summaryrefslogtreecommitdiff
path: root/libgo/runtime/malloc.h
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/runtime/malloc.h')
-rw-r--r--libgo/runtime/malloc.h399
1 files changed, 399 insertions, 0 deletions
diff --git a/libgo/runtime/malloc.h b/libgo/runtime/malloc.h
new file mode 100644
index 0000000000..369f9b8e77
--- /dev/null
+++ b/libgo/runtime/malloc.h
@@ -0,0 +1,399 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Memory allocator, based on tcmalloc.
+// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
+
+// The main allocator works in runs of pages.
+// Small allocation sizes (up to and including 32 kB) are
+// rounded to one of about 100 size classes, each of which
+// has its own free list of objects of exactly that size.
+// Any free page of memory can be split into a set of objects
+// of one size class, which are then managed using free list
+// allocators.
+//
+// The allocator's data structures are:
+//
+// FixAlloc: a free-list allocator for fixed-size objects,
+// used to manage storage used by the allocator.
+// MHeap: the malloc heap, managed at page (4096-byte) granularity.
+// MSpan: a run of pages managed by the MHeap.
+// MHeapMap: a mapping from page IDs to MSpans.
+// MCentral: a shared free list for a given size class.
+// MCache: a per-thread (in Go, per-M) cache for small objects.
+// MStats: allocation statistics.
+//
+// Allocating a small object proceeds up a hierarchy of caches:
+//
+// 1. Round the size up to one of the small size classes
+// and look in the corresponding MCache free list.
+// If the list is not empty, allocate an object from it.
+// This can all be done without acquiring a lock.
+//
+// 2. If the MCache free list is empty, replenish it by
+// taking a bunch of objects from the MCentral free list.
+// Moving a bunch amortizes the cost of acquiring the MCentral lock.
+//
+// 3. If the MCentral free list is empty, replenish it by
+// allocating a run of pages from the MHeap and then
+// chopping that memory into a objects of the given size.
+// Allocating many objects amortizes the cost of locking
+// the heap.
+//
+// 4. If the MHeap is empty or has no page runs large enough,
+// allocate a new group of pages (at least 1MB) from the
+// operating system. Allocating a large run of pages
+// amortizes the cost of talking to the operating system.
+//
+// Freeing a small object proceeds up the same hierarchy:
+//
+// 1. Look up the size class for the object and add it to
+// the MCache free list.
+//
+// 2. If the MCache free list is too long or the MCache has
+// too much memory, return some to the MCentral free lists.
+//
+// 3. If all the objects in a given span have returned to
+// the MCentral list, return that span to the page heap.
+//
+// 4. If the heap has too much memory, return some to the
+// operating system.
+//
+// TODO(rsc): Step 4 is not implemented.
+//
+// Allocating and freeing a large object uses the page heap
+// directly, bypassing the MCache and MCentral free lists.
+//
+// The small objects on the MCache and MCentral free lists
+// may or may not be zeroed. They are zeroed if and only if
+// the second word of the object is zero. The spans in the
+// page heap are always zeroed. When a span full of objects
+// is returned to the page heap, the objects that need to be
+// are zeroed first. There are two main benefits to delaying the
+// zeroing this way:
+//
+// 1. stack frames allocated from the small object lists
+// can avoid zeroing altogether.
+// 2. the cost of zeroing when reusing a small object is
+// charged to the mutator, not the garbage collector.
+//
+// This C code was written with an eye toward translating to Go
+// in the future. Methods have the form Type_Method(Type *t, ...).
+
+typedef struct FixAlloc FixAlloc;
+typedef struct MCentral MCentral;
+typedef struct MHeap MHeap;
+typedef struct MHeapMap MHeapMap;
+typedef struct MSpan MSpan;
+typedef struct MStats MStats;
+typedef struct MLink MLink;
+
+enum
+{
+ PageShift = 12,
+ PageSize = 1<<PageShift,
+ PageMask = PageSize - 1,
+};
+typedef uintptr PageID; // address >> PageShift
+
+enum
+{
+ // Tunable constants.
+ NumSizeClasses = 67, // Number of size classes (must match msize.c)
+ MaxSmallSize = 32<<10,
+
+ FixAllocChunk = 128<<10, // Chunk size for FixAlloc
+ MaxMCacheListLen = 256, // Maximum objects on MCacheList
+ MaxMCacheSize = 2<<20, // Maximum bytes in one MCache
+ MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
+ HeapAllocChunk = 1<<20, // Chunk size for heap growth
+};
+
+#if __SIZEOF_POINTER__ == 8
+#include "mheapmap64.h"
+#else
+#include "mheapmap32.h"
+#endif
+
+// A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).)
+struct MLink
+{
+ MLink *next;
+};
+
+// SysAlloc obtains a large chunk of zeroed memory from the
+// operating system, typically on the order of a hundred kilobytes
+// or a megabyte.
+//
+// SysUnused notifies the operating system that the contents
+// of the memory region are no longer needed and can be reused
+// for other purposes. The program reserves the right to start
+// accessing those pages in the future.
+//
+// SysFree returns it unconditionally; this is only used if
+// an out-of-memory error has been detected midway through
+// an allocation. It is okay if SysFree is a no-op.
+
+void* runtime_SysAlloc(uintptr nbytes);
+void runtime_SysFree(void *v, uintptr nbytes);
+void runtime_SysUnused(void *v, uintptr nbytes);
+void runtime_SysMemInit(void);
+
+// FixAlloc is a simple free-list allocator for fixed size objects.
+// Malloc uses a FixAlloc wrapped around SysAlloc to manages its
+// MCache and MSpan objects.
+//
+// Memory returned by FixAlloc_Alloc is not zeroed.
+// The caller is responsible for locking around FixAlloc calls.
+// Callers can keep state in the object but the first word is
+// smashed by freeing and reallocating.
+struct FixAlloc
+{
+ uintptr size;
+ void *(*alloc)(uintptr);
+ void (*first)(void *arg, byte *p); // called first time p is returned
+ void *arg;
+ MLink *list;
+ byte *chunk;
+ uint32 nchunk;
+ uintptr inuse; // in-use bytes now
+ uintptr sys; // bytes obtained from system
+};
+
+void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void *(*alloc)(uintptr), void (*first)(void*, byte*), void *arg);
+void* runtime_FixAlloc_Alloc(FixAlloc *f);
+void runtime_FixAlloc_Free(FixAlloc *f, void *p);
+
+
+// Statistics.
+// Shared with Go: if you edit this structure, also edit extern.go.
+struct MStats
+{
+ // General statistics. No locking; approximate.
+ uint64 alloc; // bytes allocated and still in use
+ uint64 total_alloc; // bytes allocated (even if freed)
+ uint64 sys; // bytes obtained from system (should be sum of xxx_sys below)
+ uint64 nlookup; // number of pointer lookups
+ uint64 nmalloc; // number of mallocs
+ uint64 nfree; // number of frees
+
+ // Statistics about malloc heap.
+ // protected by mheap.Lock
+ uint64 heap_alloc; // bytes allocated and still in use
+ uint64 heap_sys; // bytes obtained from system
+ uint64 heap_idle; // bytes in idle spans
+ uint64 heap_inuse; // bytes in non-idle spans
+ uint64 heap_objects; // total number of allocated objects
+
+ // Statistics about allocation of low-level fixed-size structures.
+ // Protected by FixAlloc locks.
+ uint64 stacks_inuse; // bootstrap stacks
+ uint64 stacks_sys;
+ uint64 mspan_inuse; // MSpan structures
+ uint64 mspan_sys;
+ uint64 mcache_inuse; // MCache structures
+ uint64 mcache_sys;
+ uint64 heapmap_sys; // heap map
+ uint64 buckhash_sys; // profiling bucket hash table
+
+ // Statistics about garbage collector.
+ // Protected by stopping the world during GC.
+ uint64 next_gc; // next GC (in heap_alloc time)
+ uint64 pause_total_ns;
+ uint64 pause_ns[256];
+ uint32 numgc;
+ bool enablegc;
+ bool debuggc;
+
+ // Statistics about allocation size classes.
+ // No locking; approximate.
+ struct {
+ uint32 size;
+ uint64 nmalloc;
+ uint64 nfree;
+ } by_size[NumSizeClasses];
+};
+
+extern MStats mstats
+ __asm__ ("libgo_runtime.runtime.MemStats");
+
+
+// Size classes. Computed and initialized by InitSizes.
+//
+// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
+// 1 <= sizeclass < NumSizeClasses, for n.
+// Size class 0 is reserved to mean "not small".
+//
+// class_to_size[i] = largest size in class i
+// class_to_allocnpages[i] = number of pages to allocate when
+// making new objects in class i
+// class_to_transfercount[i] = number of objects to move when
+// taking a bunch of objects out of the central lists
+// and putting them in the thread free list.
+
+int32 runtime_SizeToClass(int32);
+extern int32 runtime_class_to_size[NumSizeClasses];
+extern int32 runtime_class_to_allocnpages[NumSizeClasses];
+extern int32 runtime_class_to_transfercount[NumSizeClasses];
+extern void runtime_InitSizes(void);
+
+
+// Per-thread (in Go, per-M) cache for small objects.
+// No locking needed because it is per-thread (per-M).
+typedef struct MCacheList MCacheList;
+struct MCacheList
+{
+ MLink *list;
+ uint32 nlist;
+ uint32 nlistmin;
+};
+
+struct MCache
+{
+ MCacheList list[NumSizeClasses];
+ uint64 size;
+ int64 local_alloc; // bytes allocated (or freed) since last lock of heap
+ int64 local_objects; // objects allocated (or freed) since last lock of heap
+ int32 next_sample; // trigger heap sample after allocating this many bytes
+};
+
+void* runtime_MCache_Alloc(MCache *c, int32 sizeclass, uintptr size, int32 zeroed);
+void runtime_MCache_Free(MCache *c, void *p, int32 sizeclass, uintptr size);
+void runtime_MCache_ReleaseAll(MCache *c);
+
+// An MSpan is a run of pages.
+enum
+{
+ MSpanInUse = 0,
+ MSpanFree,
+ MSpanListHead,
+ MSpanDead,
+};
+struct MSpan
+{
+ MSpan *next; // in a span linked list
+ MSpan *prev; // in a span linked list
+ MSpan *allnext; // in the list of all spans
+ PageID start; // starting page number
+ uintptr npages; // number of pages in span
+ MLink *freelist; // list of free objects
+ uint32 ref; // number of allocated objects in this span
+ uint32 sizeclass; // size class
+ uint32 state; // MSpanInUse etc
+ union {
+ uint32 *gcref; // sizeclass > 0
+ uint32 gcref0; // sizeclass == 0
+ };
+};
+
+void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
+
+// Every MSpan is in one doubly-linked list,
+// either one of the MHeap's free lists or one of the
+// MCentral's span lists. We use empty MSpan structures as list heads.
+void runtime_MSpanList_Init(MSpan *list);
+bool runtime_MSpanList_IsEmpty(MSpan *list);
+void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
+void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
+
+
+// Central list of free objects of a given size.
+struct MCentral
+{
+ Lock;
+ int32 sizeclass;
+ MSpan nonempty;
+ MSpan empty;
+ int32 nfree;
+};
+
+void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
+int32 runtime_MCentral_AllocList(MCentral *c, int32 n, MLink **first);
+void runtime_MCentral_FreeList(MCentral *c, int32 n, MLink *first);
+
+// Main malloc heap.
+// The heap itself is the "free[]" and "large" arrays,
+// but all the other global data is here too.
+struct MHeap
+{
+ Lock;
+ MSpan free[MaxMHeapList]; // free lists of given length
+ MSpan large; // free lists length >= MaxMHeapList
+ MSpan *allspans;
+
+ // span lookup
+ MHeapMap map;
+
+ // range of addresses we might see in the heap
+ byte *min;
+ byte *max;
+
+ // central free lists for small size classes.
+ // the union makes sure that the MCentrals are
+ // spaced 64 bytes apart, so that each MCentral.Lock
+ // gets its own cache line.
+ union {
+ MCentral;
+ byte pad[64];
+ } central[NumSizeClasses];
+
+ FixAlloc spanalloc; // allocator for Span*
+ FixAlloc cachealloc; // allocator for MCache*
+};
+extern MHeap runtime_mheap;
+
+void runtime_MHeap_Init(MHeap *h, void *(*allocator)(uintptr));
+MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct);
+void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
+MSpan* runtime_MHeap_Lookup(MHeap *h, PageID p);
+MSpan* runtime_MHeap_LookupMaybe(MHeap *h, PageID p);
+void runtime_MGetSizeClassInfo(int32 sizeclass, int32 *size, int32 *npages, int32 *nobj);
+
+void* runtime_mallocgc(uintptr size, uint32 flag, int32 dogc, int32 zeroed);
+int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s, uint32 **ref);
+void runtime_gc(int32 force);
+
+void* runtime_SysAlloc(uintptr);
+void runtime_SysUnused(void*, uintptr);
+void runtime_SysFree(void*, uintptr);
+
+enum
+{
+ RefcountOverhead = 4, // one uint32 per object
+
+ RefFree = 0, // must be zero
+ RefStack, // stack segment - don't free and don't scan for pointers
+ RefNone, // no references
+ RefSome, // some references
+ RefNoPointers = 0x80000000U, // flag - no pointers here
+ RefHasFinalizer = 0x40000000U, // flag - has finalizer
+ RefProfiled = 0x20000000U, // flag - is in profiling table
+ RefNoProfiling = 0x10000000U, // flag - must not profile
+ RefFlags = 0xFFFF0000U,
+};
+
+void runtime_Mprof_Init(void);
+void runtime_MProf_Malloc(void*, uintptr);
+void runtime_MProf_Free(void*, uintptr);
+void runtime_MProf_Mark(void (*scan)(byte *, int64));
+
+// Malloc profiling settings.
+// Must match definition in extern.go.
+enum {
+ MProf_None = 0,
+ MProf_Sample = 1,
+ MProf_All = 2,
+};
+extern int32 runtime_malloc_profile;
+
+typedef struct Finalizer Finalizer;
+struct Finalizer
+{
+ Finalizer *next; // for use by caller of getfinalizer
+ void (*fn)(void*);
+ void *arg;
+ const struct __go_func_type *ft;
+};
+
+Finalizer* runtime_getfinalizer(void*, bool);