of the size of the input. If the instruction result
+ is smaller than required, assume that it is signed.
+
+ If the return value has a nonintegral type, its mode must match
+ the instruction result. */
+ if (GET_CODE (lhs_rtx) == SUBREG && SUBREG_PROMOTED_VAR_P (lhs_rtx))
+ {
+ /* If this is a scalar in a register that is stored in a wider
+ mode than the declared mode, compute the result into its
+ declared mode and then convert to the wider mode. */
+ gcc_checking_assert (INTEGRAL_TYPE_P (lhs_type));
+ rtx tmp = convert_to_mode (GET_MODE (lhs_rtx), ops[0].value, 0);
+ convert_move (SUBREG_REG (lhs_rtx), tmp,
+ SUBREG_PROMOTED_SIGN (lhs_rtx));
+ }
+ else if (GET_MODE (lhs_rtx) == GET_MODE (ops[0].value))
+ emit_move_insn (lhs_rtx, ops[0].value);
+ else
+ {
+ gcc_checking_assert (INTEGRAL_TYPE_P (lhs_type));
+ convert_move (lhs_rtx, ops[0].value, 0);
+ }
+ }
+}
+
+/* Expanders for optabs that can use expand_direct_optab_fn. */
+
+#define expand_unary_optab_fn(FN, STMT, OPTAB) \
+ expand_direct_optab_fn (FN, STMT, OPTAB, 1)
+
+#define expand_binary_optab_fn(FN, STMT, OPTAB) \
+ expand_direct_optab_fn (FN, STMT, OPTAB, 2)
+
+/* RETURN_TYPE and ARGS are a return type and argument list that are
+ in principle compatible with FN (which satisfies direct_internal_fn_p).
+ Return the types that should be used to determine whether the
+ target supports FN. */
+
+tree_pair
+direct_internal_fn_types (internal_fn fn, tree return_type, tree *args)
+{
+ const direct_internal_fn_info &info = direct_internal_fn (fn);
+ tree type0 = (info.type0 < 0 ? return_type : TREE_TYPE (args[info.type0]));
+ tree type1 = (info.type1 < 0 ? return_type : TREE_TYPE (args[info.type1]));
+ return tree_pair (type0, type1);
+}
+
+/* CALL is a call whose return type and arguments are in principle
+ compatible with FN (which satisfies direct_internal_fn_p). Return the
+ types that should be used to determine whether the target supports FN. */
+
+tree_pair
+direct_internal_fn_types (internal_fn fn, gcall *call)
+{
+ const direct_internal_fn_info &info = direct_internal_fn (fn);
+ tree op0 = (info.type0 < 0
+ ? gimple_call_lhs (call)
+ : gimple_call_arg (call, info.type0));
+ tree op1 = (info.type1 < 0
+ ? gimple_call_lhs (call)
+ : gimple_call_arg (call, info.type1));
+ return tree_pair (TREE_TYPE (op0), TREE_TYPE (op1));
+}
+
+/* Return true if OPTAB is supported for TYPES (whose modes should be
+ the same) when the optimization type is OPT_TYPE. Used for simple
+ direct optabs. */
+
+static bool
+direct_optab_supported_p (direct_optab optab, tree_pair types,
+ optimization_type opt_type)
+{
+ machine_mode mode = TYPE_MODE (types.first);
+ gcc_checking_assert (mode == TYPE_MODE (types.second));
+ return direct_optab_handler (optab, mode, opt_type) != CODE_FOR_nothing;
+}
+
+/* Return true if load/store lanes optab OPTAB is supported for
+ array type TYPES.first when the optimization type is OPT_TYPE. */
+
+static bool
+multi_vector_optab_supported_p (convert_optab optab, tree_pair types,
+ optimization_type opt_type)
+{
+ gcc_assert (TREE_CODE (types.first) == ARRAY_TYPE);
+ machine_mode imode = TYPE_MODE (types.first);
+ machine_mode vmode = TYPE_MODE (TREE_TYPE (types.first));
+ return (convert_optab_handler (optab, imode, vmode, opt_type)
+ != CODE_FOR_nothing);
+}
+
+#define direct_unary_optab_supported_p direct_optab_supported_p
+#define direct_binary_optab_supported_p direct_optab_supported_p
+#define direct_mask_load_optab_supported_p direct_optab_supported_p
+#define direct_load_lanes_optab_supported_p multi_vector_optab_supported_p
+#define direct_mask_store_optab_supported_p direct_optab_supported_p
+#define direct_store_lanes_optab_supported_p multi_vector_optab_supported_p
+
+/* Return true if FN is supported for the types in TYPES when the
+ optimization type is OPT_TYPE. The types are those associated with
+ the "type0" and "type1" fields of FN's direct_internal_fn_info
+ structure. */
+
+bool
+direct_internal_fn_supported_p (internal_fn fn, tree_pair types,
+ optimization_type opt_type)
+{
+ switch (fn)
+ {
+#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
+ case IFN_##CODE: break;
+#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
+ case IFN_##CODE: \
+ return direct_##TYPE##_optab_supported_p (OPTAB##_optab, types, \
+ opt_type);
+#include "internal-fn.def"
+
+ case IFN_LAST:
+ break;
+ }
+ gcc_unreachable ();
+}
+
+/* Return true if FN is supported for type TYPE when the optimization
+ type is OPT_TYPE. The caller knows that the "type0" and "type1"
+ fields of FN's direct_internal_fn_info structure are the same. */
+
+bool
+direct_internal_fn_supported_p (internal_fn fn, tree type,
+ optimization_type opt_type)
+{
+ const direct_internal_fn_info &info = direct_internal_fn (fn);
+ gcc_checking_assert (info.type0 == info.type1);
+ return direct_internal_fn_supported_p (fn, tree_pair (type, type), opt_type);
+}
+
+/* Return true if IFN_SET_EDOM is supported. */
+
+bool
+set_edom_supported_p (void)
+{
+#ifdef TARGET_EDOM
+ return true;
+#else
+ return false;
+#endif
+}
+
+#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
+ static void \
+ expand_##CODE (internal_fn fn, gcall *stmt) \
+ { \
+ expand_##TYPE##_optab_fn (fn, stmt, OPTAB##_optab); \
+ }
+#include "internal-fn.def"
+
+/* Routines to expand each internal function, indexed by function number.
+ Each routine has the prototype:
+
+ expand_<NAME> (gcall *stmt)
+
+ where STMT is the statement that performs the call. */
+static void (*const internal_fn_expanders[]) (internal_fn, gcall *) = {
+#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) expand_##CODE,
+#include "internal-fn.def"
+ 0
+};
+
+/* Expand STMT as though it were a call to internal function FN. */
+
+void
+expand_internal_call (internal_fn fn, gcall *stmt)
+{
+ internal_fn_expanders[fn] (fn, stmt);
+}
+
+/* Expand STMT, which is a call to internal function FN. */
+
+void
+expand_internal_call (gcall *stmt)
+{
+ expand_internal_call (gimple_call_internal_fn (stmt), stmt);
+}
+
+void
+expand_PHI (internal_fn, gcall *)
+{
+ gcc_unreachable ();
+}