summaryrefslogtreecommitdiff
path: root/libgo/go/runtime/hashmap.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/runtime/hashmap.go')
-rw-r--r--libgo/go/runtime/hashmap.go1202
1 files changed, 1202 insertions, 0 deletions
diff --git a/libgo/go/runtime/hashmap.go b/libgo/go/runtime/hashmap.go
new file mode 100644
index 0000000000..5b191d4575
--- /dev/null
+++ b/libgo/go/runtime/hashmap.go
@@ -0,0 +1,1202 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package runtime
+
+// This file contains the implementation of Go's map type.
+//
+// A map is just a hash table. The data is arranged
+// into an array of buckets. Each bucket contains up to
+// 8 key/value pairs. The low-order bits of the hash are
+// used to select a bucket. Each bucket contains a few
+// high-order bits of each hash to distinguish the entries
+// within a single bucket.
+//
+// If more than 8 keys hash to a bucket, we chain on
+// extra buckets.
+//
+// When the hashtable grows, we allocate a new array
+// of buckets twice as big. Buckets are incrementally
+// copied from the old bucket array to the new bucket array.
+//
+// Map iterators walk through the array of buckets and
+// return the keys in walk order (bucket #, then overflow
+// chain order, then bucket index). To maintain iteration
+// semantics, we never move keys within their bucket (if
+// we did, keys might be returned 0 or 2 times). When
+// growing the table, iterators remain iterating through the
+// old table and must check the new table if the bucket
+// they are iterating through has been moved ("evacuated")
+// to the new table.
+
+// Picking loadFactor: too large and we have lots of overflow
+// buckets, too small and we waste a lot of space. I wrote
+// a simple program to check some stats for different loads:
+// (64-bit, 8 byte keys and values)
+// loadFactor %overflow bytes/entry hitprobe missprobe
+// 4.00 2.13 20.77 3.00 4.00
+// 4.50 4.05 17.30 3.25 4.50
+// 5.00 6.85 14.77 3.50 5.00
+// 5.50 10.55 12.94 3.75 5.50
+// 6.00 15.27 11.67 4.00 6.00
+// 6.50 20.90 10.79 4.25 6.50
+// 7.00 27.14 10.15 4.50 7.00
+// 7.50 34.03 9.73 4.75 7.50
+// 8.00 41.10 9.40 5.00 8.00
+//
+// %overflow = percentage of buckets which have an overflow bucket
+// bytes/entry = overhead bytes used per key/value pair
+// hitprobe = # of entries to check when looking up a present key
+// missprobe = # of entries to check when looking up an absent key
+//
+// Keep in mind this data is for maximally loaded tables, i.e. just
+// before the table grows. Typical tables will be somewhat less loaded.
+
+import (
+ "runtime/internal/atomic"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+// For gccgo, use go:linkname to rename compiler-called functions to
+// themselves, so that the compiler will export them.
+//
+//go:linkname makemap runtime.makemap
+//go:linkname mapaccess1 runtime.mapaccess1
+//go:linkname mapaccess2 runtime.mapaccess2
+//go:linkname mapaccess1_fat runtime.mapaccess1_fat
+//go:linkname mapaccess2_fat runtime.mapaccess2_fat
+//go:linkname mapassign runtime.mapassign
+//go:linkname mapdelete runtime.mapdelete
+//go:linkname mapiterinit runtime.mapiterinit
+//go:linkname mapiternext runtime.mapiternext
+
+const (
+ // Maximum number of key/value pairs a bucket can hold.
+ bucketCntBits = 3
+ bucketCnt = 1 << bucketCntBits
+
+ // Maximum average load of a bucket that triggers growth.
+ loadFactor = 6.5
+
+ // Maximum key or value size to keep inline (instead of mallocing per element).
+ // Must fit in a uint8.
+ // Fast versions cannot handle big values - the cutoff size for
+ // fast versions in ../../cmd/internal/gc/walk.go must be at most this value.
+ maxKeySize = 128
+ maxValueSize = 128
+
+ // data offset should be the size of the bmap struct, but needs to be
+ // aligned correctly. For amd64p32 this means 64-bit alignment
+ // even though pointers are 32 bit.
+ dataOffset = unsafe.Offsetof(struct {
+ b bmap
+ v int64
+ }{}.v)
+
+ // Possible tophash values. We reserve a few possibilities for special marks.
+ // Each bucket (including its overflow buckets, if any) will have either all or none of its
+ // entries in the evacuated* states (except during the evacuate() method, which only happens
+ // during map writes and thus no one else can observe the map during that time).
+ empty = 0 // cell is empty
+ evacuatedEmpty = 1 // cell is empty, bucket is evacuated.
+ evacuatedX = 2 // key/value is valid. Entry has been evacuated to first half of larger table.
+ evacuatedY = 3 // same as above, but evacuated to second half of larger table.
+ minTopHash = 4 // minimum tophash for a normal filled cell.
+
+ // flags
+ iterator = 1 // there may be an iterator using buckets
+ oldIterator = 2 // there may be an iterator using oldbuckets
+ hashWriting = 4 // a goroutine is writing to the map
+ sameSizeGrow = 8 // the current map growth is to a new map of the same size
+
+ // sentinel bucket ID for iterator checks
+ noCheck = 1<<(8*sys.PtrSize) - 1
+)
+
+// A header for a Go map.
+type hmap struct {
+ // Note: the format of the Hmap is encoded in ../../cmd/internal/gc/reflect.go and
+ // ../reflect/type.go. Don't change this structure without also changing that code!
+ count int // # live cells == size of map. Must be first (used by len() builtin)
+ flags uint8
+ B uint8 // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
+ noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
+ hash0 uint32 // hash seed
+
+ buckets unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
+ oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
+ nevacuate uintptr // progress counter for evacuation (buckets less than this have been evacuated)
+
+ // If both key and value do not contain pointers and are inline, then we mark bucket
+ // type as containing no pointers. This avoids scanning such maps.
+ // However, bmap.overflow is a pointer. In order to keep overflow buckets
+ // alive, we store pointers to all overflow buckets in hmap.overflow.
+ // Overflow is used only if key and value do not contain pointers.
+ // overflow[0] contains overflow buckets for hmap.buckets.
+ // overflow[1] contains overflow buckets for hmap.oldbuckets.
+ // The first indirection allows us to reduce static size of hmap.
+ // The second indirection allows to store a pointer to the slice in hiter.
+ overflow *[2]*[]*bmap
+}
+
+// A bucket for a Go map.
+type bmap struct {
+ // tophash generally contains the top byte of the hash value
+ // for each key in this bucket. If tophash[0] < minTopHash,
+ // tophash[0] is a bucket evacuation state instead.
+ tophash [bucketCnt]uint8
+ // Followed by bucketCnt keys and then bucketCnt values.
+ // NOTE: packing all the keys together and then all the values together makes the
+ // code a bit more complicated than alternating key/value/key/value/... but it allows
+ // us to eliminate padding which would be needed for, e.g., map[int64]int8.
+ // Followed by an overflow pointer.
+}
+
+// A hash iteration structure.
+// If you modify hiter, also change cmd/internal/gc/reflect.go to indicate
+// the layout of this structure.
+type hiter struct {
+ key unsafe.Pointer // Must be in first position. Write nil to indicate iteration end (see cmd/internal/gc/range.go).
+ value unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go).
+ t *maptype
+ h *hmap
+ buckets unsafe.Pointer // bucket ptr at hash_iter initialization time
+ bptr *bmap // current bucket
+ overflow [2]*[]*bmap // keeps overflow buckets alive
+ startBucket uintptr // bucket iteration started at
+ offset uint8 // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1)
+ wrapped bool // already wrapped around from end of bucket array to beginning
+ B uint8
+ i uint8
+ bucket uintptr
+ checkBucket uintptr
+}
+
+func evacuated(b *bmap) bool {
+ h := b.tophash[0]
+ return h > empty && h < minTopHash
+}
+
+func (b *bmap) overflow(t *maptype) *bmap {
+ return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize))
+}
+
+// incrnoverflow increments h.noverflow.
+// noverflow counts the number of overflow buckets.
+// This is used to trigger same-size map growth.
+// See also tooManyOverflowBuckets.
+// To keep hmap small, noverflow is a uint16.
+// When there are few buckets, noverflow is an exact count.
+// When there are many buckets, noverflow is an approximate count.
+func (h *hmap) incrnoverflow() {
+ // We trigger same-size map growth if there are
+ // as many overflow buckets as buckets.
+ // We need to be able to count to 1<<h.B.
+ if h.B < 16 {
+ h.noverflow++
+ return
+ }
+ // Increment with probability 1/(1<<(h.B-15)).
+ // When we reach 1<<15 - 1, we will have approximately
+ // as many overflow buckets as buckets.
+ mask := uint32(1)<<(h.B-15) - 1
+ // Example: if h.B == 18, then mask == 7,
+ // and fastrand & 7 == 0 with probability 1/8.
+ if fastrand()&mask == 0 {
+ h.noverflow++
+ }
+}
+
+func (h *hmap) setoverflow(t *maptype, b, ovf *bmap) {
+ h.incrnoverflow()
+ if t.bucket.kind&kindNoPointers != 0 {
+ h.createOverflow()
+ *h.overflow[0] = append(*h.overflow[0], ovf)
+ }
+ *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) = ovf
+}
+
+func (h *hmap) createOverflow() {
+ if h.overflow == nil {
+ h.overflow = new([2]*[]*bmap)
+ }
+ if h.overflow[0] == nil {
+ h.overflow[0] = new([]*bmap)
+ }
+}
+
+// makemap implements a Go map creation make(map[k]v, hint)
+// If the compiler has determined that the map or the first bucket
+// can be created on the stack, h and/or bucket may be non-nil.
+// If h != nil, the map can be created directly in h.
+// If bucket != nil, bucket can be used as the first bucket.
+func makemap(t *maptype, hint int64, h *hmap, bucket unsafe.Pointer) *hmap {
+ if sz := unsafe.Sizeof(hmap{}); sz > 48 || sz != t.hmap.size {
+ println("runtime: sizeof(hmap) =", sz, ", t.hmap.size =", t.hmap.size)
+ throw("bad hmap size")
+ }
+
+ if hint < 0 || int64(int32(hint)) != hint {
+ panic(plainError("makemap: size out of range"))
+ // TODO: make hint an int, then none of this nonsense
+ }
+
+ if !ismapkey(t.key) {
+ throw("runtime.makemap: unsupported map key type")
+ }
+
+ // check compiler's and reflect's math
+ if t.key.size > maxKeySize && (!t.indirectkey || t.keysize != uint8(sys.PtrSize)) ||
+ t.key.size <= maxKeySize && (t.indirectkey || t.keysize != uint8(t.key.size)) {
+ throw("key size wrong")
+ }
+ if t.elem.size > maxValueSize && (!t.indirectvalue || t.valuesize != uint8(sys.PtrSize)) ||
+ t.elem.size <= maxValueSize && (t.indirectvalue || t.valuesize != uint8(t.elem.size)) {
+ throw("value size wrong")
+ }
+
+ // invariants we depend on. We should probably check these at compile time
+ // somewhere, but for now we'll do it here.
+ if t.key.align > bucketCnt {
+ throw("key align too big")
+ }
+ if t.elem.align > bucketCnt {
+ throw("value align too big")
+ }
+ if t.key.size%uintptr(t.key.align) != 0 {
+ throw("key size not a multiple of key align")
+ }
+ if t.elem.size%uintptr(t.elem.align) != 0 {
+ throw("value size not a multiple of value align")
+ }
+ if bucketCnt < 8 {
+ throw("bucketsize too small for proper alignment")
+ }
+ if dataOffset%uintptr(t.key.align) != 0 {
+ throw("need padding in bucket (key)")
+ }
+ if dataOffset%uintptr(t.elem.align) != 0 {
+ throw("need padding in bucket (value)")
+ }
+
+ // find size parameter which will hold the requested # of elements
+ B := uint8(0)
+ for ; overLoadFactor(hint, B); B++ {
+ }
+
+ // allocate initial hash table
+ // if B == 0, the buckets field is allocated lazily later (in mapassign)
+ // If hint is large zeroing this memory could take a while.
+ buckets := bucket
+ if B != 0 {
+ buckets = newarray(t.bucket, 1<<B)
+ }
+
+ // initialize Hmap
+ if h == nil {
+ h = (*hmap)(newobject(t.hmap))
+ }
+ h.count = 0
+ h.B = B
+ h.flags = 0
+ h.hash0 = fastrand()
+ h.buckets = buckets
+ h.oldbuckets = nil
+ h.nevacuate = 0
+ h.noverflow = 0
+
+ return h
+}
+
+// mapaccess1 returns a pointer to h[key]. Never returns nil, instead
+// it will return a reference to the zero object for the value type if
+// the key is not in the map.
+// NOTE: The returned pointer may keep the whole map live, so don't
+// hold onto it for very long.
+func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
+ if raceenabled && h != nil {
+ callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
+ pc := funcPC(mapaccess1)
+ racereadpc(unsafe.Pointer(h), callerpc, pc)
+ raceReadObjectPC(t.key, key, callerpc, pc)
+ }
+ if msanenabled && h != nil {
+ msanread(key, t.key.size)
+ }
+ if h == nil || h.count == 0 {
+ return unsafe.Pointer(&zeroVal[0])
+ }
+ if h.flags&hashWriting != 0 {
+ throw("concurrent map read and map write")
+ }
+ hashfn := t.key.hashfn
+ equalfn := t.key.equalfn
+ hash := hashfn(key, uintptr(h.hash0))
+ m := uintptr(1)<<h.B - 1
+ b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
+ if c := h.oldbuckets; c != nil {
+ if !h.sameSizeGrow() {
+ // There used to be half as many buckets; mask down one more power of two.
+ m >>= 1
+ }
+ oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
+ if !evacuated(oldb) {
+ b = oldb
+ }
+ }
+ top := uint8(hash >> (sys.PtrSize*8 - 8))
+ if top < minTopHash {
+ top += minTopHash
+ }
+ for {
+ for i := uintptr(0); i < bucketCnt; i++ {
+ if b.tophash[i] != top {
+ continue
+ }
+ k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
+ if t.indirectkey {
+ k = *((*unsafe.Pointer)(k))
+ }
+ if equalfn(key, k) {
+ v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
+ if t.indirectvalue {
+ v = *((*unsafe.Pointer)(v))
+ }
+ return v
+ }
+ }
+ b = b.overflow(t)
+ if b == nil {
+ return unsafe.Pointer(&zeroVal[0])
+ }
+ }
+}
+
+func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
+ if raceenabled && h != nil {
+ callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
+ pc := funcPC(mapaccess2)
+ racereadpc(unsafe.Pointer(h), callerpc, pc)
+ raceReadObjectPC(t.key, key, callerpc, pc)
+ }
+ if msanenabled && h != nil {
+ msanread(key, t.key.size)
+ }
+ if h == nil || h.count == 0 {
+ return unsafe.Pointer(&zeroVal[0]), false
+ }
+ if h.flags&hashWriting != 0 {
+ throw("concurrent map read and map write")
+ }
+ hashfn := t.key.hashfn
+ equalfn := t.key.equalfn
+ hash := hashfn(key, uintptr(h.hash0))
+ m := uintptr(1)<<h.B - 1
+ b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
+ if c := h.oldbuckets; c != nil {
+ if !h.sameSizeGrow() {
+ // There used to be half as many buckets; mask down one more power of two.
+ m >>= 1
+ }
+ oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
+ if !evacuated(oldb) {
+ b = oldb
+ }
+ }
+ top := uint8(hash >> (sys.PtrSize*8 - 8))
+ if top < minTopHash {
+ top += minTopHash
+ }
+ for {
+ for i := uintptr(0); i < bucketCnt; i++ {
+ if b.tophash[i] != top {
+ continue
+ }
+ k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
+ if t.indirectkey {
+ k = *((*unsafe.Pointer)(k))
+ }
+ if equalfn(key, k) {
+ v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
+ if t.indirectvalue {
+ v = *((*unsafe.Pointer)(v))
+ }
+ return v, true
+ }
+ }
+ b = b.overflow(t)
+ if b == nil {
+ return unsafe.Pointer(&zeroVal[0]), false
+ }
+ }
+}
+
+// returns both key and value. Used by map iterator
+func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) {
+ if h == nil || h.count == 0 {
+ return nil, nil
+ }
+ hashfn := t.key.hashfn
+ equalfn := t.key.equalfn
+ hash := hashfn(key, uintptr(h.hash0))
+ m := uintptr(1)<<h.B - 1
+ b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
+ if c := h.oldbuckets; c != nil {
+ if !h.sameSizeGrow() {
+ // There used to be half as many buckets; mask down one more power of two.
+ m >>= 1
+ }
+ oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
+ if !evacuated(oldb) {
+ b = oldb
+ }
+ }
+ top := uint8(hash >> (sys.PtrSize*8 - 8))
+ if top < minTopHash {
+ top += minTopHash
+ }
+ for {
+ for i := uintptr(0); i < bucketCnt; i++ {
+ if b.tophash[i] != top {
+ continue
+ }
+ k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
+ if t.indirectkey {
+ k = *((*unsafe.Pointer)(k))
+ }
+ if equalfn(key, k) {
+ v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
+ if t.indirectvalue {
+ v = *((*unsafe.Pointer)(v))
+ }
+ return k, v
+ }
+ }
+ b = b.overflow(t)
+ if b == nil {
+ return nil, nil
+ }
+ }
+}
+
+func mapaccess1_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) unsafe.Pointer {
+ v := mapaccess1(t, h, key)
+ if v == unsafe.Pointer(&zeroVal[0]) {
+ return zero
+ }
+ return v
+}
+
+func mapaccess2_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) (unsafe.Pointer, bool) {
+ v := mapaccess1(t, h, key)
+ if v == unsafe.Pointer(&zeroVal[0]) {
+ return zero, false
+ }
+ return v, true
+}
+
+// Like mapaccess, but allocates a slot for the key if it is not present in the map.
+func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
+ if h == nil {
+ panic(plainError("assignment to entry in nil map"))
+ }
+ if raceenabled {
+ callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
+ pc := funcPC(mapassign)
+ racewritepc(unsafe.Pointer(h), callerpc, pc)
+ raceReadObjectPC(t.key, key, callerpc, pc)
+ }
+ if msanenabled {
+ msanread(key, t.key.size)
+ }
+ if h.flags&hashWriting != 0 {
+ throw("concurrent map writes")
+ }
+ h.flags |= hashWriting
+
+ hashfn := t.key.hashfn
+ equalfn := t.key.equalfn
+ hash := hashfn(key, uintptr(h.hash0))
+
+ if h.buckets == nil {
+ h.buckets = newarray(t.bucket, 1)
+ }
+
+again:
+ bucket := hash & (uintptr(1)<<h.B - 1)
+ if h.growing() {
+ growWork(t, h, bucket)
+ }
+ b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
+ top := uint8(hash >> (sys.PtrSize*8 - 8))
+ if top < minTopHash {
+ top += minTopHash
+ }
+
+ var inserti *uint8
+ var insertk unsafe.Pointer
+ var val unsafe.Pointer
+ for {
+ for i := uintptr(0); i < bucketCnt; i++ {
+ if b.tophash[i] != top {
+ if b.tophash[i] == empty && inserti == nil {
+ inserti = &b.tophash[i]
+ insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
+ val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
+ }
+ continue
+ }
+ k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
+ if t.indirectkey {
+ k = *((*unsafe.Pointer)(k))
+ }
+ if !equalfn(key, k) {
+ continue
+ }
+ // already have a mapping for key. Update it.
+ if t.needkeyupdate {
+ typedmemmove(t.key, k, key)
+ }
+ val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
+ goto done
+ }
+ ovf := b.overflow(t)
+ if ovf == nil {
+ break
+ }
+ b = ovf
+ }
+
+ // Did not find mapping for key. Allocate new cell & add entry.
+
+ // If we hit the max load factor or we have too many overflow buckets,
+ // and we're not already in the middle of growing, start growing.
+ if !h.growing() && (overLoadFactor(int64(h.count), h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
+ hashGrow(t, h)
+ goto again // Growing the table invalidates everything, so try again
+ }
+
+ if inserti == nil {
+ // all current buckets are full, allocate a new one.
+ newb := (*bmap)(newobject(t.bucket))
+ h.setoverflow(t, b, newb)
+ inserti = &newb.tophash[0]
+ insertk = add(unsafe.Pointer(newb), dataOffset)
+ val = add(insertk, bucketCnt*uintptr(t.keysize))
+ }
+
+ // store new key/value at insert position
+ if t.indirectkey {
+ kmem := newobject(t.key)
+ *(*unsafe.Pointer)(insertk) = kmem
+ insertk = kmem
+ }
+ if t.indirectvalue {
+ vmem := newobject(t.elem)
+ *(*unsafe.Pointer)(val) = vmem
+ }
+ typedmemmove(t.key, insertk, key)
+ *inserti = top
+ h.count++
+
+done:
+ if h.flags&hashWriting == 0 {
+ throw("concurrent map writes")
+ }
+ h.flags &^= hashWriting
+ if t.indirectvalue {
+ val = *((*unsafe.Pointer)(val))
+ }
+ return val
+}
+
+func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
+ if raceenabled && h != nil {
+ callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
+ pc := funcPC(mapdelete)
+ racewritepc(unsafe.Pointer(h), callerpc, pc)
+ raceReadObjectPC(t.key, key, callerpc, pc)
+ }
+ if msanenabled && h != nil {
+ msanread(key, t.key.size)
+ }
+ if h == nil || h.count == 0 {
+ return
+ }
+ if h.flags&hashWriting != 0 {
+ throw("concurrent map writes")
+ }
+ h.flags |= hashWriting
+
+ hashfn := t.key.hashfn
+ equalfn := t.key.equalfn
+ hash := hashfn(key, uintptr(h.hash0))
+ bucket := hash & (uintptr(1)<<h.B - 1)
+ if h.growing() {
+ growWork(t, h, bucket)
+ }
+ b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
+ top := uint8(hash >> (sys.PtrSize*8 - 8))
+ if top < minTopHash {
+ top += minTopHash
+ }
+ for {
+ for i := uintptr(0); i < bucketCnt; i++ {
+ if b.tophash[i] != top {
+ continue
+ }
+ k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
+ k2 := k
+ if t.indirectkey {
+ k2 = *((*unsafe.Pointer)(k2))
+ }
+ if !equalfn(key, k2) {
+ continue
+ }
+ if t.indirectkey {
+ *(*unsafe.Pointer)(k) = nil
+ } else {
+ typedmemclr(t.key, k)
+ }
+ v := unsafe.Pointer(uintptr(unsafe.Pointer(b)) + dataOffset + bucketCnt*uintptr(t.keysize) + i*uintptr(t.valuesize))
+ if t.indirectvalue {
+ *(*unsafe.Pointer)(v) = nil
+ } else {
+ typedmemclr(t.elem, v)
+ }
+ b.tophash[i] = empty
+ h.count--
+ goto done
+ }
+ b = b.overflow(t)
+ if b == nil {
+ goto done
+ }
+ }
+
+done:
+ if h.flags&hashWriting == 0 {
+ throw("concurrent map writes")
+ }
+ h.flags &^= hashWriting
+}
+
+func mapiterinit(t *maptype, h *hmap, it *hiter) {
+ // Clear pointer fields so garbage collector does not complain.
+ it.key = nil
+ it.value = nil
+ it.t = nil
+ it.h = nil
+ it.buckets = nil
+ it.bptr = nil
+ it.overflow[0] = nil
+ it.overflow[1] = nil
+
+ if raceenabled && h != nil {
+ callerpc := getcallerpc(unsafe.Pointer( /* &t */ nil))
+ racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit))
+ }
+
+ if h == nil || h.count == 0 {
+ it.key = nil
+ it.value = nil
+ return
+ }
+
+ if unsafe.Sizeof(hiter{})/sys.PtrSize != 12 {
+ throw("hash_iter size incorrect") // see ../../cmd/internal/gc/reflect.go
+ }
+ it.t = t
+ it.h = h
+
+ // grab snapshot of bucket state
+ it.B = h.B
+ it.buckets = h.buckets
+ if t.bucket.kind&kindNoPointers != 0 {
+ // Allocate the current slice and remember pointers to both current and old.
+ // This preserves all relevant overflow buckets alive even if
+ // the table grows and/or overflow buckets are added to the table
+ // while we are iterating.
+ h.createOverflow()
+ it.overflow = *h.overflow
+ }
+
+ // decide where to start
+ r := uintptr(fastrand())
+ if h.B > 31-bucketCntBits {
+ r += uintptr(fastrand()) << 31
+ }
+ it.startBucket = r & (uintptr(1)<<h.B - 1)
+ it.offset = uint8(r >> h.B & (bucketCnt - 1))
+
+ // iterator state
+ it.bucket = it.startBucket
+ it.wrapped = false
+ it.bptr = nil
+
+ // Remember we have an iterator.
+ // Can run concurrently with another hash_iter_init().
+ if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator {
+ atomic.Or8(&h.flags, iterator|oldIterator)
+ }
+
+ mapiternext(it)
+}
+
+func mapiternext(it *hiter) {
+ h := it.h
+ if raceenabled {
+ callerpc := getcallerpc(unsafe.Pointer( /* &it */ nil))
+ racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext))
+ }
+ if h.flags&hashWriting != 0 {
+ throw("concurrent map iteration and map write")
+ }
+ t := it.t
+ bucket := it.bucket
+ b := it.bptr
+ i := it.i
+ checkBucket := it.checkBucket
+ hashfn := t.key.hashfn
+ equalfn := t.key.equalfn
+
+next:
+ if b == nil {
+ if bucket == it.startBucket && it.wrapped {
+ // end of iteration
+ it.key = nil
+ it.value = nil
+ return
+ }
+ if h.growing() && it.B == h.B {
+ // Iterator was started in the middle of a grow, and the grow isn't done yet.
+ // If the bucket we're looking at hasn't been filled in yet (i.e. the old
+ // bucket hasn't been evacuated) then we need to iterate through the old
+ // bucket and only return the ones that will be migrated to this bucket.
+ oldbucket := bucket & it.h.oldbucketmask()
+ b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
+ if !evacuated(b) {
+ checkBucket = bucket
+ } else {
+ b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
+ checkBucket = noCheck
+ }
+ } else {
+ b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
+ checkBucket = noCheck
+ }
+ bucket++
+ if bucket == uintptr(1)<<it.B {
+ bucket = 0
+ it.wrapped = true
+ }
+ i = 0
+ }
+ for ; i < bucketCnt; i++ {
+ offi := (i + it.offset) & (bucketCnt - 1)
+ k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize))
+ v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize))
+ if b.tophash[offi] != empty && b.tophash[offi] != evacuatedEmpty {
+ if checkBucket != noCheck && !h.sameSizeGrow() {
+ // Special case: iterator was started during a grow to a larger size
+ // and the grow is not done yet. We're working on a bucket whose
+ // oldbucket has not been evacuated yet. Or at least, it wasn't
+ // evacuated when we started the bucket. So we're iterating
+ // through the oldbucket, skipping any keys that will go
+ // to the other new bucket (each oldbucket expands to two
+ // buckets during a grow).
+ k2 := k
+ if t.indirectkey {
+ k2 = *((*unsafe.Pointer)(k2))
+ }
+ if t.reflexivekey || equalfn(k2, k2) {
+ // If the item in the oldbucket is not destined for
+ // the current new bucket in the iteration, skip it.
+ hash := hashfn(k2, uintptr(h.hash0))
+ if hash&(uintptr(1)<<it.B-1) != checkBucket {
+ continue
+ }
+ } else {
+ // Hash isn't repeatable if k != k (NaNs). We need a
+ // repeatable and randomish choice of which direction
+ // to send NaNs during evacuation. We'll use the low
+ // bit of tophash to decide which way NaNs go.
+ // NOTE: this case is why we need two evacuate tophash
+ // values, evacuatedX and evacuatedY, that differ in
+ // their low bit.
+ if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
+ continue
+ }
+ }
+ }
+ if b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY {
+ // this is the golden data, we can return it.
+ if t.indirectkey {
+ k = *((*unsafe.Pointer)(k))
+ }
+ it.key = k
+ if t.indirectvalue {
+ v = *((*unsafe.Pointer)(v))
+ }
+ it.value = v
+ } else {
+ // The hash table has grown since the iterator was started.
+ // The golden data for this key is now somewhere else.
+ k2 := k
+ if t.indirectkey {
+ k2 = *((*unsafe.Pointer)(k2))
+ }
+ if t.reflexivekey || equalfn(k2, k2) {
+ // Check the current hash table for the data.
+ // This code handles the case where the key
+ // has been deleted, updated, or deleted and reinserted.
+ // NOTE: we need to regrab the key as it has potentially been
+ // updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
+ rk, rv := mapaccessK(t, h, k2)
+ if rk == nil {
+ continue // key has been deleted
+ }
+ it.key = rk
+ it.value = rv
+ } else {
+ // if key!=key then the entry can't be deleted or
+ // updated, so we can just return it. That's lucky for
+ // us because when key!=key we can't look it up
+ // successfully in the current table.
+ it.key = k2
+ if t.indirectvalue {
+ v = *((*unsafe.Pointer)(v))
+ }
+ it.value = v
+ }
+ }
+ it.bucket = bucket
+ if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
+ it.bptr = b
+ }
+ it.i = i + 1
+ it.checkBucket = checkBucket
+ return
+ }
+ }
+ b = b.overflow(t)
+ i = 0
+ goto next
+}
+
+func hashGrow(t *maptype, h *hmap) {
+ // If we've hit the load factor, get bigger.
+ // Otherwise, there are too many overflow buckets,
+ // so keep the same number of buckets and "grow" laterally.
+ bigger := uint8(1)
+ if !overLoadFactor(int64(h.count), h.B) {
+ bigger = 0
+ h.flags |= sameSizeGrow
+ }
+ oldbuckets := h.buckets
+ newbuckets := newarray(t.bucket, 1<<(h.B+bigger))
+ flags := h.flags &^ (iterator | oldIterator)
+ if h.flags&iterator != 0 {
+ flags |= oldIterator
+ }
+ // commit the grow (atomic wrt gc)
+ h.B += bigger
+ h.flags = flags
+ h.oldbuckets = oldbuckets
+ h.buckets = newbuckets
+ h.nevacuate = 0
+ h.noverflow = 0
+
+ if h.overflow != nil {
+ // Promote current overflow buckets to the old generation.
+ if h.overflow[1] != nil {
+ throw("overflow is not nil")
+ }
+ h.overflow[1] = h.overflow[0]
+ h.overflow[0] = nil
+ }
+
+ // the actual copying of the hash table data is done incrementally
+ // by growWork() and evacuate().
+}
+
+// overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
+func overLoadFactor(count int64, B uint8) bool {
+ // TODO: rewrite to use integer math and comparison?
+ return count >= bucketCnt && float32(count) >= loadFactor*float32((uintptr(1)<<B))
+}
+
+// tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
+// Note that most of these overflow buckets must be in sparse use;
+// if use was dense, then we'd have already triggered regular map growth.
+func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
+ // If the threshold is too low, we do extraneous work.
+ // If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
+ // "too many" means (approximately) as many overflow buckets as regular buckets.
+ // See incrnoverflow for more details.
+ if B < 16 {
+ return noverflow >= uint16(1)<<B
+ }
+ return noverflow >= 1<<15
+}
+
+// growing reports whether h is growing. The growth may be to the same size or bigger.
+func (h *hmap) growing() bool {
+ return h.oldbuckets != nil
+}
+
+// sameSizeGrow reports whether the current growth is to a map of the same size.
+func (h *hmap) sameSizeGrow() bool {
+ return h.flags&sameSizeGrow != 0
+}
+
+// noldbuckets calculates the number of buckets prior to the current map growth.
+func (h *hmap) noldbuckets() uintptr {
+ oldB := h.B
+ if !h.sameSizeGrow() {
+ oldB--
+ }
+ return uintptr(1) << oldB
+}
+
+// oldbucketmask provides a mask that can be applied to calculate n % noldbuckets().
+func (h *hmap) oldbucketmask() uintptr {
+ return h.noldbuckets() - 1
+}
+
+func growWork(t *maptype, h *hmap, bucket uintptr) {
+ // make sure we evacuate the oldbucket corresponding
+ // to the bucket we're about to use
+ evacuate(t, h, bucket&h.oldbucketmask())
+
+ // evacuate one more oldbucket to make progress on growing
+ if h.growing() {
+ evacuate(t, h, h.nevacuate)
+ }
+}
+
+func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
+ b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
+ newbit := h.noldbuckets()
+ hashfn := t.key.hashfn
+ equalfn := t.key.equalfn
+ if !evacuated(b) {
+ // TODO: reuse overflow buckets instead of using new ones, if there
+ // is no iterator using the old buckets. (If !oldIterator.)
+
+ var (
+ x, y *bmap // current low/high buckets in new map
+ xi, yi int // key/val indices into x and y
+ xk, yk unsafe.Pointer // pointers to current x and y key storage
+ xv, yv unsafe.Pointer // pointers to current x and y value storage
+ )
+ x = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
+ xi = 0
+ xk = add(unsafe.Pointer(x), dataOffset)
+ xv = add(xk, bucketCnt*uintptr(t.keysize))
+ if !h.sameSizeGrow() {
+ // Only calculate y pointers if we're growing bigger.
+ // Otherwise GC can see bad pointers.
+ y = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
+ yi = 0
+ yk = add(unsafe.Pointer(y), dataOffset)
+ yv = add(yk, bucketCnt*uintptr(t.keysize))
+ }
+ for ; b != nil; b = b.overflow(t) {
+ k := add(unsafe.Pointer(b), dataOffset)
+ v := add(k, bucketCnt*uintptr(t.keysize))
+ for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) {
+ top := b.tophash[i]
+ if top == empty {
+ b.tophash[i] = evacuatedEmpty
+ continue
+ }
+ if top < minTopHash {
+ throw("bad map state")
+ }
+ k2 := k
+ if t.indirectkey {
+ k2 = *((*unsafe.Pointer)(k2))
+ }
+ useX := true
+ if !h.sameSizeGrow() {
+ // Compute hash to make our evacuation decision (whether we need
+ // to send this key/value to bucket x or bucket y).
+ hash := hashfn(k2, uintptr(h.hash0))
+ if h.flags&iterator != 0 {
+ if !t.reflexivekey && !equalfn(k2, k2) {
+ // If key != key (NaNs), then the hash could be (and probably
+ // will be) entirely different from the old hash. Moreover,
+ // it isn't reproducible. Reproducibility is required in the
+ // presence of iterators, as our evacuation decision must
+ // match whatever decision the iterator made.
+ // Fortunately, we have the freedom to send these keys either
+ // way. Also, tophash is meaningless for these kinds of keys.
+ // We let the low bit of tophash drive the evacuation decision.
+ // We recompute a new random tophash for the next level so
+ // these keys will get evenly distributed across all buckets
+ // after multiple grows.
+ if top&1 != 0 {
+ hash |= newbit
+ } else {
+ hash &^= newbit
+ }
+ top = uint8(hash >> (sys.PtrSize*8 - 8))
+ if top < minTopHash {
+ top += minTopHash
+ }
+ }
+ }
+ useX = hash&newbit == 0
+ }
+ if useX {
+ b.tophash[i] = evacuatedX
+ if xi == bucketCnt {
+ newx := (*bmap)(newobject(t.bucket))
+ h.setoverflow(t, x, newx)
+ x = newx
+ xi = 0
+ xk = add(unsafe.Pointer(x), dataOffset)
+ xv = add(xk, bucketCnt*uintptr(t.keysize))
+ }
+ x.tophash[xi] = top
+ if t.indirectkey {
+ *(*unsafe.Pointer)(xk) = k2 // copy pointer
+ } else {
+ typedmemmove(t.key, xk, k) // copy value
+ }
+ if t.indirectvalue {
+ *(*unsafe.Pointer)(xv) = *(*unsafe.Pointer)(v)
+ } else {
+ typedmemmove(t.elem, xv, v)
+ }
+ xi++
+ xk = add(xk, uintptr(t.keysize))
+ xv = add(xv, uintptr(t.valuesize))
+ } else {
+ b.tophash[i] = evacuatedY
+ if yi == bucketCnt {
+ newy := (*bmap)(newobject(t.bucket))
+ h.setoverflow(t, y, newy)
+ y = newy
+ yi = 0
+ yk = add(unsafe.Pointer(y), dataOffset)
+ yv = add(yk, bucketCnt*uintptr(t.keysize))
+ }
+ y.tophash[yi] = top
+ if t.indirectkey {
+ *(*unsafe.Pointer)(yk) = k2
+ } else {
+ typedmemmove(t.key, yk, k)
+ }
+ if t.indirectvalue {
+ *(*unsafe.Pointer)(yv) = *(*unsafe.Pointer)(v)
+ } else {
+ typedmemmove(t.elem, yv, v)
+ }
+ yi++
+ yk = add(yk, uintptr(t.keysize))
+ yv = add(yv, uintptr(t.valuesize))
+ }
+ }
+ }
+ // Unlink the overflow buckets & clear key/value to help GC.
+ if h.flags&oldIterator == 0 {
+ b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
+ // Preserve b.tophash because the evacuation
+ // state is maintained there.
+ if t.bucket.kind&kindNoPointers == 0 {
+ memclrHasPointers(add(unsafe.Pointer(b), dataOffset), uintptr(t.bucketsize)-dataOffset)
+ } else {
+ memclrNoHeapPointers(add(unsafe.Pointer(b), dataOffset), uintptr(t.bucketsize)-dataOffset)
+ }
+ }
+ }
+
+ // Advance evacuation mark
+ if oldbucket == h.nevacuate {
+ h.nevacuate = oldbucket + 1
+ if oldbucket+1 == newbit { // newbit == # of oldbuckets
+ // Growing is all done. Free old main bucket array.
+ h.oldbuckets = nil
+ // Can discard old overflow buckets as well.
+ // If they are still referenced by an iterator,
+ // then the iterator holds a pointers to the slice.
+ if h.overflow != nil {
+ h.overflow[1] = nil
+ }
+ h.flags &^= sameSizeGrow
+ }
+ }
+}
+
+func ismapkey(t *_type) bool {
+ return t.hashfn != nil
+}
+
+// Reflect stubs. Called from ../reflect/asm_*.s
+
+//go:linkname reflect_makemap reflect.makemap
+func reflect_makemap(t *maptype) *hmap {
+ return makemap(t, 0, nil, nil)
+}
+
+//go:linkname reflect_mapaccess reflect.mapaccess
+func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
+ val, ok := mapaccess2(t, h, key)
+ if !ok {
+ // reflect wants nil for a missing element
+ val = nil
+ }
+ return val
+}
+
+//go:linkname reflect_mapassign reflect.mapassign
+func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, val unsafe.Pointer) {
+ p := mapassign(t, h, key)
+ typedmemmove(t.elem, p, val)
+}
+
+//go:linkname reflect_mapdelete reflect.mapdelete
+func reflect_mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
+ mapdelete(t, h, key)
+}
+
+//go:linkname reflect_mapiterinit reflect.mapiterinit
+func reflect_mapiterinit(t *maptype, h *hmap) *hiter {
+ it := new(hiter)
+ mapiterinit(t, h, it)
+ return it
+}
+
+//go:linkname reflect_mapiternext reflect.mapiternext
+func reflect_mapiternext(it *hiter) {
+ mapiternext(it)
+}
+
+//go:linkname reflect_mapiterkey reflect.mapiterkey
+func reflect_mapiterkey(it *hiter) unsafe.Pointer {
+ return it.key
+}
+
+//go:linkname reflect_maplen reflect.maplen
+func reflect_maplen(h *hmap) int {
+ if h == nil {
+ return 0
+ }
+ if raceenabled {
+ callerpc := getcallerpc(unsafe.Pointer( /* &h */ nil))
+ racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen))
+ }
+ return h.count
+}
+
+//go:linkname reflect_ismapkey reflect.ismapkey
+func reflect_ismapkey(t *_type) bool {
+ return ismapkey(t)
+}
+
+const maxZero = 1024 // must match value in ../cmd/compile/internal/gc/walk.go
+var zeroVal [maxZero]byte