summaryrefslogtreecommitdiff
path: root/libgo/go/crypto/cipher/gcm.go
blob: 3868d7123a1d9eacf1455dac2b253b7071118a9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package cipher

import (
	"crypto/subtle"
	"errors"
)

// AEAD is a cipher mode providing authenticated encryption with associated
// data. For a description of the methodology, see
//	https://en.wikipedia.org/wiki/Authenticated_encryption
type AEAD interface {
	// NonceSize returns the size of the nonce that must be passed to Seal
	// and Open.
	NonceSize() int

	// Overhead returns the maximum difference between the lengths of a
	// plaintext and its ciphertext.
	Overhead() int

	// Seal encrypts and authenticates plaintext, authenticates the
	// additional data and appends the result to dst, returning the updated
	// slice. The nonce must be NonceSize() bytes long and unique for all
	// time, for a given key.
	//
	// The plaintext and dst may alias exactly or not at all. To reuse
	// plaintext's storage for the encrypted output, use plaintext[:0] as dst.
	Seal(dst, nonce, plaintext, additionalData []byte) []byte

	// Open decrypts and authenticates ciphertext, authenticates the
	// additional data and, if successful, appends the resulting plaintext
	// to dst, returning the updated slice. The nonce must be NonceSize()
	// bytes long and both it and the additional data must match the
	// value passed to Seal.
	//
	// The ciphertext and dst may alias exactly or not at all. To reuse
	// ciphertext's storage for the decrypted output, use ciphertext[:0] as dst.
	//
	// Even if the function fails, the contents of dst, up to its capacity,
	// may be overwritten.
	Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error)
}

// gcmAble is an interface implemented by ciphers that have a specific optimized
// implementation of GCM, like crypto/aes. NewGCM will check for this interface
// and return the specific AEAD if found.
type gcmAble interface {
	NewGCM(int) (AEAD, error)
}

// gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM
// standard and make getUint64 suitable for marshaling these values, the bits
// are stored backwards. For example:
//   the coefficient of x⁰ can be obtained by v.low >> 63.
//   the coefficient of x⁶³ can be obtained by v.low & 1.
//   the coefficient of x⁶⁴ can be obtained by v.high >> 63.
//   the coefficient of x¹²⁷ can be obtained by v.high & 1.
type gcmFieldElement struct {
	low, high uint64
}

// gcm represents a Galois Counter Mode with a specific key. See
// http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
type gcm struct {
	cipher    Block
	nonceSize int
	// productTable contains the first sixteen powers of the key, H.
	// However, they are in bit reversed order. See NewGCMWithNonceSize.
	productTable [16]gcmFieldElement
}

// NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode
// with the standard nonce length.
func NewGCM(cipher Block) (AEAD, error) {
	return NewGCMWithNonceSize(cipher, gcmStandardNonceSize)
}

// NewGCMWithNonceSize returns the given 128-bit, block cipher wrapped in Galois
// Counter Mode, which accepts nonces of the given length.
//
// Only use this function if you require compatibility with an existing
// cryptosystem that uses non-standard nonce lengths. All other users should use
// NewGCM, which is faster and more resistant to misuse.
func NewGCMWithNonceSize(cipher Block, size int) (AEAD, error) {
	if cipher, ok := cipher.(gcmAble); ok {
		return cipher.NewGCM(size)
	}

	if cipher.BlockSize() != gcmBlockSize {
		return nil, errors.New("cipher: NewGCM requires 128-bit block cipher")
	}

	var key [gcmBlockSize]byte
	cipher.Encrypt(key[:], key[:])

	g := &gcm{cipher: cipher, nonceSize: size}

	// We precompute 16 multiples of |key|. However, when we do lookups
	// into this table we'll be using bits from a field element and
	// therefore the bits will be in the reverse order. So normally one
	// would expect, say, 4*key to be in index 4 of the table but due to
	// this bit ordering it will actually be in index 0010 (base 2) = 2.
	x := gcmFieldElement{
		getUint64(key[:8]),
		getUint64(key[8:]),
	}
	g.productTable[reverseBits(1)] = x

	for i := 2; i < 16; i += 2 {
		g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)])
		g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x)
	}

	return g, nil
}

const (
	gcmBlockSize         = 16
	gcmTagSize           = 16
	gcmStandardNonceSize = 12
)

func (g *gcm) NonceSize() int {
	return g.nonceSize
}

func (*gcm) Overhead() int {
	return gcmTagSize
}

func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte {
	if len(nonce) != g.nonceSize {
		panic("cipher: incorrect nonce length given to GCM")
	}
	ret, out := sliceForAppend(dst, len(plaintext)+gcmTagSize)

	var counter, tagMask [gcmBlockSize]byte
	g.deriveCounter(&counter, nonce)

	g.cipher.Encrypt(tagMask[:], counter[:])
	gcmInc32(&counter)

	g.counterCrypt(out, plaintext, &counter)
	g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask)

	return ret
}

var errOpen = errors.New("cipher: message authentication failed")

func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
	if len(nonce) != g.nonceSize {
		panic("cipher: incorrect nonce length given to GCM")
	}

	if len(ciphertext) < gcmTagSize {
		return nil, errOpen
	}
	tag := ciphertext[len(ciphertext)-gcmTagSize:]
	ciphertext = ciphertext[:len(ciphertext)-gcmTagSize]

	var counter, tagMask [gcmBlockSize]byte
	g.deriveCounter(&counter, nonce)

	g.cipher.Encrypt(tagMask[:], counter[:])
	gcmInc32(&counter)

	var expectedTag [gcmTagSize]byte
	g.auth(expectedTag[:], ciphertext, data, &tagMask)

	ret, out := sliceForAppend(dst, len(ciphertext))

	if subtle.ConstantTimeCompare(expectedTag[:], tag) != 1 {
		// The AESNI code decrypts and authenticates concurrently, and
		// so overwrites dst in the event of a tag mismatch. That
		// behaviour is mimicked here in order to be consistent across
		// platforms.
		for i := range out {
			out[i] = 0
		}
		return nil, errOpen
	}

	g.counterCrypt(out, ciphertext, &counter)

	return ret, nil
}

// reverseBits reverses the order of the bits of 4-bit number in i.
func reverseBits(i int) int {
	i = ((i << 2) & 0xc) | ((i >> 2) & 0x3)
	i = ((i << 1) & 0xa) | ((i >> 1) & 0x5)
	return i
}

// gcmAdd adds two elements of GF(2¹²⁸) and returns the sum.
func gcmAdd(x, y *gcmFieldElement) gcmFieldElement {
	// Addition in a characteristic 2 field is just XOR.
	return gcmFieldElement{x.low ^ y.low, x.high ^ y.high}
}

// gcmDouble returns the result of doubling an element of GF(2¹²⁸).
func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) {
	msbSet := x.high&1 == 1

	// Because of the bit-ordering, doubling is actually a right shift.
	double.high = x.high >> 1
	double.high |= x.low << 63
	double.low = x.low >> 1

	// If the most-significant bit was set before shifting then it,
	// conceptually, becomes a term of x^128. This is greater than the
	// irreducible polynomial so the result has to be reduced. The
	// irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to
	// eliminate the term at x^128 which also means subtracting the other
	// four terms. In characteristic 2 fields, subtraction == addition ==
	// XOR.
	if msbSet {
		double.low ^= 0xe100000000000000
	}

	return
}

var gcmReductionTable = []uint16{
	0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
	0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
}

// mul sets y to y*H, where H is the GCM key, fixed during NewGCMWithNonceSize.
func (g *gcm) mul(y *gcmFieldElement) {
	var z gcmFieldElement

	for i := 0; i < 2; i++ {
		word := y.high
		if i == 1 {
			word = y.low
		}

		// Multiplication works by multiplying z by 16 and adding in
		// one of the precomputed multiples of H.
		for j := 0; j < 64; j += 4 {
			msw := z.high & 0xf
			z.high >>= 4
			z.high |= z.low << 60
			z.low >>= 4
			z.low ^= uint64(gcmReductionTable[msw]) << 48

			// the values in |table| are ordered for
			// little-endian bit positions. See the comment
			// in NewGCMWithNonceSize.
			t := &g.productTable[word&0xf]

			z.low ^= t.low
			z.high ^= t.high
			word >>= 4
		}
	}

	*y = z
}

// updateBlocks extends y with more polynomial terms from blocks, based on
// Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks.
func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) {
	for len(blocks) > 0 {
		y.low ^= getUint64(blocks)
		y.high ^= getUint64(blocks[8:])
		g.mul(y)
		blocks = blocks[gcmBlockSize:]
	}
}

// update extends y with more polynomial terms from data. If data is not a
// multiple of gcmBlockSize bytes long then the remainder is zero padded.
func (g *gcm) update(y *gcmFieldElement, data []byte) {
	fullBlocks := (len(data) >> 4) << 4
	g.updateBlocks(y, data[:fullBlocks])

	if len(data) != fullBlocks {
		var partialBlock [gcmBlockSize]byte
		copy(partialBlock[:], data[fullBlocks:])
		g.updateBlocks(y, partialBlock[:])
	}
}

// gcmInc32 treats the final four bytes of counterBlock as a big-endian value
// and increments it.
func gcmInc32(counterBlock *[16]byte) {
	for i := gcmBlockSize - 1; i >= gcmBlockSize-4; i-- {
		counterBlock[i]++
		if counterBlock[i] != 0 {
			break
		}
	}
}

// sliceForAppend takes a slice and a requested number of bytes. It returns a
// slice with the contents of the given slice followed by that many bytes and a
// second slice that aliases into it and contains only the extra bytes. If the
// original slice has sufficient capacity then no allocation is performed.
func sliceForAppend(in []byte, n int) (head, tail []byte) {
	if total := len(in) + n; cap(in) >= total {
		head = in[:total]
	} else {
		head = make([]byte, total)
		copy(head, in)
	}
	tail = head[len(in):]
	return
}

// counterCrypt crypts in to out using g.cipher in counter mode.
func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) {
	var mask [gcmBlockSize]byte

	for len(in) >= gcmBlockSize {
		g.cipher.Encrypt(mask[:], counter[:])
		gcmInc32(counter)

		xorWords(out, in, mask[:])
		out = out[gcmBlockSize:]
		in = in[gcmBlockSize:]
	}

	if len(in) > 0 {
		g.cipher.Encrypt(mask[:], counter[:])
		gcmInc32(counter)
		xorBytes(out, in, mask[:])
	}
}

// deriveCounter computes the initial GCM counter state from the given nonce.
// See NIST SP 800-38D, section 7.1. This assumes that counter is filled with
// zeros on entry.
func (g *gcm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) {
	// GCM has two modes of operation with respect to the initial counter
	// state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path"
	// for nonces of other lengths. For a 96-bit nonce, the nonce, along
	// with a four-byte big-endian counter starting at one, is used
	// directly as the starting counter. For other nonce sizes, the counter
	// is computed by passing it through the GHASH function.
	if len(nonce) == gcmStandardNonceSize {
		copy(counter[:], nonce)
		counter[gcmBlockSize-1] = 1
	} else {
		var y gcmFieldElement
		g.update(&y, nonce)
		y.high ^= uint64(len(nonce)) * 8
		g.mul(&y)
		putUint64(counter[:8], y.low)
		putUint64(counter[8:], y.high)
	}
}

// auth calculates GHASH(ciphertext, additionalData), masks the result with
// tagMask and writes the result to out.
func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) {
	var y gcmFieldElement
	g.update(&y, additionalData)
	g.update(&y, ciphertext)

	y.low ^= uint64(len(additionalData)) * 8
	y.high ^= uint64(len(ciphertext)) * 8

	g.mul(&y)

	putUint64(out, y.low)
	putUint64(out[8:], y.high)

	xorWords(out, out, tagMask[:])
}

func getUint64(data []byte) uint64 {
	r := uint64(data[0])<<56 |
		uint64(data[1])<<48 |
		uint64(data[2])<<40 |
		uint64(data[3])<<32 |
		uint64(data[4])<<24 |
		uint64(data[5])<<16 |
		uint64(data[6])<<8 |
		uint64(data[7])
	return r
}

func putUint64(out []byte, v uint64) {
	out[0] = byte(v >> 56)
	out[1] = byte(v >> 48)
	out[2] = byte(v >> 40)
	out[3] = byte(v >> 32)
	out[4] = byte(v >> 24)
	out[5] = byte(v >> 16)
	out[6] = byte(v >> 8)
	out[7] = byte(v)
}